中考數(shù)學(xué)總復(fù)習(xí)《 圓》綜合提升測(cè)試卷含答案詳解【培優(yōu)】_第1頁(yè)
中考數(shù)學(xué)總復(fù)習(xí)《 圓》綜合提升測(cè)試卷含答案詳解【培優(yōu)】_第2頁(yè)
中考數(shù)學(xué)總復(fù)習(xí)《 圓》綜合提升測(cè)試卷含答案詳解【培優(yōu)】_第3頁(yè)
中考數(shù)學(xué)總復(fù)習(xí)《 圓》綜合提升測(cè)試卷含答案詳解【培優(yōu)】_第4頁(yè)
中考數(shù)學(xué)總復(fù)習(xí)《 圓》綜合提升測(cè)試卷含答案詳解【培優(yōu)】_第5頁(yè)
已閱讀5頁(yè),還剩18頁(yè)未讀 繼續(xù)免費(fèi)閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)

文檔簡(jiǎn)介

中考數(shù)學(xué)總復(fù)習(xí)《圓》綜合提升測(cè)試卷考試時(shí)間:90分鐘;命題人:教研組考生注意:1、本卷分第I卷(選擇題)和第Ⅱ卷(非選擇題)兩部分,滿分100分,考試時(shí)間90分鐘2、答卷前,考生務(wù)必用0.5毫米黑色簽字筆將自己的姓名、班級(jí)填寫在試卷規(guī)定位置上3、答案必須寫在試卷各個(gè)題目指定區(qū)域內(nèi)相應(yīng)的位置,如需改動(dòng),先劃掉原來的答案,然后再寫上新的答案;不準(zhǔn)使用涂改液、膠帶紙、修正帶,不按以上要求作答的答案無效。第I卷(選擇題20分)一、單選題(5小題,每小題4分,共計(jì)20分)1、已知圓內(nèi)接正三角形的面積為,則該圓的內(nèi)接正六邊形的邊心距是()A. B. C. D.2、一個(gè)點(diǎn)到圓的最大距離為11cm,最小距離為5cm,則圓的半徑為(

)A.16cm或6cm B.3cm或8cm C.3cm D.8cm3、在⊙O中按如下步驟作圖:(1)作⊙O的直徑AD;(2)以點(diǎn)D為圓心,DO長(zhǎng)為半徑畫弧,交⊙O于B,C兩點(diǎn);(3)連接DB,DC,AB,AC,BC.根據(jù)以上作圖過程及所作圖形,下列四個(gè)結(jié)論中錯(cuò)誤的是()A.∠ABD=90° B.∠BAD=∠CBD C.AD⊥BC D.AC=2CD4、如圖,在△ABC中,cosB=,sinC=,AC=5,則△ABC的面積是()A. B.12 C.14 D.215、如圖,公園內(nèi)有一個(gè)半徑為18米的圓形草坪,從地走到地有觀賞路(劣?。┖捅忝衤罚ň€段).已知、是圓上的點(diǎn),為圓心,,小強(qiáng)從走到,走便民路比走觀賞路少走(

)米.A. B.C. D.第Ⅱ卷(非選擇題80分)二、填空題(5小題,每小題6分,共計(jì)30分)1、如圖,在正六邊形ABCDEF中,分別以C,F(xiàn)為圓心,以邊長(zhǎng)為半徑作弧,圖中陰影部分的面積為24π,則正六邊形的邊長(zhǎng)為_____.2、如圖所示是一個(gè)幾何體的三視圖,如果一只螞蟻從這個(gè)幾何體的點(diǎn)出發(fā),沿表面爬到的中點(diǎn)處,則最短路線長(zhǎng)為__________.3、如圖,是的直徑,弦于點(diǎn)E,,,則的半徑_______.4、如圖,中,長(zhǎng)為,,將繞點(diǎn)A逆時(shí)針旋轉(zhuǎn)至,則邊掃過區(qū)域(圖中陰影部分)的面積為________.5、如圖,一個(gè)底面半徑為3的圓錐,母線,D為的中點(diǎn),一只螞蟻從點(diǎn)A出發(fā),沿著圓錐的側(cè)面爬行到D,則螞蟻爬行的最短路程為______.三、解答題(5小題,每小題10分,共計(jì)50分)1、如圖,在△ABC中,以AB為直徑的⊙O交AC于點(diǎn)M,弦交AB于點(diǎn)E,且ME=3,AE=4,AM=5.(1)求證:BC是⊙O的切線;(2)求⊙O的直徑AB的長(zhǎng)度.2、已知的半徑是.弦.求圓心到的距離;弦兩端在圓上滑動(dòng),且保持,的中點(diǎn)在運(yùn)動(dòng)過程中構(gòu)成什么圖形,請(qǐng)說明理由.3、如圖,半徑為6的⊙O與Rt△ABC的邊AB相切于點(diǎn)A,交邊BC于點(diǎn)C,D,∠B=90°,連接OD,AD.(1)若∠ACB=20°,求的長(zhǎng)(結(jié)果保留).(2)求證:AD平分∠BDO.4、如圖,為的直徑,C為上一點(diǎn),弦的延長(zhǎng)線與過點(diǎn)C的切線互相垂直,垂足為D,,連接.(1)求的度數(shù);(2)若,求的長(zhǎng).5、在平面直角坐標(biāo)系中,對(duì)于點(diǎn),給出如下定義:當(dāng)點(diǎn)滿足時(shí),稱點(diǎn)Q是點(diǎn)P的等和點(diǎn).已知點(diǎn).(1)在,,中,點(diǎn)P的等和點(diǎn)有______;(2)點(diǎn)A在直線上,若點(diǎn)P的等和點(diǎn)也是點(diǎn)A的等和點(diǎn),求點(diǎn)A的坐標(biāo);(3)已知點(diǎn)和線段MN,對(duì)于所有滿足的點(diǎn)C,線段MN上總存在線段PC上每個(gè)點(diǎn)的等和點(diǎn).若MN的最小值為5,直接寫出b的取值范圍.-參考答案-一、單選題1、B【解析】【分析】根據(jù)題意可以求得半徑,進(jìn)而解答即可.【詳解】因?yàn)閳A內(nèi)接正三角形的面積為,所以圓的半徑為,所以該圓的內(nèi)接正六邊形的邊心距×sin60°=×=1,故選B.【考點(diǎn)】本題考查正多邊形和圓,解答本題的關(guān)鍵是明確題意,求出相應(yīng)的圖形的邊心距.2、B【解析】【分析】最大距離與最小距離的和是直徑;當(dāng)點(diǎn)P在圓外時(shí),點(diǎn)到圓的最大距離與最小距離的差是直徑,由此得解.【詳解】當(dāng)點(diǎn)P在圓內(nèi)時(shí),最近點(diǎn)的距離為5cm,最遠(yuǎn)點(diǎn)的距離為11cm,則直徑是16cm,因而半徑是8cm;當(dāng)點(diǎn)P在圓外時(shí),最近點(diǎn)的距離為5cm,最遠(yuǎn)點(diǎn)的距離為11cm,則直徑是6cm,因而半徑是3cm;故選B.【考點(diǎn)】本題考查了點(diǎn)與圓的位置關(guān)系,利用線段的和差得出直徑是解題關(guān)鍵,分類討論,以防遺漏.3、D【解析】【分析】根據(jù)作圖過程可知:AD是⊙O的直徑,=,根據(jù)垂徑定理即可判斷A、B、C正確,再根據(jù)DC=OD,可得AD=2CD,進(jìn)而可判斷D選項(xiàng).【詳解】解:根據(jù)作圖過程可知:AD是⊙O的直徑,∴∠ABD=90°,∴A選項(xiàng)正確;∵BD=CD,∴=,∴∠BAD=∠CBD,∴B選項(xiàng)正確;根據(jù)垂徑定理,得AD⊥BC,∴C選項(xiàng)正確;∵DC=OD,∴AD=2CD,∴D選項(xiàng)錯(cuò)誤.故選:D.【考點(diǎn)】本題考查作圖-復(fù)雜作圖、含30度角的直角三角形、垂徑定理、圓周角定理,解決本題的關(guān)鍵是熟練掌握相關(guān)知識(shí)點(diǎn).4、A【解析】【分析】根據(jù)已知作出三角形的高線AD,進(jìn)而得出AD,BD,CD,的長(zhǎng),即可得出三角形的面積.【詳解】解:過點(diǎn)A作AD⊥BC,∵△ABC中,cosB=,sinC=,AC=5,∴cosB==,∴∠B=45°,∵sinC===,∴AD=3,∴CD==4,∴BD=3,則△ABC的面積是:×AD×BC=×3×(3+4)=.故選A.【考點(diǎn)】此題主要考查了解直角三角形的知識(shí),作出AD⊥BC,進(jìn)而得出相關(guān)線段的長(zhǎng)度是解決問題的關(guān)鍵.5、D【解析】【分析】作OC⊥AB于C,如圖,根據(jù)垂徑定理得到AC=BC,再利用等腰三角形的性質(zhì)和三角形內(nèi)角和計(jì)算出∠A,從而得到OC和AC,可得AB,然后利用弧長(zhǎng)公式計(jì)算出的長(zhǎng),最后求它們的差即可.【詳解】解:作OC⊥AB于C,如圖,則AC=BC,∵OA=OB,∴∠A=∠B=(180°-∠AOB)=30°,在Rt△AOC中,OC=OA=9,AC=,∴AB=2AC=,又∵=,∴走便民路比走觀賞路少走米,故選D.【考點(diǎn)】本題考查了垂徑定理:垂徑定理和勾股定理相結(jié)合,構(gòu)造直角三角形,可解決計(jì)算弦長(zhǎng)、半徑、弦心距等問題.二、填空題1、6【解析】【分析】根據(jù)多邊形的內(nèi)角和公式求出扇形的圓心角,然后按扇形面積公式列方程求解計(jì)算即可.【詳解】解:∵正六邊形的內(nèi)角是120度,陰影部分的面積為24π,設(shè)正六邊形的邊長(zhǎng)為r,∴,解得r=6.(負(fù)根舍去)則正六邊形的邊長(zhǎng)為6.故答案為:【考點(diǎn)】本題考查的是正多邊形與圓,扇形面積,掌握以上知識(shí)是解題的關(guān)鍵.2、【解析】【分析】將圓錐的側(cè)面展開,設(shè)頂點(diǎn)為B',連接BB',AE.線段AC與BB'的交點(diǎn)為F,線段BF是最短路程.【詳解】如圖將圓錐側(cè)面展開,得到扇形ABB′,則線段BF為所求的最短路程.設(shè)∠BAB′=n°.∵=4,∴n=120即∠BAB′=120°.∵E為弧BB′中點(diǎn),∴∠AFB=90°,∠BAF=60°,∴BF=AB?sin∠BAF=6×=,∴最短路線長(zhǎng)為.故答案為:.【考點(diǎn)】本題考查了平面展開?最短路徑問題,解題時(shí)注意把立體圖形轉(zhuǎn)化為平面圖形的思維.3、【解析】【分析】設(shè)半徑為r,則,得到,由垂徑定理得到,再根據(jù)勾股定理,即可求出答案.【詳解】解:由題意,設(shè)半徑為r,則,∵,∴,∵是的直徑,弦于點(diǎn)E,∴點(diǎn)E是CD的中點(diǎn),∵,∴,在直角△OCE中,由勾股定理得,即,解得:.故答案為:.【考點(diǎn)】本題考查了垂徑定理,勾股定理,解題的關(guān)鍵是熟練掌握垂徑定理和勾股定理進(jìn)行解題.4、【解析】根據(jù)已知的條件和旋轉(zhuǎn)的性質(zhì)得出兩個(gè)扇形的圓心角的度數(shù),再根據(jù)扇形的面積公式進(jìn)行計(jì)算即可得出答案.【詳解】解:∵∠BAC=60°,∠BCA=90°,△B'AC'是△BAC繞A旋轉(zhuǎn)120°得到,∴∠B'AB=120°,∠B'AC=60°,∠B'AC'=60°,△B'AC'≌△BAC,∴∠C'B'A=30°,∠C'AC=120°∵AB=1cm,∴AC'=0.5cm,∴S扇形B'AB=,S扇形C'AC=,∴S陰影部分===,故答案為【考點(diǎn)】本題考查圓的綜合應(yīng)用,熟練掌握旋轉(zhuǎn)的性質(zhì)、直角三角形的性質(zhì)及扇形面積的求法是解題關(guān)鍵.5、【解析】【分析】先畫出圓錐側(cè)面展開圖(見解析),再利用弧長(zhǎng)公式求出圓心角的度數(shù),然后利用等邊三角形的判定與性質(zhì)、勾股定理可得,最后根據(jù)兩點(diǎn)之間線段最短即可得.【詳解】畫出圓錐側(cè)面展開圖如下:如圖,連接AB、AD,設(shè)圓錐側(cè)面展開圖的圓心角的度數(shù)為,因?yàn)閳A錐側(cè)面展開圖是一個(gè)扇形,扇形的弧長(zhǎng)等于底面圓的周長(zhǎng),扇形的半徑等于母線長(zhǎng),所以,解得,則,又,是等邊三角形,點(diǎn)D是BC的中點(diǎn),,,在中,,由兩點(diǎn)之間線段最短可知,螞蟻爬行的最短路程為,故答案為:.【考點(diǎn)】本題考查了圓錐側(cè)面展開圖、弧長(zhǎng)公式、等邊三角形的判定與性質(zhì)等知識(shí)點(diǎn),熟練掌握?qǐng)A錐側(cè)面展開圖是解題關(guān)鍵.三、解答題1、(1)見解析(2)【解析】【分析】(1)根據(jù)勾股定理的逆定理得到∠AEM=90°,由于,根據(jù)平行線的性質(zhì)得∠ABC=90°,然后根據(jù)切線的判定定理即可得到BC是⊙O的切線;(2)連接OM,設(shè)⊙O的半徑是r,在Rt△OEM中,根據(jù)勾股定理得到r2=32+(4?r)2,解方程即可得到⊙O的半徑,即可得出答案.【詳解】(1)證明:∵在△AME中,ME=3,AE=4,AM=5,∴AM2=ME2+AE2,∴△AME是直角三角形,∴∠AEM=90°,又∵,∴∠ABC=∠AEM=90°,∴AB⊥BC,∵AB為直徑,∴BC是⊙O的切線;(2)解:連接OM,如圖,設(shè)⊙O的半徑是r,在Rt△OEM中,OE=AE?OA=4?r,ME=3,OM=r,∵OM2=ME2+OE2,∴r2=32+(4?r)2,解得:r=,∴AB=2r=.【考點(diǎn)】本題考查了切線的判定定理:經(jīng)過半徑的外端且垂直于這條半徑的直線是圓的切線.也考查了勾股定理和勾股定理的逆定理.2、(1)3;(2)在運(yùn)動(dòng)過程中,點(diǎn)運(yùn)動(dòng)的軌跡是以為圓心,為半徑的圓【解析】【分析】(1)利用垂徑定理,然后根據(jù)勾股定理即可求得弦心距OD的長(zhǎng);(2)根據(jù)圓的定義即可確定.【詳解】解:連接,作于.就是圓心到弦的距離.在中,∵∴是弦的中點(diǎn)在中,,,圓心到弦的距離為.由知:是弦的中點(diǎn)中點(diǎn)在運(yùn)動(dòng)過程中始終保持∴據(jù)圓的定義,在運(yùn)動(dòng)過程中,點(diǎn)運(yùn)動(dòng)的軌跡是以為圓心,為半徑的圓.【考點(diǎn)】考查垂徑定理,作出輔助線,構(gòu)造直角三角形是解題的關(guān)鍵.3、(1)(2)見解析【解析】【分析】(1)連接,由,得,由弧長(zhǎng)公式即得的長(zhǎng)為;(2)根據(jù)切于點(diǎn),,可得,有,而,即可得,從而平分.(1)解:連接OA,∵∠ACB=20°,∴∠AOD=40°,∴,.(2)證明:,,切于點(diǎn),,,,,,平分.【考點(diǎn)】本題考查與圓有關(guān)的計(jì)算及圓的性質(zhì),解題的關(guān)鍵是掌握弧長(zhǎng)公式及圓的切線的性質(zhì).4、(1)55°;(2).【解析】【分析】(1)連接OC,如圖,利用切線的性質(zhì)得到OC⊥CD,則判斷OC∥AE,所以∠DAC=∠OCA,然后利用∠OCA=∠OAC得到∠OAB的度數(shù),即可求解;(2)利用(1)的結(jié)論先求得∠AEO∠EAO70°,再平行線的性質(zhì)求得∠COE=70°,然后利用弧長(zhǎng)公式求解即可.【詳解】解:(1)連接OC,如圖,∵CD是⊙O的切線,∴OC⊥CD,∵AE⊥CD,∴OC∥AE,∴∠DAC=∠OCA,∵OA=OC,∠CAD=35°,∴∠OAC=∠OCA=∠CAD=35°,∵AB為⊙O的直徑,∴∠ACB=90°,∴∠B=90°-∠OAC=55°;(2)連接OE,OC,如圖,由(1)得∠EAO=∠OAC+∠CAD=70°,∵OA=OE,∴∠AEO∠EAO70°,∵OC∥AE,∴∠COE=∠AEO=70°,∴AB=2,則OC=OE=1,∴的長(zhǎng)為.【考點(diǎn)】本題考查了切線的性質(zhì),圓周角定理,弧長(zhǎng)公式等知識(shí),解題的關(guān)鍵是學(xué)會(huì)添加常用輔助線.5、(1),;(2);(3).【解析】【分析】(1)根據(jù)新定義計(jì)算即可;(2)由(1)可知,P的等和點(diǎn)縱坐標(biāo)比橫坐標(biāo)大2,根據(jù)等和點(diǎn)的定義,A的橫坐標(biāo)比縱坐標(biāo)大2,由此可得方程,求解即可;(3)因?yàn)榫€段MN上總存在線段PC上每個(gè)點(diǎn)的等和點(diǎn).且MN的最小值為5,所以PC的最大距離不能超過5,分別找到點(diǎn)P和點(diǎn)C的等和點(diǎn)所在的區(qū)域或直線,然后得到MN取得最大值時(shí),b的邊界即可.(1)解:由題意可知:∵,∴點(diǎn)Q1是點(diǎn)P的等和點(diǎn);∵,∴點(diǎn)Q2不是點(diǎn)P的等和點(diǎn);∵,∴點(diǎn)Q3是點(diǎn)P的等和點(diǎn);∴點(diǎn)P的等和點(diǎn)有,,(2)解:設(shè),由(1)可知,P的等和點(diǎn)縱坐標(biāo)比橫坐標(biāo)大2,∵點(diǎn)P的等和點(diǎn)也是點(diǎn)A的等和點(diǎn),∴A的橫坐標(biāo)比縱坐標(biāo)大2,則,解之得:,故,(3)解:∵P(2,0),∴P點(diǎn)的等和點(diǎn)在直線y=x+2上,∵B(b,0),∴B點(diǎn)的等和點(diǎn)在直

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。

評(píng)論

0/150

提交評(píng)論