綜合解析京改版數學9年級上冊期中試題(名師系列)附答案詳解_第1頁
綜合解析京改版數學9年級上冊期中試題(名師系列)附答案詳解_第2頁
綜合解析京改版數學9年級上冊期中試題(名師系列)附答案詳解_第3頁
綜合解析京改版數學9年級上冊期中試題(名師系列)附答案詳解_第4頁
綜合解析京改版數學9年級上冊期中試題(名師系列)附答案詳解_第5頁
已閱讀5頁,還剩39頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領

文檔簡介

京改版數學9年級上冊期中試題考試時間:90分鐘;命題人:教研組考生注意:1、本卷分第I卷(選擇題)和第Ⅱ卷(非選擇題)兩部分,滿分100分,考試時間90分鐘2、答卷前,考生務必用0.5毫米黑色簽字筆將自己的姓名、班級填寫在試卷規(guī)定位置上3、答案必須寫在試卷各個題目指定區(qū)域內相應的位置,如需改動,先劃掉原來的答案,然后再寫上新的答案;不準使用涂改液、膠帶紙、修正帶,不按以上要求作答的答案無效。第I卷(選擇題26分)一、單選題(6小題,每小題2分,共計12分)1、正方形的邊長為4,若邊長增加x,那么面積增加y,則y關于x的函數表達式為(

)A. B. C. D.2、如圖,一塊矩形木板ABCD斜靠在墻邊,(,點A、B、C、D、O在同一平面內),已知,,.則點A到OC的距離等于(

)A. B.C. D.3、在平面直角坐標系中,將二次函數的圖像向左平移2個單位長度,再向上平移1個單位長度,所得拋物線對應的函數表達式為(

)A. B. C. D.4、如圖,四邊形OABC是平行四邊形,點A的坐標為A(3,0),∠COA=60°,D為邊AB的中點,反比例函數y=(x>0)的圖象經過C,D兩點,直線CD與y軸相交于點E,則點E的坐標為(

)A.(0,2) B.(0,3) C.(0,5) D.(0,6)5、已知某條傳送帶和地面所成斜坡的坡度為1:2,如果它把一物體從地面送到離地面9米高的地方,那么該物體所經過的路程是()A.18米 B.4.5米 C.9米 D.9米.6、已知二次函數的圖像如圖所示,有下列結論:①;②>0;③;④不等式<0的解集為1≤<3,正確的結論個數是(

)A.1 B.2 C.3 D.4二、多選題(7小題,每小題2分,共計14分)1、如果一種變換是將拋物線向右平移2個單位或向上平移1個單位,我們把這種變換稱為拋物線的簡單變換.已知拋物線經過兩次簡單變換后的一條拋物線是y=x2+1,則原拋物線的解析式可能是()A.y=x2﹣1 B.y=x2+6x+5 C.y=x2+4x+4 D.y=x2+8x+172、二次函數的部分圖象如圖所示,圖象過點(-3,0),對稱軸為.下列結論正確的是(

)A.B.C.D.若(-5,),(2,)是拋物線上兩點,則3、如圖,二次函數y=ax2+bx+c的圖象經過點A(﹣4,0),其對稱軸為直線x=﹣1,下列結論正確的是(

)A.a+b+c<0B.abc<0C.2a+b=0D.若P(﹣6,y1),Q(m,y2)是拋物線上兩點,且y1>y2,則﹣6<m<44、如圖,二次函敗y=ax2+bx+c(a、b、c為常數,且a≠0)的圖象與x軸的交點的橫坐標分別為﹣1、3,則下列結論中正確的有()A.abc<0 B.2a+b=0 C.3a+2c>0 D.對于任意x均有ax2﹣a+bx﹣b≥05、如圖,將繞正方形ABCD的頂點A順時針旋轉90°得,連結EF交AB于H,則下列結論正確的是(

)A.AE⊥AF B.EF∶AF=∶1 C.AF2=FH·FE D.FB∶FC=HB∶EC6、二次函數(,,為常數,)的部分圖象如圖所示,圖象頂點的坐標為,與軸的一個交點在點和點之間,給出的四個結論中正確的有(

)A. B.C. D.時,方程有解7、如圖,在矩形、銳角三角形、正五邊形、直角三角形的外邊加一個寬度一樣的外框,保證外框的邊與原圖形的對應邊平行,則外框與原圖一定相似的有()A. B.C. D.第Ⅱ卷(非選擇題74分)三、填空題(7小題,每小題2分,共計14分)1、二次函數y=ax2+bx+c(a≠0)圖象上部分點的坐標(x,y)對應值列表如下:x…-3-2-101…y…-4-3-4-7-12…則該圖象的對稱軸是___________2、二次函數y=ax2+bx+c圖象上部分點的橫坐標x與縱坐標y的對應值如表格所示,那么它的圖象與x軸的另一個交點坐標是_____.3、已知二次函數,當分別取時,函數值相等,則當取時,函數值為______.4、把拋物線向左平移1個單位長度,再向下平移3個單位長度,得到的拋物線的解析式為___.5、圖1是一種手機托架,使用該手機托架示意圖如圖3所示,底部放置手機處寬AB1.2厘米,托架斜面長BD6厘米,它有C到F共4個檔位調節(jié)角度,相鄰兩個檔位間的距離為0.8厘米,檔位C到B的距離為2.4厘米.將某型號手機置于托架上(圖2),手機屏幕長AG是15厘米,O是支點且OBOE2.5厘米(支架的厚度忽略不計).當支架調到E檔時,點G離水平面的距離GH為__________cm.6、如圖,拋物線y=﹣x2+x+2與x軸相交于A、B兩點,與y軸相交于點C,點D在拋物線上,且CD∥AB.AD與y軸相交于點E,過點E的直線PQ平行于x軸,與拋物線相交于P,Q兩點,則線段PQ的長為_____.7、如果一條拋物線與軸有兩個交點,那么以該拋物線的頂點和這兩個交點為頂點的三角形稱為這條拋物線的“特征三角形”.已知的“特征三角形”是等腰直角三角形,那么的值為_________.四、解答題(6小題,每小題10分,共計60分)1、渠縣是全國優(yōu)質黃花主產地,某加工廠加工黃花的成本為30元/千克,根據市場調查發(fā)現(xiàn),批發(fā)價定為48元/千克時,每天可銷售500千克.為增大市場占有率,在保證盈利的情況下,工廠采取降價措施.批發(fā)價每千克降低1元,每天銷量可增加50千克.(1)寫出工廠每天的利潤元與降價元之間的函數關系.當降價2元時,工廠每天的利潤為多少元?(2)當降價多少元時,工廠每天的利潤最大,最大為多少元?(3)若工廠每天的利潤要達到9750元,并讓利于民,則定價應為多少元?2、在等邊三角形中,,D為的中點.連接,E,F(xiàn)分別為,的中點,將繞點C逆時針旋轉,記旋轉角為,直線和直線交于點G.(1)如圖1,線段和線段的數量關系是________________,直線與直線相交所成的較小角的度數是________________.(2)將圖1中的繞點C逆時針旋轉到圖2所示位置時,判斷(1)中的結論是否仍然成立?若成立,請僅就圖2的情形給出證明;若不成立,請說明理由.(3)在(2)的條件下,當以點C,F(xiàn),E,G為頂點的四邊形是矩形時,請直接寫出的長.3、(1)證明推斷:如圖(1),在正方形中,點,分別在邊,上,于點,點,分別在邊,上,.求證:;(2)類比探究:如圖(2),在矩形中,將矩形沿折疊,使點落在邊上的點處,得到四邊形,交于點,連接交于點.試探究與之間的數量關系,并說明理由;(3)拓展應用:在(2)的條件下,連接,若,,求的長.4、如圖所示,拋物線的對稱軸為直線,拋物線與軸交于、兩點,與軸交于點.(1)求拋物線的解析式;(2)連結,在第一象限內的拋物線上,是否存在一點,使的面積最大?最大面積是多少?5、如圖,公路為東西走向,在點北偏東方向上,距離千米處是村莊,在點北偏東方向上,距離千米處是村莊;要在公路旁修建一個土特產收購站(取點在上),使得,兩村莊到站的距離之和最短,請在圖中作出的位置(不寫作法)并計算:(1),兩村莊之間的距離;(2)到、距離之和的最小值.(參考數據:sin36.5°=0.6,cos36.5°=0.8,tan36.5°=0.75計算結果保留根號.)6、頂點為D的拋物線y=﹣x2+bx+c交x軸于A、B(3,0),交y軸于點C,直線y=﹣x+m經過點C,交x軸于E(4,0).(1)求出拋物線的解析式;(2)如圖1,點M為線段BD上不與B、D重合的一個動點,過點M作x軸的垂線,垂足為N,設點M的橫坐標為x,四邊形OCMN的面積為S,求S與x之間的函數關系式,并求S的最大值;(3)點P為x軸的正半軸上一個動點,過P作x軸的垂線,交直線y=﹣x+m于G,交拋物線于H,連接CH,將△CGH沿CH翻折,若點G的對應點F恰好落在y軸上時,請直接寫出點P的坐標.-參考答案-一、單選題1、C【解析】【分析】加的面積=新正方形的面積-原正方形的面積,把相關數值代入化簡即可.【詳解】解:∵新正方形的邊長為x+4,原正方形的邊長為4,∴新正方形的面積為(x+4)2,原正方形的面積為16,∴y=(x+4)2-16=x2+8x,故選:C.【考點】本題考查列二次函數關系式;得到增加的面積的等量關系是解決本題的關鍵.2、C【解析】【分析】根據矩形的性質可得BC=AD=b,∠ABC=90°,再根據三角函數可得答案.【詳解】過點A作AE⊥OB于點E,因為四邊形ABCD是矩形,且AB=a,AD=b所以BC=AD=b,∠ABC=90°所以∠BAE=∠CBO=x因為,所以,所以點A到OC的距離故選C.【考點】本題考查矩形的性質和三角函數,解題的關鍵是熟練掌握矩形的性質和三角函數.3、B【解析】【分析】先求出平移后拋物線的頂點坐標,進而即可得到答案.【詳解】解:∵的頂點坐標為(0,0)∴將二次函數的圖像向左平移2個單位長度,再向上平移1個單位長度,所得拋物線的頂點坐標為(-2,1),∴所得拋物線對應的函數表達式為,故選B【考點】本題主要考查二次函數的平移規(guī)律,找出平移后二次函數圖像的頂點坐標或掌握“左加右減,上加下減”,是解題的關鍵.4、B【解析】【分析】作CE⊥x軸于點E,過B作BF⊥x軸于F,過D作DM⊥x軸于M,設C的坐標為(x,x),表示出D的坐標,將C、D兩點坐標代入反比例函數的解析式,解關于x的方程求出x即可得到點C、D的坐標,進而求得直線CD的解析式,最后計算該直線與y軸交點坐標即可得出結果.【詳解】解:作CE⊥x軸于點E,則∠CEO=90°,過B作BF⊥x軸于F,過D作DM⊥x軸于M,則BF=CE,DM∥BF,BF=CE,∵D為AB的中點,∴AM=FM,∴DM=BF,∵∠COA=60°,∴∠OCE=30°,∴OC=2OE,CE=OE,∴設C的坐標為(x,x),∴AF=OE=x,CE=BF=x,OE=AF=x,DM=x,∵四邊形OABC是平行四邊形,A(3,0),∴OF=3+x,OM=3+x,即D點的坐標為(3+x,),把C、D的坐標代入y=得:k=x?x=(3+x)?,解得:x1=2,x2=0(舍去),∴C(2,2),D(4,),設直線CD解析式為:y=ax+b,則,解得,∴直線CD解析式為:,∴當x=0時,,∴點E的坐標為(0,).故選:B.【考點】本題主要考查了平行四邊形的性質、運用待定系數法求函數的解析式以及含度角的直角三角形的性質.根據反比例函數圖象經過C、D兩點,得出關于x的方程是解決問題的關鍵.5、D【解析】【分析】如圖,斜坡AB的坡度為1:2,可求出AC的長,再利用勾股定理求解即可.【詳解】∵斜坡AB的坡度為1:2,∴AC=2BC=18米,∴AB=米.故選D.【考點】此題主要考查坡度的意義,需注意的是坡度是坡角的正切值,是鉛直高度h和水平寬l的比,我們把斜坡面與水平面的夾角叫做坡角,若用α表示坡角,可知坡度與坡角的關系是.6、A【解析】【分析】根據拋物線的開口方向、于x軸的交點情況、對稱軸的知識可判①②③的正誤,再根據函數圖象的特征確定出函數的解析式,進而確定不等式,最后求解不等式即可判定④.【詳解】解:∵拋物線的開口向上,∴a>0,故①正確;∵拋物線與x軸沒有交點∴<0,故②錯誤∵由拋物線可知圖象過(1,1),且過點(3,3)∴8a+2b=2∴4a+b=1,故③錯誤;由拋物線可知頂點坐標為(1,1),且過點(3,3)則拋物線與直線y=x交于這兩點∴<0可化為,根據圖象,解得:1<x<3故④錯誤.故選A.【考點】本題主要考查了二次函數圖象的特征以及解不等式的相關知識,靈活運用二次函數圖象的特征成為解答本題的關鍵.二、多選題1、ACD【解析】【分析】根據圖象左移加,右移減,圖象上移加,下移減,可得答案.【詳解】解:A、y=x2?1,先向上平移1個單位得到y(tǒng)=x2,再向上平移1個單位可以得到y(tǒng)=x2+1,故A符合題意;B、y=x2+6x+5=(x+3)2?4,右移3個單位,再上移5得到y(tǒng)=x2+1,故B不符合題意;C、y=x2+4x+4=(x+2)2,先向右平移2個單位得到y(tǒng)=(x+2?2)2=x2,再向上平移1個單位得到y(tǒng)=x2+1,故C符合題意;D、y=x2+8x+17=(x+4)2+1,先向右平移2個單位得到y(tǒng)=(x+4?2)2+1,再向右平移1個單位得到y(tǒng)=(x+4?2-2)2+1=x2+1,故D符合題意.故選:ACD.【考點】本題考查了二次函數圖象與幾何變換,用平移規(guī)律“左加右減,上加下減”直接代入函數解析式求得平移后的函數解析式,注意由目標函數圖象到原函數圖象方向正好相反.2、ABD【解析】【分析】利用拋物線開口方向得到a>0,利用對稱軸方程得到b=2a>0,利用拋物線與y軸的交點位置得到c<0,則可對A進行判斷;利用b=2a可對B進行判斷;利用拋物線的對稱性得到拋物線與x軸的另一個交點坐標為(1,0),所以x=2時,y>0,則可對C進行判斷;利用二次函數的性質對D進行判斷.【詳解】解:A.∵拋物線開口向上,∴a>0,∵拋物線的對稱軸為直線x=﹣=﹣1,∴b=2a>0,∵拋物線與y軸的交點坐標在x軸下方,∴c<0,∴abc<0,故選項正確,符合題意;B.∵b=2a,∴2a﹣b=0,故選項正確,符合題意;C.∵拋物線與x軸的一個交點坐標為(﹣3,0),對稱軸為x=﹣1,∴拋物線與x軸的另一個交點坐標為(1,0),∴當x=2時,y>0,∴4a+2b+c>0,故選項錯誤,不符合題意;D.∵點(﹣5,y1)到直線x=﹣1的距離比點(2,y2)到直線x=﹣1的距離大,∴y1>y2,故選項正確,符合題意.故選:ABD.【考點】此題考查了二次函數的圖像和性質,熟練掌握二次函數的圖像和性質是基礎,數形結合是解決問題的關鍵.3、ABD【解析】【分析】根據題意可得點A(﹣4,0)關于對稱軸的對稱點,從而得到當時,,再由,可得在對稱軸右側隨的增大而增大,從而得到當時,;根據圖象可得,,可得;再由,可得;然后根據P(﹣6,y1)關于對稱軸的對稱點,可得當y1>y2時,﹣6<m<4,即可求解.【詳解】解:∵二次函數y=ax2+bx+c的圖象經過點A(﹣4,0),其對稱軸為直線x=﹣1,∴點A(﹣4,0)關于對稱軸的對稱點,即當時,,∵拋物線開口向上,∴,∴在對稱軸右側隨的增大而增大,∴當時,,故A正確;∵拋物線與交于負半軸,∴,∵對稱軸為直線x=﹣1,,∴,即,∴,故B正確;∵,∴,故C錯誤;∵P(﹣6,y1)關于對稱軸的對稱點,∴當y1>y2時,﹣6<m<4,故D正確.故選:ABD【考點】本題主要考查了二次函數的圖象和性質,熟練掌握二次函數的圖象和性質,并利用數形結合思想解答是解題的關鍵.4、BD【解析】【分析】由拋物線開口方向得到a>0,利用拋物線與x軸的交點問題和拋物線的對稱性得到拋物線的對稱軸為直線x=1,即-=1,所以b=-2a<0,利用拋物線與y軸的交點位置得到c<0,則可對A進行判斷;利用b=-2a可對B進行判斷;由于x=-1時,y=0,所以a-b+c=0,則c=-3a,3a+2c=-3a<0,于是可對C進行判斷;根據二次函數性質,x=1時,y的值最小,所以a+b+c≤ax2+bx+c,于是可對D進行判斷.【詳解】解:∵拋物線開口向上,∴a>0,∵拋物線與x軸的交點的坐標分別為(-1,0),(3,0),∴拋物線的對稱軸為直線x=1,即-=1,∴b=-2a<0,∵拋物線與y軸的交點在x軸下方,∴c<0,∴abc>0,所以A錯誤;∵b=-2a,∴2a+b=0,所以B正確;∵x=-1時,y=0,∴a-b+c=0,即a+2a+c=0,∴c=-3a,∴3a+2c=3a-6a=-3a<0,所以C錯誤;∵x=1時,y的值最小,∴對于任意x,a+b+c≤ax2+bx+c,即ax2-a+bx-b≥0,所以D正確.故選:BD.【考點】本題考查了二次函數與不等式(組):函數值y與某個數值m之間的不等關系,一般要轉化成關于x的不等式,解不等式求得自變量x的取值范圍;利用兩個函數圖象在直角坐標系中的上下位置關系求自變量的取值范圍,可作圖利用交點直觀求解,也可把兩個函數解析式列成不等式求解.5、ABD【解析】【分析】由旋轉得到,進而可得,根據等腰直角三角形的性質以及勾股定理可得EF∶AF=∶1,根據相似三角對應邊的比等于相似比可得FB∶FC=HB∶EC,而根據題意無法證明AF2=FH·FE,由此即可求得答案.【詳解】解:∵四邊形ABCD是正方形,∴,,∵旋轉,∴,,,∴,即.,故A正確;是等腰直角三角形,,,(舍負),∴,故B正確;,,,故D正確.與不相似,∴無法證得,即無法證得,故C不正確.故選:ABD.【考點】本題考查了正方形的性質,等腰直角三角形的性質,勾股定理,相似三角形的判定和性質等相關知識,熟練掌握相似三角形的判定與性質是解決本題的關鍵.6、BCD【解析】【分析】根據拋物線與軸有兩個交點,可知,即可判斷A選項;根據時,,即可判斷B選項;根據對稱軸,即可判斷C選項;D.根據拋物線的頂點坐標為,函數有最大即可判定D.【詳解】解:由圖象可知,拋物線開口向下,對稱軸在軸的右側,與軸的交點在軸的負半軸,∵拋物線與軸有兩個交點,∴,∴,即,故A錯誤;由圖象可知,時,,∴,故B正確;∵拋物線的頂點坐標為,∴,,∵,∴,即,故C正確;∵拋物線的開口向下,頂點坐標為,∴(為任意實數),即時,方程有解.故D正確.故選BCD.【考點】本題主要考查了二次函數的性質、二次函數圖像等知識點,掌握二次函數的性質與解析式的關系是解答本題的關鍵.7、BCD【解析】【分析】根據相似多邊形的判定定理對各個選項進行分析,從而確定最后答案.【詳解】解:矩形不相似,因為其對應角的度數一定相同,但對應邊的比值不一定相等,不符合相似的條件,故A不符合題意;銳角三角形、正五邊形、直角三角形的原圖與外框相似,因為其對應角均相等,對應邊均對應成比例,符合相似的條件,故B、C、D符合題意.故選BCD.【考點】此題主要考查了相似圖形判定,注意邊數相同、各角對應相等、各邊對應成比例的兩個多邊形是相似多邊形.三、填空題1、【解析】【分析】根據二次函數的圖象具有對稱性和表格中的數據,可以計算出該函數圖象的對稱軸.【詳解】解:由表格可得,當x取-3和-1時,y值相等,該函數圖象的對稱軸為直線,故答案為:.【考點】本題考查二次函數的性質、二次函數圖象上點的坐標特征,解題的關鍵是明確題意,利用二次函數的對稱性解答.2、(1,0)【解析】【分析】根據表中數據得到點(-2,-3)和(0,-3)對稱點,從而得到拋物線的對稱軸為直線x=-1,再利用表中數據得到拋物線與x軸的一個交點坐標為(-3,0),然后根據拋物線的對稱性就看得到拋物線與x軸的一個交點坐標.【詳解】∵x=-2,y=-3;x=0時,y=-3,∴拋物線的對稱軸為直線x=-1,∵拋物線與x軸的一個交點坐標為(-3,0),∴拋物線與x軸的一個交點坐標為(1,0).故答案為(1,0).【考點】本題考查了拋物線與x軸的交點:把求二次函數y=ax2+bx+c(a,b,c是常數,a≠0)與x軸的交點坐標問題轉化解關于x的一元二次方程即可求得交點橫坐標.也考查了二次函數的性質.3、2020【解析】【分析】根據二次函數y=2x2+2020,當x分別取x1,x2(x1≠x2)時,函數值相等,可以得到x1和x2的關系,從而可以得到2x1+2x2的值,進而可以求得當x取2x1+2x2時,函數的值.【詳解】解:∵二次函數y=2x2+2020,當x分別取x1,x2(x1≠x2)時,函數值相等,∴2x12+2020=2x22+2020,∴x1=-x2,∴2x1+2x2=2(x1+x2)=0,∴當x=2x1+2x2時,y=2×0+2020=0+2020=2020,故答案為:2020.【考點】本題考查二次函數的性質、二次函數圖象上點的坐標特征,解答本題的關鍵是明確題意,利用二次函數的性質解答.4、【解析】【分析】直接根據“上加下減,左加右減”進行計算即可.【詳解】解:拋物線向左平移1個單位長度,再向下平移3個單位長度,得到的拋物線的解析式為:,即:故答案為:.【考點】本題主要考查函數圖像的平移,熟記函數圖像的平移方式“上加下減,左加右減”是解題的關鍵.5、【解析】【分析】如圖3中,作DT⊥AH于T,OK⊥BD于K.解直角三角形求出BK,OK,利用相似三角形的性質求出DT,BT,AD,即可求出GH的長.【詳解】如圖3中,作DT⊥AH于T,OK⊥BD于K.∵OB=OE=2.5cm,BE=2.4+0.82=4(cm),OK⊥BE,∴BK=KE=2(cm),∴OK(cm),∵∠OBK=∠DBT,∠OKB=∠BTD=90°,∴△BKO∽△BTD,∴,∴,∴BT=4.8(cm),DT=3.6(cm),AT=1.2+4.8=6(cm),∴AD=(cm),∵DT∥GH,∴△ATD∽△AHG,∴,∴,∴(cm).故答案為:.【考點】本題考查了相似三角形的應用,勾股定理的應用等知識,解題的關鍵是理解題意,靈活運用所學知識解決問題,屬于中考填空題中的壓軸題.6、2【解析】【分析】利用二次函數圖象上點的坐標特征可求出點A,B,C,D的坐標,由點A,D的坐標,利用待定系數法可求出直線AD的解析式,利用一次函數圖象上點的坐標特征可求出點E的坐標,再利用二次函數圖象上點的坐標特征可得出點P,Q的坐標,進而可求出線段PQ的長.【詳解】解:當y=0時,﹣x2+x+2=0,解得:x1=﹣2,x2=4,∴點A的坐標為(﹣2,0);當x=0時,y=﹣x2+x+2=2,∴點C的坐標為(0,2);當y=2時,﹣x2+x+2=2,解得:x1=0,x2=2,∴點D的坐標為(2,2).設直線AD的解析式為y=kx+b(k≠0),將A(﹣2,0),D(2,2)代入y=kx+b,得:解得:∴直線AD的解析式為y=x+1.當x=0時,y=x+1=1,∴點E的坐標為(0,1).當y=1時,﹣x2+x+2=1,解得:x1=1﹣,x2=1+,∴點P的坐標為(1﹣,1),點Q的坐標為(1+,1),∴PQ=1+﹣(1﹣)=2.故答案為:2.【考點】本題考查了拋物線與x軸的交點、二次函數圖象上點的坐標特征、待定系數法求一次函數解析式以及一次函數圖象上點的坐標特征,利用二次函數圖象上點的坐標特征求出點P,Q的坐標是解題的關鍵.7、2【解析】【分析】首先求出的頂點坐標和與x軸兩個交點坐標,然后根據“特征三角形”是等腰直角三角形列方程求解即可.【詳解】解:∵∴,代入得:∴拋物線的頂點坐標為∵當時,即,解得:,∴拋物線與x軸兩個交點坐標為和∵的“特征三角形”是等腰直角三角形,∴,即解得:.故答案為:2.【考點】此題考查了二次函數與x軸的交點問題,等腰直角三角形的性質,解題的關鍵是求出的頂點坐標和與x軸兩個交點坐標.四、解答題1、(1),9600;(2)降價4元,最大利潤為9800元;(3)43【解析】【分析】(1)若降價元,則每天銷量可增加千克,根據利潤公式求解并整理即可得到解析式,然后代入求出對應函數值即可;(2)將(1)中的解析式整理為頂點式,然后利用二次函數的性質求解即可;(3)令可解出對應的的值,然后根據“讓利于民”的原則選擇合適的的值即可.【詳解】(1)若降價元,則每天銷量可增加千克,∴,整理得:,當時,,∴每天的利潤為9600元;(2),∵,∴當時,取得最大值,最大值為9800,∴降價4元,利潤最大,最大利潤為9800元;(3)令,得:,解得:,,∵要讓利于民,∴,(元)∴定價為43元.【考點】本題考查二次函數的實際應用,弄清數量關系,準確求出函數解析式并熟練掌握二次函數的性質是解題關鍵.2、(1),;(2)結論仍然成立;證明見解析;(3)或.【解析】【分析】(1)先根據等邊三角形的性質可得,再根據含角的直角三角形的性質以及三角形中位線定理求解即可;(2)由(1)的結論以及旋轉的性質證明,根據相似三角形的性質即解答即可;(3)當以點C、F、E、G為頂點的四邊形是矩形時,分兩種情況討論,根據矩形的性質以及勾股定理求解即可.【詳解】解:(1)∵是等邊三角形,D為的中點.∴,∵E,F(xiàn)分別為,的中點,∴,∴,∴,∴,由圖1得:直線與直線相交所成的較小角的度數是,故填:,;(2)(1)中的結論仍然成立.證明:設交于點H,∵是等邊三角形,D為的中點.∴,∵E,F(xiàn)分別為,的中點,∴,∴,∴,∵繞點C逆時針旋轉,∴,∴,∴,∵,∴,∴,∵,∴,∴;(3)分兩種情況:①當點E在線段上時,∵四邊形是矩形,∴,∵,∴,由(2)知:,∴,在中,,∴,∴;②當點E在線段的延長線上時,同①,,∴;綜上,的長為或.【考點】本題屬于四邊形綜合題,主要考查了矩形的性質、等邊三角形的性、旋轉的性質、相似三角形的判定和性質等知識,正確運用相似三角形的判定和性質以及分類討論的思想的靈活運用成為解答本題的關鍵.3、(1)見解析;(2);見解析;(3)【解析】【分析】(1)先△ABE≌△DAQ,可得AE=DQ;再證明四邊形DQFG是平行四邊形即可解決問題;(2)如圖2中,作GM⊥AB于M.然后證明△ABE∽△GMF即可解決問題;(3)如圖3中,作PM⊥BC交BC的延長線于M.利用相似三角形的性質求出PM,CM即可解決問題.【詳解】(1)如圖(1),∵四邊形ABCD是正方形,∴AB=DA,∠ABE=90°=∠DAQ.∴∠QAO+∠OAD=90°.∵AE⊥DQ,∴∠ADO+∠OAD=90°.∴∠QAO=∠ADO.∴△ABE≌△DAQ(ASA),∴AE=DQ.∵四邊形ABCD是正方形,AE⊥DQ,AE⊥GF,∴DG∥QF,DQ∥GF,∴四邊形DQFG是平行四邊形,∴DQ=GF,∴FG=AE;(2).理由:如圖(2)中,作GM⊥AB于M.∵AE⊥GF,∴∠AOF=∠GMF=∠ABE=90°,∴∠BAE+∠AFO=90°,∠AFO+∠FGM=90°,∴∠BAE=∠FGM,∴△ABE∽△GMF,∴GF:AE=GM:AB,∵∠AMG=∠D=∠DAM=90°,∴四邊形AMGD是矩形,∴GM=AD,∴GF:AE=AD:AB,∵四邊形ABCD是矩形,∴BC=AD,∴GF:AE=BC:AB,∵,∴.(3)解:如圖(3)中,作PM⊥BC交BC的延長線于M.由BE:BF=3:4,設BE=3k,BF=4k,則EF=AF=5k,∵,,∴AE=,在直角三角形ABE中,根據勾股定理,得,∴∴k=1或﹣1(舍去),∴BE=3,AB=9,∵BC:AB=2:3,∴BC=6,∴BE=CE=3,AD=PE=BC=6,∵∠EBF=∠FEP=∠PME=90°,∴∠FEB+∠PEM=90°,∠PEM+∠EPM=90°,∴∠FEB=∠EPM,∴△FBE∽△EMP,∴,∴,∴EM=,PM=,∴CM=EM﹣EC=﹣3=,∴PC==.【考點】本題考查了正方形、矩形的性質,全等三角形的判定和性質,相似三角形的判定和性質,解直角三角形,正確尋找全等三角形或相似三角形解決問題,學會利用參數構建方程解決問題,是解題的關鍵.4、(1);(2)存在,當時,面積最大為16,此時點點坐標為.【解析】【分析】(1)用待定系數法解答便可;(2)設點的坐標為,連結、、.根據對稱性求出點B的坐標,根據得到二次函數關系式,最后配方求解即可.【詳解】解:(1)∵拋物線過點,∴.∵拋物線的對稱軸為直線,∴可設拋物線為.∵拋物線過點,∴,解得.∴拋物線的解析式為,即.(2)存在,設點的坐標為,連結、、.∵點A、關于直線對稱,且∴.∴.∵∴當時,面積最大為16,此時點點坐標為.【考點】本題主要考查了二次函數的圖象與性質,待定系數法,三角形面積公式以及二次函數的最值求法,根據圖形得出由此得出二次函數關系式是解答此題的關鍵.5、(1)M,N兩村莊之間的距離為千米;(2)村莊M、N到P站的最短距離和是5千米.【解析】【分析】(1)作N關于AB的對稱點N'與AB交于E,連結MN’與AB交于P,則P為土特產收購站的位置.求出DN,DM,利用勾股定理即可解決問題.(2)由題意可知

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經權益所有人同意不得將文件中的內容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
  • 6. 下載文件中如有侵權或不適當內容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論