綜合解析云南省騰沖市中考數(shù)學真題分類(勾股定理)匯編專題訓練練習題(詳解)_第1頁
綜合解析云南省騰沖市中考數(shù)學真題分類(勾股定理)匯編專題訓練練習題(詳解)_第2頁
綜合解析云南省騰沖市中考數(shù)學真題分類(勾股定理)匯編專題訓練練習題(詳解)_第3頁
綜合解析云南省騰沖市中考數(shù)學真題分類(勾股定理)匯編專題訓練練習題(詳解)_第4頁
綜合解析云南省騰沖市中考數(shù)學真題分類(勾股定理)匯編專題訓練練習題(詳解)_第5頁
已閱讀5頁,還剩21頁未讀 繼續(xù)免費閱讀

付費下載

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)

文檔簡介

云南省騰沖市中考數(shù)學真題分類(勾股定理)匯編專題訓練考試時間:90分鐘;命題人:教研組考生注意:1、本卷分第I卷(選擇題)和第Ⅱ卷(非選擇題)兩部分,滿分100分,考試時間90分鐘2、答卷前,考生務必用0.5毫米黑色簽字筆將自己的姓名、班級填寫在試卷規(guī)定位置上3、答案必須寫在試卷各個題目指定區(qū)域內(nèi)相應的位置,如需改動,先劃掉原來的答案,然后再寫上新的答案;不準使用涂改液、膠帶紙、修正帶,不按以上要求作答的答案無效。第I卷(選擇題14分)一、單選題(7小題,每小題2分,共計14分)1、“趙爽弦圖”巧妙地利用面積關(guān)系證明了勾股定理,是我國古代數(shù)學的驕傲,如圖所示的“趙爽弦圖”是由四個全等的直角三角形和一個小正方形拼成的一個大正方形,設直角三角形較長直角邊長為a,較短直角邊長為b,若,大正方形的面積為13,則小正方形的面積為()A.3 B.4 C.5 D.62、如圖,△OAB的頂點O(0,0),頂點A,B分別在第一、四象限,且AB⊥x軸,若AB=6,OA=OB=5,則點A的坐標是(

)A. B. C. D.3、如圖,在Rt△ABC中,∠ACB=90°,CD⊥AB,垂足為D,AF平分∠CAB,交CD于點E,交CB于點F,若AC=3,AB=5,則CE的長為()A. B. C. D.4、如圖,長方形紙片ABCD中,AB=3cm,AD=9cm,將此長方形紙片折疊,使點D與點B重合,點C落在點H的位置,折痕為EF,則△ABE的面積為(

)A.6cm2 B.8cm2 C.10cm2 D.12cm25、觀察“趙爽弦圖”(如圖),若圖中四個全等的直角三角形的兩直角邊分別為a,b,,根據(jù)圖中圖形面積之間的關(guān)系及勾股定理,可直接得到等式(

)A. B.C. D.6、已知點是平分線上的一點,且,作于點,點是射線上的一個動點,若,則的最小值為(

)A.2 B.3 C.4 D.57、如圖,有一塊直角三角形紙片,∠C=90°,AC=8,BC=6,將斜邊AB翻折,使點B落在直角邊AC的延長線上的點E處,折痕為AD,則BD的長為(

)A.2 B. C. D.4第Ⅱ卷(非選擇題86分)二、填空題(8小題,每小題2分,共計16分)1、《九章算術(shù)》是我國古代最重要的數(shù)學著作之一,在勾股章中記載了一道“折竹抵地”問題:“今有竹高一丈,末折抵地,去本三尺,問折著高幾何?”翻譯成數(shù)學問題是:如圖所示,在ΔABC中,∠ACB=90o,AC+AB=10,BC=3,求AC的長,若設AC=x,則可列方程為________________.2、如圖,在四邊形ABCD中,,,,,,那么四邊形ABCD的面積是___________.3、如圖,滑竿在機械槽內(nèi)運動,∠ACB為直角,已知滑竿AB長2.5米,頂點A在AC上滑動,量得滑竿下端B距C點的距離為1.5米,當端點B向右移動0.5米時,滑竿頂端A下滑________米.4、我國古代的數(shù)學名著《九章算術(shù)》中有這樣一道題目“今有立木,系索其末,委地三尺.引索卻行,去本八尺而索盡.問索長幾何?”譯文為“今有一豎立著的木柱,在木柱的上端系有繩索,繩索從木柱上端順木柱下垂后,堆在地面的部分尚有3尺,牽索沿地面退行,在離木柱根部8尺處時,繩索用盡問繩索長是多少?”示意圖如下圖所示,設繩索的長為尺,根據(jù)題意,可列方程為__________.5、如圖,在中,,于點D.E為線段BD上一點,連結(jié)CE,將邊BC沿CE折疊,使點B的對稱點落在CD的延長線上.若,,則的面積為__________.6、我國古代有這樣一道數(shù)學問題:“枯木一根直立地上,高二丈,周三尺,有葛藤自根纏繞而上,五周而達其頂,問葛藤之長幾何?”題意是:如圖所示,把枯木看作一個圓柱體,因一丈是十尺,則該圓柱的高為20尺,底面周長為3尺,有葛藤自點A處纏繞而上,繞五周后其末端恰好到達點B處,則問題中葛藤的最短長度是_______尺.

7、若△ABC中,cm,cm,高cm,則BC的長為________cm.8、如圖,在△ABC中,∠ACB=90°,CD⊥AB于點D.E為線段BD上一點,連結(jié)CE,將邊BC沿CE折疊,使點B的對稱點B'落在CD的延長線上.若AB=10,BC=8,則△ACE的面積為________.三、解答題(7小題,每小題10分,共計70分)1、如圖,某港口位于東西方向的海岸線上.“遠航”號、“海天”號輪船同時離開港口,各自沿一固定方向航行,“遠航”號每小時航行16海里,“海天”號每小時航行12海里.它們離開港口一個半小時后分別位于點Q,R處,且相距30海里.如果知道“遠航”號沿東北方向航行,能知道“海天”號沿哪個方向航行嗎?2、在尋找某墜毀飛機的過程中,兩艘搜救艇接到消息,在海面上有疑似漂浮目標A、B.于是,一艘搜救艇以16海里/時的速度離開港口O(如圖)沿北偏東40°的方向向目標A前進,同時,另一艘搜救艇也從港口O出發(fā),以12海里/時的速度向著目標B出發(fā),1.5小時后,他們同時分別到達目標A、B.此時,他們相距30海里,請問第二艘搜救艇的航行方向是北偏西多少度?3、細心觀察圖形,認真分析各式,然后解答問題.OA22=,;OA32=12+,;OA42=12+,…(1)請用含有n(n是正整數(shù))的等式表示上述變規(guī)律:OAn2=______;Sn=______.(2)求出OA10的長.(3)若一個三角形的面積是,計算說明他是第幾個三角形?(4)求出S12+S22+S32+…+S102的值.4、如圖,有一架秋千,當他靜止時,踏板離地的垂直高度,將他往前推送(水平距離)時,秋千的踏板離地的垂直高度,秋千的繩索始終拉得很直,求繩索的長度.5、臺風是一種自然災害,它以臺風中心為圓心在周圍上百千米的范圍內(nèi)形成極端氣候,有極強的破壞力,如圖,有一臺風中心沿東西方向由行駛向,已知點為海港,并且點與直線上的兩點,的距離分別為,,又,以臺風中心為圓心周圍250km以內(nèi)為受影響區(qū)域.(1)求的度數(shù);(2)海港受臺風影響嗎?為什么?6、如圖是“弦圖”的示意圖,“弦圖”最早是由三國時期的數(shù)學家趙爽在為《周髀算經(jīng)》作注時給出的,它標志著中國古代的數(shù)學成就.它由4個全等的直角三角形與一個小正方形組成,恰好拼成一個大正方形,每個直角三角形的兩條直角邊分別為a、b,斜邊為c.請你運用此圖形證明勾股定理:a2+b2=c2.7、如圖,在△ABC中,∠C=90°,M是BC的中點,MD⊥AB于D,求證:.-參考答案-一、單選題1、C【解析】【詳解】解:如圖所示,∵(a+b)2=21∴a2+2ab+b2=21,∵大正方形的面積為13,即:a2+b2=13,∴2ab=21﹣13=8,∴小正方形的面積為13﹣8=5.故選C.2、D【解析】【分析】利用HL證明△ACO≌△BCO,利用勾股定理得到OC=4,即可求解.【詳解】解:∵AB⊥x軸,∴∠ACO=∠BCO=90°,∵OA=OB,OC=OC,∴△ACO≌△BCO(HL),∴AC=BC=AB=3,∵OA=5,∴OC=4,∴點A的坐標是(4,3),故選:D.【考點】本題考查了坐標與圖形,全等三角形的判定和性質(zhì),勾股定理,解題的關(guān)鍵是靈活運用所學知識解決問題.3、A【解析】【分析】根據(jù)三角形的內(nèi)角和定理得出∠CAF+∠CFA=90°,∠FAD+∠AED=90°,根據(jù)角平分線和對頂角相等得出∠CEF=∠CFE,即可得出EC=FC,再利用相似三角形的判定與性質(zhì)得出答案.【詳解】過點F作FG⊥AB于點G,∵∠ACB=90°,CD⊥AB,∴∠CDA=90°,∴∠CAF+∠CFA=90°,∠FAD+∠AED=90°,∵AF平分∠CAB,∴∠CAF=∠FAD,∴∠CFA=∠AED=∠CEF,∴CE=CF,∵AF平分∠CAB,∠ACF=∠AGF=90°,∴FC=FG,∵∠B=∠B,∠FGB=∠ACB=90°,∴△BFG∽△BAC,∴,∵AC=3,AB=5,∠ACB=90°,∴BC=4,∴,∵FC=FG,∴,解得:FC=,即CE的長為.故選A.【考點】本題考查了直角三角形性質(zhì)、等腰三角形的性質(zhì)和判定,三角形的內(nèi)角和定理以及相似三角形的判定與性質(zhì)等知識,關(guān)鍵是推出∠CEF=∠CFE.4、A【解析】【分析】根據(jù)折疊的條件可得:,在中,利用勾股定理就可以求解.【詳解】將此長方形折疊,使點與點重合,,,根據(jù)勾股定理得:,解得:..故選:A.【考點】本題考查了利用勾股定理解直角三角形,掌握直角三角形兩直角邊的平方和等于斜邊的平方是解題的關(guān)鍵.5、C【解析】【分析】根據(jù)小正方形的面積等于大正方形的面積減去4個直角三角形的面積可得問題的答案.【詳解】標記如下:∵,∴(a﹣b)2=a2+b2﹣4=a2﹣2ab+b2.故選:C.【考點】此題考查的是利用勾股定理的證明,可以完全平方公式進行證明,掌握面積差得算式是解決此題關(guān)鍵.6、B【解析】【分析】根據(jù)垂線段最短可得PN⊥OA時,PN最短,再根據(jù)角平分線上的點到角的兩邊的距離相等可得PM=PN,再結(jié)合勾股定理求解即可.【詳解】解:當PN⊥OA時,PN的值最小,∵OC平分∠AOB,PM⊥OB,∴PM=PN,∵,,,∴由勾股定理可知:PM=3,∴PN的最小值為3.故選B.【考點】本題考查了角平分線上的點到角的兩邊的距離相等的性質(zhì),垂線段最短的性質(zhì)及勾股定理,熟記性質(zhì)是解題的關(guān)鍵.7、B【解析】【分析】根據(jù)勾股定理求出AB的長,利用翻折得到AE=AB=10,DE=BD,求出CE,由勾股定理得到,列得,求出BD.【詳解】解:∵∠C=90°,AC=8,BC=6,∴,由翻折得AE=AB=10,DE=BD,∴CE=AE-AC=10-8=2,在Rt△CED中,,∴,解得BD=,故選:B.【考點】此題考查了勾股定理的應用,翻折的性質(zhì),熟記勾股定理的計算公式是解題的關(guān)鍵.二、填空題1、【解析】【分析】設AC=x,則AB=10-x,再由即可列出方程.【詳解】解:∵,且,∴,在Rt△ABC中,由勾股定理有:,即:,故可列出的方程為:,故答案為:.【考點】本題考查了勾股定理的應用,熟練掌握勾股定理是解決本題的關(guān)鍵.2、+24【解析】【分析】連結(jié)BD,可求出BD=6,再根據(jù)勾股定理逆定理,得出△BDC是直角三角形,兩個三角形面積相加即可.【詳解】解:連結(jié)BD,∵,∴,∵,,∴BD=6,∵BD2=36,CD2=64,BC2=100,BD2+CD2=BC2,∴∠BDC=90°,S△ABD=,S△BDC=,四邊形ABCD的面積是=S△ABD+S△BDC=+24故答案為:+24.【考點】本題考查勾股定理以及逆定理,三角形的面積等知識,解題的關(guān)鍵是靈活運用所學知識解決問題,屬于中考常考題型.3、0.5【解析】【詳解】結(jié)合題意可知AB=DE=2.5米,BC=1.5米,BD=0.5米,∠C=90°,∴AC===2(米).∵BD=0.5米,∴CD=2米,∴CE===1.5(米),∴AE=AC-EC=0.5(米).故答案為0.5.點睛:本題考查正確運用勾股定理.善于觀察題目的信息是解題以及學好數(shù)學的關(guān)鍵.4、x2?(x?3)2=82【解析】【分析】設繩索長為x尺,根據(jù)勾股定理列出方程解答即可.【詳解】解:設繩索長為x尺,根據(jù)題意得:x2?(x?3)2=82,故答案為:x2?(x?3)2=82.【考點】本題考查了勾股定理的應用,找準等量關(guān)系,正確列出相應方程是解題的關(guān)鍵.5、【解析】【分析】在△ABC中由等面積求出,進而得到,設BE=x,進而DE=DB-BE=,最后在中使用勾股定理求出x即可求解.【詳解】解:在中由勾股定理可知:,∵,∴,∴,在中由勾股定理可知:,∴,設BE=x,由折疊可知:BE=B’E,且DE=DB-BE=,在中由勾股定理可知:,代入數(shù)據(jù):∴,解得,∴,∴,故答案為:.【考點】本題考查了勾股定理求線段長、折疊的性質(zhì)等,解題的關(guān)鍵是掌握折疊的性質(zhì),熟練使用勾股定理求線段長.6、25.【解析】【詳解】解:這種立體圖形求最短路徑問題,可以展開成為平面內(nèi)的問題解決,展開后可轉(zhuǎn)化下圖,所以是直角三角形求斜邊的問題.根據(jù)勾股定理可求出葛藤長為(尺).故答案為:25.7、28或8##8或28【解析】【分析】高的位置不確定,應分情況進行討論:(1)高在內(nèi)部;(2)高在外部,依此即可求解.【詳解】解:如圖(1)cm,cm,,則,,則;如圖(2),由(1)得,,則.則的長為或.故答案為或.【考點】此題考查了勾股定理,本題需注意高的位置不確定,應根據(jù)三角形的形狀分兩種情況討論.8、【解析】【分析】求出AC=6,面積法求出CD=,在Rt△BCD中,用勾股定理得BD=,即可得B'D=B'C-CD=,設BE=B'E=x,則DE=BD-BE=-x,在Rt△B'DE中,用勾股定理可得BE=4,即可得到答案.【詳解】解:∵∠ACB=90°,AB=10,BC=8,∴AC==6,∵CD⊥AB,∴2S△ABC=AB?CD=AC?BC,∴CD==,在Rt△BCD中,BD=,∵將邊BC沿CE折疊,使點B的對稱點B'落在CD的延長線上,∴B'C=BC=8,BE=B'E,∴B'D=B'C-CD=8-=,設BE=B'E=x,則DE=BD-BE=-x,在Rt△B'DE中,B'D2+DE2=B'E2,∴()2+(-x)2=x2,解得x=4,∴BE=4,∴AE=AB-BE=6,∴△ACE的面積為AE?CD=×6×=,故答案為:.【考點】本題考查直角三角形中的折疊問題,解題的關(guān)鍵是掌握折疊的性質(zhì),熟練運用勾股定理.三、解答題1、北偏西45°(或西北)【解析】【分析】直接得出RP=18海里,PQ=24海里,QR=30海里,利用勾股定理逆定理以及方向角即可得到“海

天”號航行方向.【詳解】解:由題意可得:RP=18海里,PQ=24海里,QR=30海里,∵182+242=302,∴△RPQ是直角三角形,∴∠RPQ=90°,∵“遠航”號沿東北方向航行,即沿北偏東45°方向航行,∴∠RPS=45°,∴“海天”號沿北偏西45°(或西北)方向航行.【考點】本題考查了勾股定理的應用,解題的重點主要是能夠根據(jù)勾股定理的逆定理發(fā)現(xiàn)直角三角形,關(guān)鍵是從實際問題中抽象出直角三角形,難度不大.2、第二艘搜救艇的航行方向是北偏西50度.【解析】【分析】根據(jù)題意求出OA、OB,根據(jù)勾股定理的逆定理求出∠AOB=90°,即可得出答案.【詳解】解:根據(jù)題意得:OA=16海里/時×1.5小時=24海里;OB=12海里/時×1.5小時=18海里,∵OB2+OA2=242+182=900,AB2=302=900,∴OB2+OA2=AB2,∴∠AOB=90°,∵艘搜救艇以16海里/時的速度離開港口O(如圖)沿北偏東40°的方向向目標A的前進,∴∠BOD=50°,即第二艘搜救艇的航行方向是北偏西50度.【考點】本題考查了方向角,勾股定理的逆定理的應用,能熟記定理的內(nèi)容是解此題的關(guān)鍵,注意:如果三角形兩邊a、b的平方和等于第三邊c的平方,那么這個三角形是直角三角形.3、(1)OAn2=n;Sn=;(2)OA10=;(3)說明他是第20個三角形;(4).【解析】【分析】(1)利用已知可得OAn2,注意觀察數(shù)據(jù)的變化,(2)結(jié)合(1)中規(guī)律即可求出OA102的值即可求出,(3)若一個三角形的面積是,利用前面公式可以得到它是第幾個三角形,(4)根據(jù)題意列出式子即可求出.【詳解】(1)結(jié)合已知數(shù)據(jù),可得:OAn2=n;Sn=;(2)∵OAn2=n,∴OA10=;(3)若一個三角形的面積是,根據(jù):Sn==,∴=2=,∴說明他是第20個三角形,(4)S12+S22+S32+…+S102,=,=,=,=.故答案為(1)OAn2=n;Sn=;(2)OA10=;(3)說明他是第20個三角形;(4).【考點】本題考查規(guī)律型:圖形的變化類,勾股定理的應用.4、【解析】【分析】設秋千的繩索長為,則,,利用勾股定理得,再解方程即可得出答案.【詳解】解:設秋千的繩索長為,則,,在中,,即,解得,答:繩索的長度是.【考點】此題主要考查了勾股定理的應用,關(guān)鍵是正確理解題意,表示出AC、AB的長,掌握直角三角形中

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
  • 6. 下載文件中如有侵權(quán)或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論