綜合解析京改版數(shù)學(xué)9年級上冊期末測試卷及參考答案詳解(鞏固)_第1頁
綜合解析京改版數(shù)學(xué)9年級上冊期末測試卷及參考答案詳解(鞏固)_第2頁
綜合解析京改版數(shù)學(xué)9年級上冊期末測試卷及參考答案詳解(鞏固)_第3頁
綜合解析京改版數(shù)學(xué)9年級上冊期末測試卷及參考答案詳解(鞏固)_第4頁
綜合解析京改版數(shù)學(xué)9年級上冊期末測試卷及參考答案詳解(鞏固)_第5頁
已閱讀5頁,還剩36頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報或認(rèn)領(lǐng)

文檔簡介

京改版數(shù)學(xué)9年級上冊期末測試卷考試時間:90分鐘;命題人:教研組考生注意:1、本卷分第I卷(選擇題)和第Ⅱ卷(非選擇題)兩部分,滿分100分,考試時間90分鐘2、答卷前,考生務(wù)必用0.5毫米黑色簽字筆將自己的姓名、班級填寫在試卷規(guī)定位置上3、答案必須寫在試卷各個題目指定區(qū)域內(nèi)相應(yīng)的位置,如需改動,先劃掉原來的答案,然后再寫上新的答案;不準(zhǔn)使用涂改液、膠帶紙、修正帶,不按以上要求作答的答案無效。第I卷(選擇題26分)一、單選題(6小題,每小題2分,共計12分)1、如圖,正五邊形內(nèi)接于⊙,為上的一點(點不與點重合),則的度數(shù)為(

)A. B. C. D.2、一次函數(shù)與二次函數(shù)在同一坐標(biāo)系中的圖象大致為()A. B.C. D.3、如圖,四邊形OABC是平行四邊形,點A的坐標(biāo)為A(3,0),∠COA=60°,D為邊AB的中點,反比例函數(shù)y=(x>0)的圖象經(jīng)過C,D兩點,直線CD與y軸相交于點E,則點E的坐標(biāo)為(

)A.(0,2) B.(0,3) C.(0,5) D.(0,6)4、已知⊙O的半徑為4,點O到直線m的距離為d,若直線m與⊙O公共點的個數(shù)為2個,則d可?。ǎ〢.5 B.4.5 C.4 D.05、反比例函數(shù)圖象的兩個分支分別位于第一、三象限,則一次函數(shù)的圖象大致是(

)A. B.C. D.6、如圖,小明在一條東西走向公路的O處,測得圖書館A在他的北偏東方向,且與他相距,則圖書館A到公路的距離為(

)A. B. C. D.二、多選題(7小題,每小題2分,共計14分)1、如圖,在⊙O中,AB為直徑,BC為切線,弦ADOC,直線CD交BA的延長線于點E,連接BD.下列結(jié)論正確的是(

)A.CD是⊙O的切線 B.CO⊥DBC.△EDA∽△EBD D.2、已知:如圖,AB為⊙O的直徑,CD、CB為⊙O的切線,D、B為切點,OC交⊙O于點E,AE的延長線交BC于點F,連接AD、BD.以下結(jié)論中正確的有()A.AD∥OC B.點E為△CDB的內(nèi)心 C.FC=FE D.CE?FB=AB?CF3、△ABC和△A′B′C′符合下列條件,其中使△ABC和△A′B′C′相似的是(

)A.∠A=∠A′=45°,∠B=26°,∠B′=109°B.AB=1,AC=1.5,BC=2,A′B′=4,A′C′=2,B′C′=3C.∠A=∠B′,AB=2,AC=2.4,A′B′=3.6,B′C′=3D.AB=3,AC=5,BC=7,A′B′=,A′C′=,B′C′=4、已知蓄電池的電壓為定值,使用蓄電池時,電流I(單位:A)與電阻R(單位:Ω)是反比例函數(shù)關(guān)系,它的圖象如圖所示.下列說法正確的是(

)A.函數(shù)解析式為I= B.當(dāng)R=9Ω時,I=4AC.蓄電池的電壓是13V D.當(dāng)I≤10A時,R≥3.6Ω5、如圖,在△ABC中,∠C=90°,AB=5cm,cosB=.動點D從點A出發(fā)沿著射線AC的方向以每秒1cm的速度移動,動點E從點B出發(fā)沿著射線BA的方向以每秒2cm的速度移動.已知點D和點E同時出發(fā),設(shè)它們運動的時間為t秒,連接BD.下列結(jié)論正確的有()A.BC=4cm;B.當(dāng)AD=AB時,tan∠ABD=2;C.以點B為圓心、BE為半徑畫⊙B,當(dāng)t=時,DE與⊙B相切;D.當(dāng)∠CBD=∠ADE時,t=.6、如圖,反比例函數(shù)與一次函數(shù)的圖象交于A,B兩點,一次函數(shù)的圖象經(jīng)過點A.下列結(jié)論正確的是(

)A.B.點B的坐標(biāo)為C.連接OB,則D.點C為y軸上一動點,當(dāng)△ABC的周長最小時,點C的坐標(biāo)是7、如圖,在△ABC中,D,E分別是邊AB,AC上的點,DE∥BC,AD:DB=2:1,下列結(jié)論中正確的是()A. B.C. D.AD?AB=AE?AC第Ⅱ卷(非選擇題74分)三、填空題(7小題,每小題2分,共計14分)1、如圖,有長為24米的籬笆,一面利用墻(墻的最大可用長度為10米),圍成中間隔有一道籬笆的長方形花圃.設(shè)花圃的寬AB為x米,面積為S平方米.則S與x的函數(shù)關(guān)系式是____________,自變量x的取值范圍是____________.2、若一元二次方程(b,c為常數(shù))的兩根滿足,則符合條件的一個方程為_____.3、制作一塊3m×2m長方形廣告牌的成本是120元,在每平方米制作成本相同的情況下,若將此廣告牌的四邊都擴(kuò)大為原來的3倍,那么擴(kuò)大后長方形廣告牌的成本是_____元.4、在平面直角坐標(biāo)系中,已知和是拋物線上的兩點,將拋物線的圖象向上平移n(n是正整數(shù))個單位,使平移后的圖象與x軸沒有交點,則n的最小值為_____.5、將拋物線沿直線方向移動個單位長度,若移動后拋物線的頂點在第一象限,則移動后拋物線的解析式是__________.6、如圖,二次函數(shù)y=ax2+bx+c的部分圖象與y軸的交點為(0,3),它的對稱軸為直線x=1,則下列結(jié)論中:①c=3;②2a+b=0;③8a-b+c>0;④方程ax2+bx+c=0的其中一個根在2,3之間,正確的有_______(填序號).7、在等腰△ABC中,AB=AC,AD⊥BC于D,G是重心,若AG=9cm,則GD=_______cm.四、解答題(6小題,每小題10分,共計60分)1、計算:(1)(2)2、已知二次函數(shù)().(1)求二次函數(shù)圖象的對稱軸;(2)若該二次函數(shù)的圖象開口向上,當(dāng)時,函數(shù)圖象的最高點為,最低點為,點的縱坐標(biāo)為,求點和點的坐標(biāo);(3)在(2)的條件下,對直線下方二次函數(shù)圖象上的一點,若,求點的坐標(biāo).3、如圖,在Rt△ABC中,∠ACB=90°,AB=10,BC=6,點O在射線AC上(點O不與點A重合),垂足為D,以點O為圓心,分別交射線AC于E、F兩點,設(shè)OD=x.(1)如圖1,當(dāng)點O為AC邊的中點時,求x的值;(2)如圖2,當(dāng)點O與點C重合時,連接DF;求弦DF的長;(3)當(dāng)半圓O與BC無交點時,直接寫出x的取值范圍.4、如圖,已知二次函數(shù)的圖象經(jīng)過點.(1)求的值和圖象的頂點坐標(biāo).

(2)點在該二次函數(shù)圖象上.

①當(dāng)時,求的值;②若到軸的距離小于2,請根據(jù)圖象直接寫出的取值范圍.5、某賓館共有80間客房.賓館負(fù)責(zé)人根據(jù)經(jīng)驗作出預(yù)測:今年5月份,每天的房間空閑數(shù)y(間)與定價x(元/間)之間滿足y=x﹣42(x≥168).若賓館每天的日常運營成本為4000元,有客人入住的房間,賓館每天每間另外還需支出36元的各種費用,賓館想要獲得最大利潤,同時也想讓客人得到實惠.(1)求入住房間z(間)與定價x(元/間)之間關(guān)系式;(2)應(yīng)將房間定價確定為多少元時,獲得利潤最大?求出最大利潤?6、二次函數(shù)與軸分別交于點和點,與軸交于點,直線的解析式為,軸交直線于點.(1)求二次函數(shù)的解析式;(2)為線段上一動點,過點且垂直于軸的直線與拋物線及直線分別交于點、.直線與直線交于點,當(dāng)時,求值.-參考答案-一、單選題1、B【解析】【分析】根據(jù)圓周角的性質(zhì)即可求解.【詳解】連接CO、DO,正五邊形內(nèi)心與相鄰兩點的夾角為72°,即∠COD=72°,同一圓中,同弧或同弦所對應(yīng)的圓周角為圓心角的一半,故∠CPD=,故選B.【考點】此題主要考查圓內(nèi)接多邊形的性質(zhì),解題的關(guān)鍵是熟知圓周角定理的應(yīng)用.2、A【解析】【分析】由二次函數(shù)的解析式可知,二次函數(shù)圖象經(jīng)過原點,則只有選項A,D可能正確,B,C不符合舍去,然后對A,D選項,根據(jù)二次函數(shù)的圖象確定a和b的符號,然后根據(jù)一次函數(shù)的性質(zhì)看一次函數(shù)圖象的位置是否正確,若正確,說明它們可在同一坐標(biāo)系內(nèi)存在.【詳解】解:由二次函數(shù)的解析式可知,二次函數(shù)圖象經(jīng)過原點,則只有選項A,D符合,B,C不符合舍去,A、由二次函數(shù)y=ax2+bx的圖象得a>0,再根據(jù)>0得到b<0,則一次函數(shù)y=ax+b經(jīng)過第一、三、四象限,所以A選項正確;D、由二次函數(shù)y=ax2+bx的圖象得a<0,再根據(jù)<0得到b<0,則一次函數(shù)y=ax+b經(jīng)過第二、三、四象限,所以D選項錯誤.故選:A.【考點】本題考查了二次函數(shù)的圖象:二次函數(shù)的圖象為拋物線,可能利用列表、描點、連線畫二次函數(shù)的圖象.也考查了二次函數(shù)圖象與系數(shù)的關(guān)系.3、B【解析】【分析】作CE⊥x軸于點E,過B作BF⊥x軸于F,過D作DM⊥x軸于M,設(shè)C的坐標(biāo)為(x,x),表示出D的坐標(biāo),將C、D兩點坐標(biāo)代入反比例函數(shù)的解析式,解關(guān)于x的方程求出x即可得到點C、D的坐標(biāo),進(jìn)而求得直線CD的解析式,最后計算該直線與y軸交點坐標(biāo)即可得出結(jié)果.【詳解】解:作CE⊥x軸于點E,則∠CEO=90°,過B作BF⊥x軸于F,過D作DM⊥x軸于M,則BF=CE,DM∥BF,BF=CE,∵D為AB的中點,∴AM=FM,∴DM=BF,∵∠COA=60°,∴∠OCE=30°,∴OC=2OE,CE=OE,∴設(shè)C的坐標(biāo)為(x,x),∴AF=OE=x,CE=BF=x,OE=AF=x,DM=x,∵四邊形OABC是平行四邊形,A(3,0),∴OF=3+x,OM=3+x,即D點的坐標(biāo)為(3+x,),把C、D的坐標(biāo)代入y=得:k=x?x=(3+x)?,解得:x1=2,x2=0(舍去),∴C(2,2),D(4,),設(shè)直線CD解析式為:y=ax+b,則,解得,∴直線CD解析式為:,∴當(dāng)x=0時,,∴點E的坐標(biāo)為(0,).故選:B.【考點】本題主要考查了平行四邊形的性質(zhì)、運用待定系數(shù)法求函數(shù)的解析式以及含度角的直角三角形的性質(zhì).根據(jù)反比例函數(shù)圖象經(jīng)過C、D兩點,得出關(guān)于x的方程是解決問題的關(guān)鍵.4、D【解析】【分析】根據(jù)直線和圓的位置關(guān)系判斷方法,可得結(jié)論.【詳解】∵直線m與⊙O公共點的個數(shù)為2個∴直線與圓相交∴d<半徑=4故選D.【考點】本題考查了直線與圓的位置關(guān)系,掌握直線和圓的位置關(guān)系判斷方法:設(shè)⊙O的半徑為r,圓心O到直線l的距離為d.①直線l和⊙O相交?d<r②直線l和⊙O相切?d=r,③直線l和⊙O相離?d>r.5、D【解析】【分析】根據(jù)題意可得,進(jìn)而根據(jù)一次函數(shù)圖像的性質(zhì)可得的圖象的大致情況.【詳解】反比例函數(shù)圖象的兩個分支分別位于第一、三象限,∴一次函數(shù)的圖象與y軸交于負(fù)半軸,且經(jīng)過第一、三、四象限.觀察選項只有D選項符合.故選D【考點】本題考查了反比例函數(shù)的性質(zhì),一次函數(shù)圖像的性質(zhì),根據(jù)已知求得是解題的關(guān)鍵.6、A【解析】【分析】根據(jù)題意可得△OAB為直角三角形,∠AOB=30°,OA=200m,根據(jù)三角函數(shù)定義即可求得AB的長.【詳解】解:由已知得,∠AOB=90°60°=30°,OA=200m.則AB=OA=100m.故選:A.【考點】本題主要考查了解直角三角形的應(yīng)用——方向角問題,正確記憶三角函數(shù)的定義是解決本題的關(guān)鍵.二、多選題1、ABC【解析】【分析】由切線的性質(zhì)得∠CBO=90°,首先連接OD,易證得△COD≌△COB(SAS),然后由全等三角形的對應(yīng)角相等,求得∠CDO=90°,即可證得直線CD是⊙O的切線;根據(jù)全等三角形的性質(zhì)得到CD=CB,根據(jù)線段垂直平分線的判定定理得到即CO⊥DB;根據(jù)余角的性質(zhì)得到∠ADE=∠BDO,等量代換得到∠EDA=∠DBE,根據(jù)相似三角形的判定定理得到△EDA∽△EBD;根據(jù)相似三角形的性質(zhì)得到,于是得到ED?BC=BO?BE.【詳解】解:A.證明:連接DO.∵AB為⊙O的直徑,BC為⊙O的切線,∴∠CBO=90°,∵ADOC,∴∠DAO=∠COB,∠ADO=∠COD.又∵OA=OD,∴∠DAO=∠ADO,∴∠COD=∠COB.在△COD和△COB中,,∴△COD≌△COB(SAS),∴∠CDO=∠CBO=90°.又∵點D在⊙O上,∴CD是⊙O的切線;故選項正確,符合題意;B.證明:∵△COD≌△COB,∴CD=CB,∵OD=OB,∴CO垂直平分DB,即CO⊥DB,故選項正確,符合題意;C.證明:∵AB為⊙O的直徑,DC為⊙O的切線,∴∠EDO=∠ADB=90°,∴∠EDA+∠ADO=∠BDO+∠ADO=90°,∴∠ADE=∠BDO,∵OD=OB,∴∠ODB=∠OBD,∴∠EDA=∠DBE,∵∠E=∠E,∴△EDA∽△EBD,故選項正確,符合題意;D.證明:∵∠EDO=∠EBC=90°,∠E=∠E,∴△EOD∽△ECB,∴,∵OD=OB,∴ED?BC=BO?BE,故選項錯誤,不符合題意.故選:ABC.【考點】本題主要考查了切線的判定、全等三角形的判定與性質(zhì)以及相似三角形的判定與性質(zhì),注意掌握輔助線的作法,注意數(shù)形結(jié)合思想的應(yīng)用是解答此題的關(guān)鍵.2、ABD【解析】【分析】連接OD,由CD、CB為⊙O的切線,可得DC=BC,由OD=OB,可得OC為BD的垂直平分線,可證OC⊥BD,再證AD⊥BD,可判斷選項A正確;連接DE、BE,CD、CB為⊙O的切線,可得∠ODE+∠CDE=90°,∠OBE+∠CBE=90°,推得∠CDE=∠DOE,∠CBE=∠BOE,由,可得∠EDB=∠EBD=∠CDE=∠CBE,可判斷選項B正確;用反證法假設(shè)FC=FE,可得∠FCE=∠FEC,可證△CDB為等邊三角形,與已知△CDB為等腰三角形矛盾,可判斷選項C不正確;先證△ABE∽△BFE,可得,再證△CEF∽△CBE,可得,推出,可判斷選項D正確.【詳解】解:連接OD,∵CD、CB為⊙O的切線,∴DC=BC,∵OD=OB,∴OC為BD的垂直平分線,∴OC⊥BD,∵AB為直徑,∴∠ADB=90°,∴AD⊥BD,∴AD∥OC,故選項A正確;連接DE、BE,∵CD、CB為⊙O的切線,∴OD⊥DC,OB⊥BC,∴∠ODE+∠CDE=90°,∠OBE+∠CBE=90°,∵2∠ODE+∠DOE=180°,2∠OBE+∠BOE=180°,∴∠ODE+∠DOE=90°,∠OBE+∠BOE=90°,∴∠CDE=∠DOE,∠CBE=∠BOE,∵,∴∠DAE=∠DBE=∠EDB=∠EBD=∠DOE=∠BOE,∴∠EDB=∠EBD=∠CDE=∠CBE,∴點E為△CDB各內(nèi)角平分線的交點,故選項B正確;假設(shè)FC=FE,∴∠FCE=∠FEC,∵∠CEF=∠AEO=∠EAB=∠EDB=∠EBD,∴2∠EDB=2∠EBD=2∠BCE即∠DCB=∠CDB=∠CBD,∴△CDB為等邊三角形,與已知△CDB為等腰三角形矛盾,故假設(shè)不正確,故選項C不正確;∵AB為直徑,∴∠AEB=90°又∵BC為切線,AB為直徑,∴∠ABF=90°,∴∠FBE+∠EBA=90°,∠EAB+∠EBA=90°,∴∠EAB=∠EBF,∠AEB=∠BEF=90°,∴△ABE∽△BFE,∴,∵∠CBE=∠CEF,∠ECF=∠BCE,∴△CEF∽△CBE,∴,∴,∴CE?FB=AB?CF,故選項D正確;結(jié)論中正確的有ABD.故選擇ABD.【考點】本題考查圓的切線性質(zhì),線段垂直平分線判定與性質(zhì),圓周角定理,證明三角形內(nèi)心,反證法,三角形相似判定與性質(zhì),掌握圓的切線性質(zhì),線段垂直平分線判定與性質(zhì),圓周角定理,證明三角形內(nèi)心,反證法,三角形相似判定與性質(zhì)是解題關(guān)鍵.3、ABC【解析】【分析】根據(jù)三角形相似的判定定理逐項排查即可.【詳解】解:A:∵∠A=∠A′=45°,∠B=26°,∠B′=109°,∴∠C=109°,∠C′=26°,∴∠B=∠C,∴△ABC∽△A′C′B′,B:∵AB=1,AC=1.5,BC=2,A′B′=4,A′C′=2,B′C′=3,∴,∴△ABC∽△C′A′B′;C:∵∠A=∠B′,AB=2,AC=2.4,A′B′=3.6,B′C′=3,∴AB:B′C′=AC:A′B′=2:3,∴△ABC∽△B′C′A′;D:∵AB=3,AC=5,BC=7,A′B′=,A′C′=

B′C′=,∴,∴不相似.故選ABC.【考點】本題主要考查了相似三角形的判定,相似三角形的判定方法主要有:①有兩個對應(yīng)角相等的三角形相似;②有兩個對應(yīng)邊的比相等,且其夾角相等,則兩個三角形相似;③三組對應(yīng)邊的比相等,則兩個三角形相似.4、BD【解析】【分析】設(shè)函數(shù)解析式為,將點(4,9)代入判斷A錯誤;將R=9Ω代入判斷B正確;由解析式判斷C錯誤;由函數(shù)性質(zhì)判斷D正確.【詳解】解:設(shè)函數(shù)解析式為,將點(4,9)代入,得,∴函數(shù)解析式為,故A錯誤;當(dāng)R=9Ω時,I=4A,故B正確;蓄電池的電壓是36V,故C錯誤;∵39>0,∴I隨R的增大而減小,∴當(dāng)I≤10A時,R≥3.6Ω,故D正確;故選:BD.【考點】此題考查了求反比例函數(shù)解析式,反比例函數(shù)的增減性,已知自變量求函數(shù)值的大小,正確掌握反比例函數(shù)的綜合知識是解題的關(guān)鍵.5、AB【解析】【分析】A.根據(jù)AB=5cm,cosB=即可求出BC的長度;B.由AD=AB,可得∠ABD=∠D,根據(jù)勾股定理求出AC的長度,然后在Rt△BCD中,即可求出tan∠ABD=tan∠D=2;C.根據(jù)DE與⊙B相切時,DE⊥BE,可得cos∠A=,代入即可求出運動的時間t的值,即可判斷;D.根據(jù)題意可得滿足條件的t的值應(yīng)該有兩個,進(jìn)而可判斷.【詳解】A、在△ABC中,∵∠ACB=90°,AB=5cm,cosB=,∴,∴BC=AB?cos∠ABC=5×=4(cm),故A正確.B、在直角△ABC中,AC==3(cm),當(dāng)AD=AB=5時,∠ABD=∠D,如圖1,∴CD=AD﹣AC=5﹣3=2(cm),在Rt△BCD中,tan∠D==2,∴tan∠ABD=tan∠D=2,故B正確,C、如圖,當(dāng)DE與⊙B相切時,DE⊥BE.則有cos∠A=,∴,∴t=,當(dāng)t=時,DE與⊙B相切;故C錯誤.D、滿足條件的t的值應(yīng)該有兩個,顯然D錯誤,故答案為:AB.【考點】此題考查了三角形動點問題,解直角三角形,圓切線的性質(zhì)和判定,解題的關(guān)鍵是正確分析題目中的等量關(guān)系列出方程求解.6、AC【解析】【分析】聯(lián)立求得的坐標(biāo),然后根據(jù)待定系數(shù)法即可求解反比例函數(shù)解析式,然后可得點B的坐標(biāo),則有根據(jù)割補法進(jìn)行求解三角形面積,進(jìn)而根據(jù)軸對稱的性質(zhì)可求解當(dāng)△ABC的周長最小時點C的坐標(biāo)【詳解】解:聯(lián)立,解得,點坐標(biāo)為.將代入,得..反比例函數(shù)的表達(dá)式為;∴聯(lián)立,解得或..在中,令,得.故直線與軸的交點為.如圖,過、兩點分別作軸的垂線,交軸于、兩點,則.過點A作y軸的對稱點D,連接BD,交y軸于點C,此時△ABC的周長為最小,如圖所示:∴,設(shè)直線BD的解析式為,則有:,解得:,∴直線BD的解析式為,令x=0時,則有,∴;綜上所述:正確的有AC選項;故選AC【考點】本題考查了反比例函數(shù)與一次函數(shù)的交點,體現(xiàn)了方程思想,數(shù)形結(jié)合是解題的關(guān)鍵.7、ABC【解析】【分析】由DE∥BC,AD:DB=2:1,可得△ADE∽△ABC,推出,,推出,由此即可判斷;【詳解】解:∵DE∥BC,AD:DB=2:1,∴△ADE∽△ABC,∴,,∴,∴選項A、B、C正確,∵DE∥BC,∴,選項D錯誤,故選:ABC.【考點】本題考查了平行線分線段成比例定理,相似三角形的判定和性質(zhì)等知識,解題的關(guān)鍵是熟練掌握基本知識.三、填空題1、

S=-3x2+24x

≤x<8【解析】【詳解】可先用籬笆的長表示出BC的長,然后根據(jù)矩形的面積=長×寬,得出S與x的函數(shù)關(guān)系式,并根據(jù)墻的最大可用長度為10米,列不等式組即可得出自變量的取值范圍.解:由題可知,花圃的寬AB為x米,則BC為(24?3x)米.∴S=x(24?3x)=?3x2+24x.∵0<24?3x≤10,解得≤x<8,故答案為S=-3x2+24x,≤x<8.2、(答案不唯一)【解析】【分析】設(shè)與交點為,根據(jù)題意關(guān)于y軸對稱和二次函數(shù)的對稱性,可找到的值(只需滿足互為相反數(shù)且滿足即可)即可寫出一個符合條件的方程【詳解】設(shè)與交點為,根據(jù)題意則的對稱軸為故設(shè)則方程為:故答案為:【考點】本題考查了二次函數(shù)的對稱性,二次函數(shù)與一元二次方程的關(guān)系,熟悉二次函數(shù)的性質(zhì)和找到兩根的對稱性類比二次函數(shù)的對稱性是解題的關(guān)鍵3、1080【解析】【分析】直接利用相似多邊形的性質(zhì)進(jìn)而得出答案.【詳解】∵將此廣告牌的四邊都擴(kuò)大為原來的3倍,∴面積擴(kuò)大為原來的9倍,∴擴(kuò)大后長方形廣告牌的成本為:120×9=1080(元).故答案為:1080.【考點】此題考查相似多邊形的性質(zhì),相似多邊形的面積的比等于相似比的平方.4、4【解析】【分析】通過A、B兩點得出對稱軸,再根據(jù)對稱軸公式算出b,由此可得出二次函數(shù)表達(dá)式,從而算出最小值即可推出n的最小值.【詳解】∵A、B的縱坐標(biāo)一樣,∴A、B是對稱的兩點,∴對稱軸,即,∴b=-4.∴拋物線解析式為:.∴拋物線頂點(2,-3).∴滿足題意n的最小值為4,故答案為:4.【考點】本題考查二次函數(shù)對稱軸的性質(zhì),頂點式的變形及拋物線的平移,關(guān)鍵在于根據(jù)對稱軸的性質(zhì)從題意中判斷出對稱軸.5、【解析】【分析】設(shè)拋物線沿直線方向移動個單位長度后頂點坐標(biāo)為(t,3t),再求出平移后的頂點坐標(biāo),最后求出平移后的函數(shù)關(guān)系式.【詳解】設(shè)拋物線沿直線方向移動個單位長度后頂點坐標(biāo)為(t,3t),∴,解得:t=1或t=-1(舍去),∴平移后的頂點坐標(biāo)為(1,3),∴移動后拋物線的解析式是.故答案為:.【考點】本題考查二次函數(shù)的圖象變換及一次函數(shù)的圖像,解題的關(guān)鍵是正確理解圖象變換的條件,本題屬于基礎(chǔ)題型.6、①②④【解析】【分析】由二次函數(shù)y=ax2+bx+c的部分圖象與y軸的交點為(0,3),即可判斷①;由拋物線的對稱軸為直線x=1,即可判斷②;拋物線與x軸的一個交點在-1到0之間,拋物線對稱軸為直線x=1,即可判斷④,由拋物線開口向下,得到a<0,再由當(dāng)x=-1時,,即可判斷③.【詳解】解:∵二次函數(shù)y=ax2+bx+c的部分圖象與y軸的交點為(0,3),∴c=3,故①正確;∵拋物線的對稱軸為直線x=1,∴,即,故②正確;∵拋物線與x軸的一個交點在-1到0之間,拋物線對稱軸為直線x=1,∴拋物線與x軸的另一個交點在2到3之間,故④正確;∵拋物線開口向下,∴a<0,∵當(dāng)x=-1時,,∴即,故③錯誤,故答案為:①②④.【考點】本題主要考查了二次函數(shù)圖像的性質(zhì),解題的關(guān)鍵在于能夠熟練掌握二次函數(shù)圖像的性質(zhì).7、4.5【解析】【分析】由三角形的重心的性質(zhì)即可得出答案.【詳解】解:∵AB=AC,AD⊥BC于D,∴AD是△ABC的中線,∵G是△ABC的重心,∴AG=2GD,∵AG=9cm,∴GD=4.5cm,故答案為:4.5.【考點】本題考查了三角形的重心,三角形三條中線的交點叫做三角形的重心,三角形的重心到一個頂點的距離等于它到對邊中點距離的兩倍.四、解答題1、(1);(2)2.【解析】【分析】(1)先去絕對值,零指數(shù)冪,負(fù)指數(shù)冪,二次根式化簡,再合并同類項即可;(2)先計算負(fù)指數(shù)冪,代入特殊角三角函數(shù)值,二次根式化簡,再計算乘法,合并同類項即可.【詳解】解:(1),=,=;(2)=,=,=2.【考點】本題考查特殊角三角函數(shù)值,二次根式,負(fù)指數(shù)冪,零指數(shù)冪,絕對值的混合運算,掌握運算法則是解題關(guān)鍵.2、(1)直線x=1;(2);;(3)或【解析】【分析】(1)利用對稱軸公式計算即可;(2)構(gòu)建方程求出a的值即可解決問題;(3)先求出直線MN的解析式,然后設(shè)點的坐標(biāo)為,過點作軸的垂線交直線于點,得到PQ的長度,根據(jù)三角形的面積公式,即可求出答案.【詳解】解:(1)∵二次函數(shù)(),∴該二次函數(shù)圖象的對稱軸是直線:;(2)∵該二次函數(shù)的圖象開口向上,對稱軸為直線,,∴當(dāng)時,取得最大值,即,∴,得:,∴該二次函數(shù)的表達(dá)式為:,即點的坐標(biāo)為.(3)設(shè)直線的解析式為,則,解得:,∴設(shè)直線的解析式為:,設(shè)點的坐標(biāo)為,過點作軸的垂線交直線于點,如圖則點的坐標(biāo)是,∴,∴,解得:,,∴點的坐標(biāo)是或.【考點】本題考查二次函數(shù)的性質(zhì),一次函數(shù)的性質(zhì),函數(shù)的最值問題等知識,解題的關(guān)鍵是靈活運用所學(xué)知識解決問題,屬于中考??碱}型.3、(1);(2);(3)滿足條件的x取值范圍為:0<x<3或x>12.【解析】【分析】(1)先求出OA,再判斷出,得出比例式求出x的值,即可得出結(jié)論;(2)先利用等面積求出x知,再判斷出,進(jìn)而求出DH,OH,最后用勾股定理求出DF,即可得出結(jié)論;(3)分兩種情況:點O在邊AC上和在AC的延長線上,找出分界點,求出x值,即可得出結(jié)論.【詳解】(1)在Rt△ABC中,AB=10,根據(jù)勾股定理得,,∵點O為AC邊的中點,∴AO=AC=,∵OD⊥AB,∠ACB=90°,∴∠ADO=∠ACB,又∵∠A=∠A,∴.∴,∴,∴.(2)如圖,過點D作DH⊥AC于H,∵點O與點C重合,∴S△ABC=OD?AB=,即10x=8×6,∴.∵DH⊥AC于H,∴∠DHO=∠ACB=90°,∴∠DOH+∠BOD=∠BOD+∠ABC,∴∠DOH=∠ABC,∴.∴,∴,∴,.∵OF=OD=,∴FH=OH+OF=.∴在Rt△DFH中,根據(jù)勾股定理得,∴.(3)如圖,當(dāng)點O在邊AC上,且半圓O與AB,∴OC=OD=x,∴AO=AC﹣OC=8﹣x,∵∠ADO=∠ACB=90°,∠A=∠A,∴,∴,∴,∴x=3,∴0<x<3,如圖,當(dāng)點O在AC的延長線上,且半圓O與AB,∴OC=OD=

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論