重難點解析滬科版9年級下冊期末試卷帶答案詳解(突破訓練)_第1頁
重難點解析滬科版9年級下冊期末試卷帶答案詳解(突破訓練)_第2頁
重難點解析滬科版9年級下冊期末試卷帶答案詳解(突破訓練)_第3頁
重難點解析滬科版9年級下冊期末試卷帶答案詳解(突破訓練)_第4頁
重難點解析滬科版9年級下冊期末試卷帶答案詳解(突破訓練)_第5頁
已閱讀5頁,還剩28頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領

文檔簡介

滬科版9年級下冊期末試卷考試時間:90分鐘;命題人:教研組考生注意:1、本卷分第I卷(選擇題)和第Ⅱ卷(非選擇題)兩部分,滿分100分,考試時間90分鐘2、答卷前,考生務必用0.5毫米黑色簽字筆將自己的姓名、班級填寫在試卷規(guī)定位置上3、答案必須寫在試卷各個題目指定區(qū)域內相應的位置,如需改動,先劃掉原來的答案,然后再寫上新的答案;不準使用涂改液、膠帶紙、修正帶,不按以上要求作答的答案無效。第I卷(選擇題16分)一、單選題(8小題,每小題2分,共計16分)1、小張同學去展覽館看展覽,該展覽館有A、B兩個驗票口(可進可出),另外還有C、D兩個出口(只出不進).則小張從不同的出入口進出的概率是()A. B. C. D.2、下列圖形中,既是中心對稱圖形又是抽對稱圖形的是()A. B. C. D.3、已知⊙O的半徑為4,,則點A在()A.⊙O內 B.⊙O上 C.⊙O外 D.無法確定4、如圖,將△OAB繞點O逆時針旋轉80°得到△OCD,若∠A的度數為110°,∠D的度數為40°,則∠AOD的度數是()A.50° B.60° C.40° D.30°5、如圖,AB為的直徑,,,劣弧BC的長是劣弧BD長的2倍,則AC的長為()A. B. C.3 D.6、“2022年春節(jié)期間,中山市會下雨”這一事件為()A.必然事件 B.不可能事件 C.確定事件 D.隨機事件7、擲一枚質地均勻的骰子,向上一面的點數大于2且小于5的概率是()A. B. C. D.8、平面直角坐標系中點關于原點對稱的點的坐標是()A. B. C. D.第Ⅱ卷(非選擇題84分)二、填空題(7小題,每小題2分,共計14分)1、如圖,在⊙O中,弦AB⊥OC于E點,C在圓上,AB=8,CE=2,則⊙O的半徑AO=___________.2、已知如圖,AB=8,AC=4,∠BAC=60°,BC所在圓的圓心是點O,∠BOC=60°,分別在、線段AB和AC上選取點P、E、F,則PE+EF+FP的最小值為____________.3、如圖,PA是⊙O的切線,A是切點.若∠APO=25°,則∠AOP=___________°.4、在同一平面上,外有一點P到圓上的最大距離是8cm,最小距離為2cm,則的半徑為______cm.5、如圖,已知⊙O的半徑為2,弦AB的長度為2,點C是⊙O上一動點若△ABC為等腰三角形,則BC2為_______.6、在Rt△ABC中,∠ACB=90°,AC=AB,點E、F分別是邊CA、CB的中點,已知點P在線段EF上,聯(lián)結AP,將線段AP繞點P逆時針旋轉90°得到線段DP,如果點P、D、C在同一直線上,那么tan∠CAP=_______.7、在一個不透明的盒子里裝有若干個紅球和20個白球,這些球除顏色外其余全部相同,每次從袋子中摸出一球記下顏色后放回,通過多次重復實驗發(fā)現(xiàn)摸到紅球的頻率穩(wěn)定在0.6附近,則袋中紅球大約有________個.三、解答題(7小題,每小題0分,共計0分)1、如圖,四邊形ABCD內接于⊙O,AC是直徑,點C是劣弧BD的中點.(1)求證:.(2)若,,求BD.2、如圖,拋物線y=-+x+2與x軸負半軸交于點A,與y軸交于點B.(1)求A,B兩點的坐標;(2)如圖1,點C在y軸右側的拋物線上,且AC=BC,求點C的坐標;(3)如圖2,將△ABO繞平面內點P順時針旋轉90°后,得到△DEF(點A,B,O的對應點分別是點D,E,F(xiàn)),D,E兩點剛好在拋物線上.①求點F的坐標;②直接寫出點P的坐標.3、如圖1,O為直線DE上一點,過點O在直線DE上方作射線OC,∠EOC=130°.將直角三角板AOB(∠OAB=30°)的直角頂點放在點O處,一條邊OA在射線OD上,另一邊OB在直線DE上方,將直角三角板繞點O按每秒5°的速度逆時針旋轉一周,設旋轉時間為t秒.(1)如圖2,當t=4時,∠AOC=,∠BOE=,∠BOE﹣∠AOC=;(2)當三角板旋轉至邊AB與射線OE相交時(如圖3),試猜想∠AOC與∠BOE的數量關系,并說明理由;(3)在旋轉過程中,是否存在某個時刻,使得射線OA、OC、OD中的某一條射線是另兩條射線所成夾角的角平分線?若存在,請直接寫出t的取值,若不存在,請說明理由.4、如圖,AB是⊙O的直徑,點C是⊙O上一點,連接BC,半徑OD弦BC.(1)求證:弧AD=弧CD;(2)連接AC、BD相交于點F,AC與OD相交于點E,連接CD,若⊙O的半徑為5,BC=6,求CD和EF的長.5、如圖1,在中,,,點D為AB邊上一點.(1)若,則______;(2)如圖2,將線段CD繞著點C逆時針旋轉90°得到線段CE,連接AE,求證:;(3)如圖3,過點A作直線CD的垂線AF,垂足為F,連接BF.直接寫出BF的最小值.6、如圖,在平面直角坐標系中,△ABC的頂點坐標分別為A(﹣1,0),B(﹣4,1),C(﹣2,2).(1)直接寫出點B關于原點對稱的點B′的坐標:;(2)平移△ABC,使平移后點A的對應點A1的坐標為(2,1),請畫出平移后的△A1B1C1;(3)畫出△ABC繞原點O逆時針旋轉90°后得到的△A2B2C2.7、某商家銷售一批盲盒,每一個看上去無差別的盲盒內含有A,B,C,D四種玩具中的一種,抽到玩具B的有關統(tǒng)計量如表所示:抽盲盒總數50010001500200025003000頻數130273414566695843頻率0.2600.2730.2760.2830.2780.281(1)估計從這批盲盒中任意抽取一個是玩具B的概率是;(結果保留小數點后兩位)(2)小明從分別裝有A,B,C,D四種玩具的四個盲盒中隨機抽取兩個,請利用畫樹狀圖或列表的方法,求抽到的兩個玩具恰為玩具A和玩具C的概率.-參考答案-一、單選題1、D【分析】先畫樹狀圖得到所有的等可能性的結果數,然后找到小張從不同的出入口進出的結果數,最后根據概率公式求解即可.【詳解】解:列樹狀圖如下所示:由樹狀圖可知一共有8種等可能性的結果數,其中小張從不同的出入口進出的結果數有6種,∴P小張從不同的出入口進出的結果數,故選D.【點睛】本題主要考查了用列表法或樹狀圖法求解概率,解題的關鍵在于能夠熟練掌握用列表法或樹狀圖法求解概率.2、B【詳解】解:.是軸對稱圖形,不是中心對稱圖形,故此選項不符合題意;.既是軸對稱圖形,也是中心對稱圖形,故此選項符合題意;.是軸對稱圖形,不是中心對稱圖形,故此選項不符合題意;.不是軸對稱圖形,是中心對稱圖形,故此選項不符合題意;故選:B.【點睛】本題主要考查了中心對稱圖形和軸對稱圖形的概念,解題的關鍵是判斷軸對稱圖形的關鍵是尋找對稱軸,圖形兩部分折疊后可重合;判斷中心對稱圖形是要尋找對稱中心,旋轉180度后與原圖重合.3、C【分析】根據⊙O的半徑r=4,且點A到圓心O的距離d=5知d>r,據此可得答案.【詳解】解:∵⊙O的半徑r=4,且點A到圓心O的距離d=5,∴d>r,∴點A在⊙O外,故選:C.【點睛】本題主要考查點與圓的位置關系,點與圓的位置關系有3種.設⊙O的半徑為r,點P到圓心的距離OP=d,則有:①點P在圓外?d>r;②點P在圓上?d=r;③點P在圓內?d<r.4、A【分析】根據旋轉的性質求解再利用三角形的內角和定理求解再利用角的和差關系可得答案.【詳解】解:將△OAB繞點O逆時針旋轉80°得到△OCD,∠A的度數為110°,∠D的度數為40°,故選A【點睛】本題考查的是三角形的內角和定理的應用,旋轉的性質,掌握“旋轉前后的對應角相等”是解本題的關鍵.5、D【分析】連接,根據求得半徑,進而根據的長,勾股定理的逆定理證明,根據弧長關系可得,即可證明是等邊三角形,求得,進而由勾股定理即可求得【詳解】如圖,連接,,是直角三角形,且是等邊三角形是直徑,故選D【點睛】本題考查了弧與圓心角的關系,直徑所對的圓周角是90度,勾股定理,等邊三角形的判定,求得的長是解題的關鍵.6、D【分析】根據事件發(fā)生的可能性大小判斷相應事件的類型即可.【詳解】解:“2022年年春節(jié)期間,中山市會下雨”這一事件為隨機事件,故選:D.【點睛】本題考查的是必然事件、不可能事件、隨機事件的概念,必然事件指在一定條件下,一定發(fā)生的事件.不可能事件是指在一定條件下,一定不發(fā)生的事件,不確定事件即隨機事件是指在一定條件下,可能發(fā)生也可能不發(fā)生的事件.7、C【分析】根據骰子各面上的數字得到向上一面的點數可能是3或4,利用概率公式計算即可.【詳解】解:一枚質地均勻的骰子共有六個面,點數分別為1,2,3,4,5,6,∴點數大于2且小于5的有3或4,∴向上一面的點數大于2且小于5的概率是=,故選:C.【點睛】此題考查了求簡單事件的概率,正確掌握概率的計算公式是解題的關鍵.8、B【分析】根據關于原點對稱的兩個點,橫坐標、縱坐標分別互為相反數,即可求解.【詳解】解:平面直角坐標系中點關于原點對稱的點的坐標是故選B【點睛】本題考查了關于原點對稱的點的特征,掌握關于原點對稱的兩個點,橫坐標、縱坐標分別互為相反數是解題的關鍵.二、填空題1、5【分析】設⊙O的半徑為r,則OA=r,OD=r-2,先由垂徑定理得到AD=BD=AB=4,再由勾股定理得到42+(r-2)2=r2,然后解方程即可.【詳解】解:設⊙O的半徑為r,則OC=OA=r,OE=OC-CE=r-2,∵OC⊥AB,AB=8,∴AE=BE=AB=4,在Rt△OAE中,由勾股定理得:42+(r-2)2=r2,解得:r=5,即⊙O的半徑長為5,故答案為:5.【點睛】本題考查了垂徑定理:垂直于弦的直徑平分這條弦,并且平分弦所對的兩條弧.也考查了勾股定理.2、12【分析】如圖,連接BC,AO,作點P關于AB的對稱點M,作點P關于AC的對稱點N,連接MN交AB于E,交AC于F,此時△PEF的周長=PE+PF+EF=EM+EF+FM=MN,想辦法求出MN的最小值即可解決問題.【詳解】解:如圖,連接BC,AO,作點P關于AB的對稱點M,作點P關于AC的對稱點N,連接MN交AB于E,交AC于F,此時△PEF的周長=PE+PF+EF=EM+EF+FM=MN,∴當MN的值最小時,△PEF的值最小,∵AP=AM=AN,∠BAM=∠BAP,∠CAP=∠CAN,∠BAC=60°,∴∠MAN=120°,∴MN=AM=PA,∴當PA的值最小時,MN的值最小,取AB的中點J,連接CJ.∵AB=8,AC=4,∴AJ=JB=AC=4,∵∠JAC=60°,∴△JAC是等邊三角形,∴JC=JA=JB,∴∠ACB=90°,∴BC=,∵∠BOC=60°,OB=OC,∴△OBC是等邊三角形,∴OB=OC=BC=4,∠BCO=60°,∴∠ACH=30°,∵AH⊥OH,AH=AC=2,CH=AH=2,∴OH=6,∴OA==4,∵當點P在直線OA上時,PA的值最小,最小值為-,∴MN的最小值為?(-)=-12.故答案:-12.【點睛】本題考查了圓周角定理,垂徑定理,軸對稱-最短問題等知識,解題的關鍵是學會利用軸對稱解決最短問題,屬于中考填空題中的壓軸題.3、65【分析】根據切線的性質得到OA⊥AP,根據直角三角形的兩銳角互余計算,得到答案.【詳解】解:∵PA是⊙O的切線,∴OA⊥AP,∴,∵∠APO=25°,∴,故答案為:65.【點睛】本題考查的是切線的性質、直角三角形的性質,掌握圓的切線垂直于經過切點的半徑是解題的關鍵.4、5或3【分析】分點P在圓內或圓外進行討論.【詳解】解:①當點P在圓內時,⊙O的直徑長為8+2=10(cm),半徑為5cm;②當點P在圓外時,⊙O的直徑長為8-2=6(cm),半徑為3cm;綜上所述:⊙O的半徑長為5cm或3cm.故答案為:5或3.【點睛】本題考查了點與圓的位置關系:點的位置可以確定該點到圓心距離與半徑的關系,反過來已知點到圓心距離與半徑的關系可以確定該點與圓的位置關系.5、4或12或【分析】分三種情況討論:當AB=BC時、當AB=AC時、當AC=BC時,根據垂徑定理和勾股定理即可求解.【詳解】解:如圖1,當AB=BC時,BC=2,故BC2=4;如圖2,當AB=AC=2時,過A作AD⊥BC于D,連接OC,∴BD=CD,設OD=x,則在Rt△ACD中,AC2=CD2+AD2,在Rt△OCD中,OC2=CD2+OD2,∴CD2=AC2-AD2=OC2-OD2即22-(2-x)2=22-x2解得x=1∴CD=∴BC=2∴BC2=12;如圖3,當AC=BC時,則C在AB的垂直平分線上,∴CD經過圓心O,AD=BD==1,∵OA=2,∴OD=,∴CD=CO+OD=2+,CD=C'O-OD=2-,∴BC2=CD2+BD2=(2+)2+12=,BC2=CD2+BD2=(2-)2+12=,綜上,BC2為4或12或故答案為:4或12或.【點睛】本題考查了垂徑定理,等腰三角形的性質,勾股定理的應用,熟練掌握性質定理是解題的關鍵.6、【分析】①如圖1所示,由題意知,EF為△ABC的中位線,∠EFC=∠ABC=45°,∠PAO=45°,∠PAO=∠OFH,∠POA=∠FOH,∠H=∠APO,在Rt△APC中,EA=EC,有PE=EA=EC,∠EPA=∠EAP=∠BAH,∠H=∠BAH,BH=BA,∠ADP=∠BDC=45°,∠ADB=90°,知BD⊥AH,∠DBA=∠DBC=22.5°,∠ADB=∠ACB=90°,有A,D,C,B四點共圓,∠DAC=∠DBC=22.5°,∠DCA=∠ABD=22.5°,∠DAC=∠DCA=22.5°,知DA=DC,設AD=a,則DC=AD=a,PD=a=AP,tan∠CAP==計算求解即可;②如圖2所示,當點P在線段CD上時,同理可證:DA=DC,設AD=a,則CD=AD=a,PD=,PC=a﹣a,tan∠CAP=,計算求解即可,而情形2滿足要求.【詳解】解:①如圖1,當點D在線段PC上時,延長AD交BC的延長線于H.∵CE=EA,CF=FB,∴EF∥AB,∴∠EFC=∠ABC=45°,∵∠PAO=45°,∴∠PAO=∠OFH,∵∠POA=∠FOH,∴∠H=∠APO,∵∠APC=90°,EA=EC,∴PE=EA=EC,∴∠EPA=∠EAP=∠BAH,∴∠H=∠BAH,∴BH=BA,∵∠ADP=∠BDC=45°,∴∠ADB=90°,∴BD⊥AH,∴∠DBA=∠DBC=22.5°,∵∠ADB=∠ACB=90°,∴A,D,C,B四點共圓,∠DAC=∠DBC=22.5°,∠DCA=∠ABD=22.5°,∴∠DAC=∠DCA=22.5°,∴DA=DC,設AD=a,則DC=AD=a,PD=a=AP,∴tan∠CAP===+1;②如圖2中,當點P在線段CD上時,同理可證:DA=DC,設AD=a,則CD=AD=a,PD=∴PC=a﹣a,∴tan∠CAP===,∵點P在線段EF上,∴情形1不滿足條件,情形2滿足條件;故答案為:﹣1.【點睛】本題考查了中位線,等腰三角形的判定與性質,旋轉,直角三角形斜邊上中線的性質,正切函數等知識點.解題的關鍵在于表示出正切中線段的長度.7、30【分析】設袋中紅球有x個,根據題意用紅球數除以白球和紅球的總數等于紅球的頻率列出方程即可求出紅球數.【詳解】解:設袋中紅球有x個,根據題意,得:,解并檢驗得:x=30.所以袋中紅球有30個.故答案為:30.【點睛】本題考查了利用頻率估計概率,解決本題的關鍵是用頻率的集中趨勢來估計概率,這個固定的近似值三、解答題1、(1)見詳解;(2)【分析】(1)由題意及垂徑定理可知AC垂直平分BD,進而問題可求解;(2)由題意易得,然后由(1)可知△ABD是等邊三角形,進而問題可求解.【詳解】(1)證明:∵AC是直徑,點C是劣弧BD的中點,∴AC垂直平分BD,∴;(2)解:∵,,∴,∵,∴△ABD是等邊三角形,∵,∴.【點睛】本題主要考查垂徑定理、等邊三角形的性質與判定及圓周角定理,熟練掌握垂徑定理、等邊三角形的性質與判定及圓周角定理是解題的關鍵.2、(1)A(-1,0),B(0,2);(2)點C的坐標(,);(3)①求點F的坐標(1,2);②點P的坐標(,)【分析】(1)令x=0,求得y值,得點B的坐標;令y=0,求得x的值,取較小的一個即求A點的坐標;(2)設C的坐標為(x,-+x+2),根據AC=BC,得到,令t=-+x,解方程即可;(3)①根據題意,得∠BPE=90°,PB=PE即點P在線段BE的垂直平分線上,根據B,E都在拋物線上,則B,E是對稱點,從而確定點P在拋物線的對稱軸上,點F在BE上,且BE∥x軸,點E(3,2),確定BE=3,根據旋轉性質,得EF=BO=2,從而確定點F的坐標;②根據BE=3,∠BPE=90°,PB=PE,確定P到BE的距離,即可寫出點P的坐標.【詳解】(1)令x=0,得y=2,∴點B的坐標為B(0,2);令y=0,得-+x+2=0,解得∵點A在x軸的負半軸;∴A點的坐標(-1,0);(2)設C的坐標為(x,-+x+2),∵AC=BC,A(-1,0),B(0,2),∴,∵A(-1,0),B(0,2),∴,即,設t=-+x,∴,∴,∴,∴,整理,得,解得∵點C在y軸右側的拋物線上,∴,此時y=,∴點C的坐標(,);(3)①如圖,根據題意,得∠BPE=90°,PB=PE即點P在線段BE的垂直平分線上,∵B,E都在拋物線上,∴B,E是對稱點,∴點P在拋物線的對稱軸上,點F在BE上,且BE∥x軸,∵拋物線的對稱軸為直線x=,B(0,2),∴點E(3,2),BE=3,∵EF=BO=2,∴BF=1,∴點F的坐標為(1,2);②如圖,設拋物線的對稱軸與BE交于點M,交x軸與點N,∵BE=3,∴BM=,∵∠BPE=90°,PB=PE,∴PM=BM=,∴PM=BM=,∴PN=2-=,∴點P的坐標為(,).【點睛】本題考查了拋物線與坐標軸的交點,旋轉的性質,兩點間的距離公式,一元二次方程的解法,換元法解方程,熟練掌握拋物線的對稱性,靈活理解旋轉的意義,熟練解一元二次方程是解題的關鍵.3、(1)30°,70°,40°;(2)∠AOC-∠BOE=40°,理由見解析;(3)t的取值為5或20或62【分析】(1)先根據已知求出∠DOC、∠BOC,再求出當t=4時的旋轉角的度數,再利用角的和與差求解即可;(2)設旋轉角為x,用x表示∠AOC和∠BOE,即可得出結論;(3)分①OA為∠DOC的平分線;②OC為∠DOA的平分線;③OD為∠COA的平分線三種情況,利用角平分線定義和旋轉性質求出旋轉角即可.(1)解:∵∠EOC=130°,∠AOB=∠BOE=90°,∴∠DOC=180°-130°=50°,∠BOC=130°-90°=40°,當t=4時,旋轉角4×5°=20°,∴∠AOC=∠DOC-∠DOA=50°-20°=30°,∠BOE=90°-20°=70°,∠BOE-∠AOC=70°-30°=40°,故答案為:30°,70°,40°;(2)解:∠AOC-∠BOE=40°,理由為:設旋轉角為x,當三角板旋轉至邊AB與射線OE相交時,∠AOC=x-50°,∠BOE=x-90°,∴∠AOC-∠BOE=(x-50°)-(x-90°)=40°;(3)解:存在,①當OA為∠DOC的平分線時,旋轉角5t=∠DOC=25,∴t=5;②當OC為∠DOA的平分線時,旋轉角5t=2∠DOC=100,∴t=20;③當OD為∠COA的平分線時,360-5t=∠DOC=50,∴t=62,綜上,滿足條件的t的取值為5或20或62.【點睛】本題考查角平分線的定義、旋轉的性質、角的運算,熟練掌握旋轉性質,利用分類討論思想求解是解答的關鍵.4、(1)見解析;(2)CD=,EF=1.【分析】(1)連接OC,根據圓的性質,得到OB=OC;根據等腰三角形的性質,得到;根據平行線的性質,得到;在同圓和等圓中,根據相等的圓心解所對的弧等即得證.(2)根據直徑所對的圓周角是直角求出∠ACB=90°,根據平行線的性質求得∠AEO=∠ACB=90°,利用勾股定理求出AC=8,根據垂徑定理求得EC=AE=4,根據中位線定理求出OE,在Rt△CDE中,根據勾股定理求出CD,因為,所以△EDF∽△BCF,最后根據似的性質,列方程求解即可.【詳解】(1)解:連結OC.∵∴∠1=∠B∠2=∠C∵OB=OC∴∠B=∠C∴∠1=∠2∴弧AD=弧CD(2)∵AB是的直徑∴∠ACB=90°∵∴∠AEO=∠ACB=90°Rt△ABC中,∠ACB=90°,∵BC=6,AB=10∴AC=8∵半徑OD⊥AC于E∴EC=AE=4OE=∴ED=2由勾股定理得,CD=∵∴△EDF∽△CBF∴設EF=x,則FC=4-x∴EF=1,經檢驗符合題意.【點睛】本題考查了圓的綜合題,圓的有關性質:圓的半徑相等;同圓或等圓中,相等的圓心角所對的弧等;直徑所對的圓周角是直角;垂徑定理;平行線的性質,勾股定理,三角形中位線定理,三角形相似的判定和性質等知識,正確理解圓的相關性質是解題的關鍵.5、(1)5(2)證明見解析(3)【分析】(1)過C作CM⊥AB于M,根據等腰三角形的性質求出CM和DM,

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經權益所有人同意不得將文件中的內容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
  • 6. 下載文件中如有侵權或不適當內容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論