重難點解析湖北省老河口市中考數(shù)學(xué)真題分類(勾股定理)匯編單元測評試卷(含答案詳解)_第1頁
重難點解析湖北省老河口市中考數(shù)學(xué)真題分類(勾股定理)匯編單元測評試卷(含答案詳解)_第2頁
重難點解析湖北省老河口市中考數(shù)學(xué)真題分類(勾股定理)匯編單元測評試卷(含答案詳解)_第3頁
重難點解析湖北省老河口市中考數(shù)學(xué)真題分類(勾股定理)匯編單元測評試卷(含答案詳解)_第4頁
重難點解析湖北省老河口市中考數(shù)學(xué)真題分類(勾股定理)匯編單元測評試卷(含答案詳解)_第5頁
已閱讀5頁,還剩27頁未讀, 繼續(xù)免費(fèi)閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報或認(rèn)領(lǐng)

文檔簡介

湖北省老河口市中考數(shù)學(xué)真題分類(勾股定理)匯編單元測評考試時間:90分鐘;命題人:教研組考生注意:1、本卷分第I卷(選擇題)和第Ⅱ卷(非選擇題)兩部分,滿分100分,考試時間90分鐘2、答卷前,考生務(wù)必用0.5毫米黑色簽字筆將自己的姓名、班級填寫在試卷規(guī)定位置上3、答案必須寫在試卷各個題目指定區(qū)域內(nèi)相應(yīng)的位置,如需改動,先劃掉原來的答案,然后再寫上新的答案;不準(zhǔn)使用涂改液、膠帶紙、修正帶,不按以上要求作答的答案無效。第I卷(選擇題14分)一、單選題(7小題,每小題2分,共計14分)1、如圖,在矩形ABCD中,AB=4,BC=6,點E為BC的中點,將△ABE沿AE折疊,使點B落在矩形內(nèi)的點F處,連接CF,則CF的長為()A. B. C. D.2、如圖,在中,,兩直角邊,,現(xiàn)將AC沿AD折疊,使點C落在斜邊AB上的點E處,則CD長為(

)A. B. C. D.3、如圖,在中,,,,為邊上一動點,于,于,為中點,則的最小值為(

).A. B. C. D.4、如圖,有一塊直角三角形紙片,∠C=90°,AC=8,BC=6,將斜邊AB翻折,使點B落在直角邊AC的延長線上的點E處,折痕為AD,則BD的長為(

)A.2 B. C. D.45、如圖所示,圓柱的高AB=3,底面直徑BC=3,現(xiàn)在有一只螞蟻想要從A處沿圓柱表面爬到對角C處捕食,則它爬行的最短距離是()A. B. C. D.6、如圖,長方體的底面邊長分別為2cm和3cm,高為6cm.如果用一根細(xì)線從點A開始經(jīng)過4個側(cè)面纏繞一圈達(dá)到點B,那么所用細(xì)線最短需要(

)A.11cm B.2cm C.(8+2)cm D.(7+3)cm7、如圖,矩形中,的平分線交于點E,,垂足為F,連接.下列結(jié)論:①;②;③;④;⑤若,則.其中正確的結(jié)論有(

)A.2個 B.3個 C.4個 D.5個第Ⅱ卷(非選擇題86分)二、填空題(8小題,每小題2分,共計16分)1、如圖,在中,,于點D.E為線段BD上一點,連結(jié)CE,將邊BC沿CE折疊,使點B的對稱點落在CD的延長線上.若,,則的面積為__________.2、如圖,一架長5米的梯子A1B1斜靠在墻A1C上,B1到墻底端C的距離為3米,此時梯子的高度達(dá)不到工作要求,因此把梯子的B1端向墻的方向移動了1.6米到B處,此時梯子的高度達(dá)到工作要求,那么梯子的A1端向上移動了_____米.3、如圖,已知四邊形中,,則四邊形的面積等于________.4、如圖所示,在△ABC中,∠B=90°,AB=3,AC=5,將△ABC折疊,使點C與點A重合,折痕為DE,則△ABE的周長為.5、如圖,在矩形中,,垂足為點.若,,則的長為______.6、如圖,在正方形網(wǎng)格中,點A,B,C,D,E是格點,則∠ABD+∠CBE的度數(shù)為_____________.

7、在△ABC中,∠C=90°,AB=10,AC=8,則BC的長為_____.8、在Rt△ABC中,∠C=90°,AC=9,AB=15,則點C到AB的距離是_______.三、解答題(7小題,每小題10分,共計70分)1、在△ABC中,AB=15,BC=14,AC=13,求△ABC的面積.某學(xué)習(xí)小組經(jīng)過合作交流,給出了下面的解題思路,請你按照他們的解題思路完成解答過程.2、如圖,將一個長方形紙片ABCD沿對角線AC折疊,點B落在點E處,AE交DC于點F,已知AB=4,BC=2,求折疊后重合部分的面積.3、如圖,某港口位于東西方向的海岸線上.“遠(yuǎn)航”號、“海天”號輪船同時離開港口,各自沿一固定方向航行,“遠(yuǎn)航”號每小時航行16海里,“海天”號每小時航行12海里.它們離開港口一個半小時后分別位于點Q,R處,且相距30海里.如果知道“遠(yuǎn)航”號沿東北方向航行,能知道“海天”號沿哪個方向航行嗎?4、閱讀下面材料:小明遇到這樣一個問題:∠MBN=30°,點A為射線BM上一點,且AB=4,點C為射線BN上動點,連接AC,以AC為邊在AC右側(cè)作等邊三角形ACD,連接BD.當(dāng)AC⊥BN時,求BD的長.小明發(fā)現(xiàn):以AB為邊在左側(cè)作等邊三角形ABE,連接CE,能得到一對全等的三角形,再利用∠EBC=90°,從而將問題解決(如圖1).請回答:(1)在圖1中,小明得到的全等三角形是△≌△;BD的長為.(2)動點C在射線BN上運(yùn)動,當(dāng)運(yùn)動到AC時,求BD的長;(3)動點C在射線BN上運(yùn)動,求△ABD周長最小值.5、有一只喜鵲在一棵3m高的小樹上覓食,它的巢筑在距離該樹24m的一棵大樹上,大樹高14m,且巢離樹頂部1m.當(dāng)它聽到巢中幼鳥的叫聲,立即趕過去,如果它飛行的速度為5m/s,那它至少需要多少時間才能趕回巢中?6、臺風(fēng)是一種自然災(zāi)害,它以臺風(fēng)中心為圓心在周圍上千米的范圍內(nèi)形成極端氣候,有極強(qiáng)的破壞力,有一臺風(fēng)中心沿東西方向AB由點A行駛向點B,已知點C為一海港,且點C與直線AB上兩點A、B的距離分別為300km和400km,又AB=500km,以臺風(fēng)中心為圓心周圍250km以內(nèi)為受影響區(qū)域.(1)海港C會受臺風(fēng)影響嗎?為什么?(2)若臺風(fēng)的速度為20km/h,臺風(fēng)影響該海港持續(xù)的時間有多長?7、有一只喜鵲在一棵高3米的小樹的樹梢上覓食,它的巢筑在距離該樹24米,高為14米的一棵大樹上,且巢離大樹頂部為1米,這時,它聽到巢中幼鳥求助的叫聲,立刻趕過去,如果它的飛行速度為每秒5米,那么它至少幾秒能趕回巢中?-參考答案-一、單選題1、C【解析】【分析】連接BF,(見詳解圖),由翻折變換可知,BF⊥AE,BE=EF,由點E是BC的中點,可知BE=3,根據(jù)勾股定理即可求得AE;根據(jù)三角形的面積公式可求得BH,進(jìn)而可得到BF的長度;結(jié)合題意可知FE=BE=EC,進(jìn)而可得∠BFC=90°,至此,在Rt△BFC中,利用勾股定理求出CF的長度即可【詳解】如圖,連接BF.∵△AEF是由△ABE沿AE折疊得到的,∴BF⊥AE,BE=EF.∵BC=6,點E為BC的中點,∴BE=EC=EF=3根據(jù)勾股定理有AE=AB+BE代入數(shù)據(jù)求得AE=5根據(jù)三角形的面積公式得BH=即可得BF=由FE=BE=EC,可得∠BFC=90°再由勾股定理有BC-BF=CF代入數(shù)據(jù)求得CF=故答案為:【考點】此題考查矩形的性質(zhì)和折疊問題,解題關(guān)鍵在于利用好折疊的性質(zhì),對應(yīng)點的連線被折痕垂直平分.2、A【解析】【分析】先根據(jù)勾股定理求得AB的長,再根據(jù)折疊的性質(zhì)求得AE,BE的長,從而利用勾股定理可求得CD的長.【詳解】解:∵AC=6cm,BC=8cm,∠C=90°,∴AB=(cm),由折疊的性質(zhì)得:AE=AC=6cm,∠AED=∠C=90°,∴BE=10cm?6cm=4cm,∠BED=90°,設(shè)CD=x,則BD=BC?CD=8?x,在Rt△DEB中,BE2+DE2=BD2,即42+x2=(8?x)2,解得:x=3,∴CD=3cm,故選:A.【考點】本題考查了折疊的性質(zhì),勾股定理等知識;熟記折疊性質(zhì)并表示出Rt△DEB的三邊,然后利用勾股定理列出方程是解題的關(guān)鍵.3、D【解析】【分析】先根據(jù)矩形的判定得出AEPF是矩形,再根據(jù)矩形的性質(zhì)得出EF,AP互相平分,且EF=AP,再根據(jù)垂線段最短的性質(zhì)就可以得出AP⊥BC時,AP的值最小,即AM的值最小,根據(jù)面積關(guān)系建立等式求出其解即可.【詳解】解:如圖,連接AP,∵AB=3,AC=4,BC=5,∴∠EAF=90°,∵PE⊥AB于E,PF⊥AC于F,∴四邊形AEPF是矩形,∴EF,AP互相平分.且EF=AP,∴EF,AP的交點就是M點.∵當(dāng)AP的值最小時,AM的值就最小,∴當(dāng)AP⊥BC時,AP的值最小,即AM的值最?。逜P?BC=AB?AC,∴AP?BC=AB?AC,∵AB=3,AC=4,BC=5,∴5AP=3×4,∴AP=,∴AM=.故選:D.【考點】本題考查了矩形的性質(zhì)的運(yùn)用,勾股定理的運(yùn)用,三角形的面積公式的運(yùn)用,垂線段最短的性質(zhì)的運(yùn)用,解題的關(guān)鍵是求出AP的最小值.4、B【解析】【分析】根據(jù)勾股定理求出AB的長,利用翻折得到AE=AB=10,DE=BD,求出CE,由勾股定理得到,列得,求出BD.【詳解】解:∵∠C=90°,AC=8,BC=6,∴,由翻折得AE=AB=10,DE=BD,∴CE=AE-AC=10-8=2,在Rt△CED中,,∴,解得BD=,故選:B.【考點】此題考查了勾股定理的應(yīng)用,翻折的性質(zhì),熟記勾股定理的計算公式是解題的關(guān)鍵.5、C【解析】【分析】要求最短路徑,首先要把圓柱的側(cè)面展開,利用兩點之間線段最短,然后利用勾股定理即可求解.【詳解】解:把圓柱側(cè)面展開,展開圖如圖所示,點A、C之間的最短距離為線段AC的長.在Rt△ADC中,∠ADC=90°,CD=AB=3,AD為底面半圓弧長,AD=π,∴AC=,故選C.【考點】本題考查了平面展開-最短路徑問題,解題的關(guān)鍵是會將圓柱的側(cè)面展開,并利用勾股定理解答.6、B【解析】【詳解】要求所用細(xì)線的最短距離,需將長方體的側(cè)面展開,進(jìn)而根據(jù)“兩點之間線段最短”得出結(jié)果.解:將長方體展開,連接AB′,則AB′最短.∵AA′=3+2+3+2=10cm,A′B′=6cm,∴AB′=cm.故選B..7、D【解析】【分析】根據(jù)AE平分∠DAE,可得,從而得到AB=BE,進(jìn)而得到,可得①正確;然后證明△ABE≌△AFD,可得AB=BE=AF=FD,從而得到∠AED=∠CED,故②正確;再證得△DEF≌△DEC,可得③正確;再根據(jù)△ABF≌△DCF,可得BF=CF,故④正確;過點F作FG⊥BC于點G,可得,從而得到,進(jìn)而得到,可得⑤正確;即可求解.【詳解】解:在矩形中,∠BAD=∠ADC=∠ABC=90°,AD=BC,AD∥BC,∵AE平分∠DAE,∴,∵AD∥BC,∴∠DAE=∠AEB=45°,∴∠AEB=∠BAE=45°,∴AB=BE,∴,∵,∴AE=AD,故①正確;在△ABE和△AFD中,∵∠BAE=∠DAE,∠ABE=∠AFD,AE=AD,∴△ABE≌△AFD(AAS),∴BE=DF,∴AB=BE=AF=FD,∴,∴∠AED=∠CED,故②正確;∵∠DAE=45°,DF⊥AE,∴∠ADF=45°,∴∠CDF=45°,∠EDF=∠ADE-∠ADF=22.5°,∴∠CDE=∠FDE=22.5°,∵∠AEB=45°,∠AED=67.5°,∴∠CED=67.5°,∴∠AED=∠CED,∵DE=DE,∴△DEF≌△DEC,∴DF=CD,∴DE⊥CF,故③正確;∵AB=CD,∠BAE=∠CDF=45°,AF=DF,∴△ABF≌△DCF,∴BF=CF,故④正確;如圖,過點F作FG⊥BC于點G,∴FG∥AB,∴∠EFG=∠BAE=45°,∴∠EFG=∠FEG,∴FG=GE,∵△DEF≌△DEC,∴CE=EF,∴,∴,∵BF=CF,∴BG=CG,∴,∵AB=1,,∴,,解得:,∴.故⑤正確;∴正確的有5個.故選:D【考點】本題主要考查了矩形的性質(zhì),全等三角形的判定和性質(zhì),等腰直角三角形的判定和性質(zhì),勾股定理等知識,熟練掌握相關(guān)知識點是解題的關(guān)鍵.二、填空題1、【解析】【分析】在△ABC中由等面積求出,進(jìn)而得到,設(shè)BE=x,進(jìn)而DE=DB-BE=,最后在中使用勾股定理求出x即可求解.【詳解】解:在中由勾股定理可知:,∵,∴,∴,在中由勾股定理可知:,∴,設(shè)BE=x,由折疊可知:BE=B’E,且DE=DB-BE=,在中由勾股定理可知:,代入數(shù)據(jù):∴,解得,∴,∴,故答案為:.【考點】本題考查了勾股定理求線段長、折疊的性質(zhì)等,解題的關(guān)鍵是掌握折疊的性質(zhì),熟練使用勾股定理求線段長.2、0.8【解析】【分析】梯子的長是不變的,只要利用勾股定理解出梯子滑動前和滑動后的所構(gòu)成的兩直角三角形,分別得出AO,A1O的長即可.【詳解】解:在Rt△ABO中,根據(jù)勾股定理知,A1O==4(m),在Rt△ABO中,由題意可得:BO=1.4(m),根據(jù)勾股定理知,AO==4.8(m),所以AA1=AO-A1O=0.8(米).故答案為0.8.【考點】本題考查勾股定理的應(yīng)用,解題關(guān)鍵是從題中抽象出勾股定理這一數(shù)學(xué)模型,畫出準(zhǔn)確的示意圖.領(lǐng)會數(shù)形結(jié)合的思想的應(yīng)用.3、36【解析】【分析】連接AC,先根據(jù)勾股定理求出AC的長度,再根據(jù)勾股定理的逆定理判斷出△ACD的形狀,最后利用三角形的面積公式求解即可.【詳解】連接AC,如下圖所示:∵∠ABC=90°,AB=3,BC=4,∴AC=,在△ACD中,AC2+AD2=25+144=169=CD2,∴△ACD是直角三角形,∴S四邊形ABCD=AB?BC+AC?AD=×3×4+×5×12=36.【考點】本題考查了勾股定理及勾股定理的逆定理,正確作出輔助線是解題的關(guān)鍵.4、7【解析】【分析】根據(jù)勾股定理求得BC,再根據(jù)折疊性質(zhì)得到AE=CE,進(jìn)而由三角形的周長=AB+BC求解即可.【詳解】∵在△ABC中,∠B=90°,AB=3,AC=5,∴BC=.∵△ADE是△CDE翻折而成,∴AE=CE,∴AE+BE=BC=4,∴△ABE的周長=AB+BC=3+4=7.故答案是:7.【考點】本題考查勾股定理、折疊性質(zhì),熟練掌握勾股定理是解答的關(guān)鍵.5、3【解析】【分析】在中,由正弦定義解得,再由勾股定理解得DE的長,根據(jù)同角的余角相等,得到,最后根據(jù)正弦定義解得CD的長即可解題.【詳解】解:在中,在矩形中,故答案為:3.【考點】本題考查矩形的性質(zhì)、正弦、勾股定理等知識,是重要考點,難度較易,掌握相關(guān)知識是解題關(guān)鍵.6、45°【解析】【分析】取網(wǎng)格點M、N、F,連接AM、AN、BM、MF、BN,根據(jù)網(wǎng)格線可得到∠ABD+∠CBE=∠MAB,再根據(jù)勾股定理的逆定理證明△ABM是直角三角形,且AM=BM,即可得解.【詳解】取網(wǎng)格點M、N、F,連接AM、AN、BM、MF、BN,如圖,根據(jù)網(wǎng)格線可知NB=1=MF,AN=3,AF=2,由網(wǎng)格圖可知∠CBE=∠FAM,∠ABD=∠NAB,則∠ABD+∠CBE=∠MAB,在Rt△ANB中,有,同理可求得:,∵,∴△ABM是直角三角形,且AM=BM,∴∠MAB=45°,即:∠ABD+∠CBE=45°,故答案為:45°.【考點】本題考查了勾股定理即勾股定理的逆定理、等腰直角三角形等知識,求得∠ABD+∠CBE=∠MAB是解答本題的關(guān)鍵.7、6【解析】【分析】根據(jù)勾股定理求解即可.【詳解】∵Rt△ABC中,∠C=90°,AB=10,AC=8,∴BC===6故答案為:6.【考點】本題考查勾股定理,熟知在任何一個直角三角形中,兩條直角邊長的平方之和一定等于斜邊長的平方是解答此題的關(guān)鍵.8、【解析】【分析】首先根據(jù)勾股定理求出直角邊BC的長,再根據(jù)三角形的面積為定值即可求出則點C到AB的距離【詳解】在Rt△ABC中,∠C=90°,則有AC2+BC2=AB2∵AC=9,BC=12,∴AB=在Rt△ABC中,∠C=90°,則有AC2+BC2=AB2,∵AC=9,AB=15,∴BC==12,∵S△ABC=AC?BC=AB?h,∴h==故答案為【考點】本題考查了勾股定理,熟知在任何一個直角三角形中,兩條直角邊長的平方之和一定等于斜邊長的平方是解題的關(guān)鍵三、解答題1、84.【解析】【詳解】解:作AD⊥BC于D,如圖所示:設(shè)BD=x,則.

在Rt△ABD中,由勾股定理得:,在Rt△ACD中,由勾股定理得:,∴,

解之得:.

∴.

∴.2、【解析】【分析】先由折疊可知EC=BC=2,進(jìn)而可知AD=CE,通過全等三角形的角角邊判定定理可證明△ADF≌△CEF,由全等可知FE=DF,設(shè)FC為x,則FE=DF=4-x,根據(jù)直角三角形的勾股定理可列方程,從而計算出CF的長度,通過CF與AD的長度可計算出重合部分面積.【詳解】解:∵△AEC是由△ABC沿AC折疊后得到的,∴EC=BC=2,且∠E=∠B=90°,在△ADF與△CEF中,,∴△ADF≌△CEF(AAS),設(shè)FC=x,則FE=DF=4-x,在Rt△CEF中,由勾股定理可知:,∴,解得,∴,故折疊后重合部分的面積為.【考點】本題考查圖形折疊的相關(guān)性質(zhì),以及直角三角形的勾股定理的應(yīng)用,以及全等三角形的判定,找到合適的條件,選擇適合的判定方法去證明全等三角形,利用勾股定理和方程思想列方程是解決本題的關(guān)鍵.3、北偏西45°(或西北)【解析】【分析】直接得出RP=18海里,PQ=24海里,QR=30海里,利用勾股定理逆定理以及方向角即可得到“海

天”號航行方向.【詳解】解:由題意可得:RP=18海里,PQ=24海里,QR=30海里,∵182+242=302,∴△RPQ是直角三角形,∴∠RPQ=90°,∵“遠(yuǎn)航”號沿東北方向航行,即沿北偏東45°方向航行,∴∠RPS=45°,∴“海天”號沿北偏西45°(或西北)方向航行.【考點】本題考查了勾股定理的應(yīng)用,解題的重點主要是能夠根據(jù)勾股定理的逆定理發(fā)現(xiàn)直角三角形,關(guān)鍵是從實際問題中抽象出直角三角形,難度不大.4、(1)ABD,ACE,;(2)BD的長為;(3)+4.【解析】【分析】(1)根據(jù)SAS可證△ABD≌△ACE,得出BD=CE,利用勾股定理求出CE即可得出BD的長度;(2)作AH⊥BC于點H,以AB為邊在左側(cè)作等邊△ABE,連接CE,求出BH,HC即BC的長度,再利用勾股定理即可求出CE的長度,由(1)知BD=CE,據(jù)此得解;(3)作AH⊥BC于點H,以AB為邊在左側(cè)作等邊△ABE,延長EB至F,使BF=EB,連接AF交BN于C',連接EC',此時BD+AC'有最小值即為AF,此時△ABD周長=AF+AB最小,求出AF即可.(1)解:∵△ACD和△ABE是等邊三角形,∴∠EAB=∠DAC=60°,AD=AC,∴∠EAB+∠BAC=∠DAC+∠BAC,即∠EAC=∠BAD,在△ABD和△AEC中,,∴△ABD≌△ACE(SAS),∴BD=CE,∵AB=4,∠MBN=30°,∴AC=2,∴BC=,∴BD=CE=,故答案為:ABD,ACE,;(2)解:如下圖,作AH⊥BC于點H,以AB為邊在左側(cè)作等邊△ABE,連接CE,∵AB=4,∠MAN=30°,∴AH=2,BH=,∵AC=,∴HC=,∴BC=BH+HC=+=,∴CE=,由(1)可知BD=CE,∴此時BD的長為;(3)解:如圖,以AB為邊在左側(cè)作等邊△ABE,延長EB至F,使BF=EB,連接AF交BN于C',連接EC',∵EC'=FC'=BD,∴此時BD+AC'有最

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論