中考數(shù)學總復習《 圓》高分題庫【達標題】附答案詳解_第1頁
中考數(shù)學總復習《 圓》高分題庫【達標題】附答案詳解_第2頁
中考數(shù)學總復習《 圓》高分題庫【達標題】附答案詳解_第3頁
中考數(shù)學總復習《 圓》高分題庫【達標題】附答案詳解_第4頁
中考數(shù)學總復習《 圓》高分題庫【達標題】附答案詳解_第5頁
已閱讀5頁,還剩17頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領

文檔簡介

中考數(shù)學總復習《圓》高分題庫考試時間:90分鐘;命題人:教研組考生注意:1、本卷分第I卷(選擇題)和第Ⅱ卷(非選擇題)兩部分,滿分100分,考試時間90分鐘2、答卷前,考生務必用0.5毫米黑色簽字筆將自己的姓名、班級填寫在試卷規(guī)定位置上3、答案必須寫在試卷各個題目指定區(qū)域內(nèi)相應的位置,如需改動,先劃掉原來的答案,然后再寫上新的答案;不準使用涂改液、膠帶紙、修正帶,不按以上要求作答的答案無效。第I卷(選擇題20分)一、單選題(5小題,每小題4分,共計20分)1、下列多邊形中,內(nèi)角和最大的是(

)A. B. C. D.2、下列語句,錯誤的是()A.直徑是弦 B.相等的圓心角所對的弧相等C.弦的垂直平分線一定經(jīng)過圓心 D.平分弧的半徑垂直于弧所對的弦3、如圖1,一個扇形紙片的圓心角為90°,半徑為6.如圖2,將這張扇形紙片折疊,使點A與點O恰好重合,折痕為CD,圖中陰影為重合部分,則陰影部分的面積為()A.6π﹣ B.6π﹣9 C.12π﹣ D.4、如圖,、為⊙O的切線,切點分別為A、B,交于點C,的延長線交⊙O于點D.下列結(jié)論不一定成立的是(

)A.為等腰三角形 B.與相互垂直平分C.點A、B都在以為直徑的圓上 D.為的邊上的中線5、如圖,一段公路的轉(zhuǎn)彎處是一段圓弧,則的展直長度為()A.3π B.6π C.9π D.12π第Ⅱ卷(非選擇題80分)二、填空題(5小題,每小題6分,共計30分)1、圓錐的底面半徑為3,側(cè)面積為,則這個圓錐的母線長為________.2、如圖,在平面直角坐標系中,點A(0,1)、B(0,﹣1),以點A為圓心,AB為半徑作圓,交x軸于點C、D,則CD的長是____.3、如圖,AB是⊙O的直徑,C是⊙O上的點,過點C作⊙O的切線交AB的延長線于點D.若∠A=32°,則∠D=_____度.4、如圖,AB為△ADC的外接圓⊙O的直徑,若∠BAD=50°,則∠ACD=_____°.5、如圖,⊙O是△ABC的外接圓,∠A=60°,BC=6,則⊙O的半徑是_____.三、解答題(5小題,每小題10分,共計50分)1、在平面直角坐標系中,平行四邊形的頂點A,D的坐標分別是,其中.(1)若點B在x軸的上方,①,求的長;②,且.證明:四邊形是菱形;(2)拋物線經(jīng)過點B,C.對于任意的,當a,m的值變化時,拋物線會不同,記其中任意兩條拋物線的頂點為(與不重合),則命題“對所有的a,b,當時,一定不存在的情形.”是否正確?請說明理由.2、如圖,半徑為6的⊙O與Rt△ABC的邊AB相切于點A,交邊BC于點C,D,∠B=90°,連接OD,AD.(1)若∠ACB=20°,求的長(結(jié)果保留).(2)求證:AD平分∠BDO.3、如圖,直線l:y=2x+1與拋物線C:y=2x2+bx+c相交于點A(0,m),B(n,7).(1)填空:m=,n=,拋物線的解析式為.(2)將直線l向下移a(a>0)個單位長度后,直線l與拋物線C仍有公共點,求a的取值范圍.(3)Q是拋物線上的一個動點,是否存在以AQ為直徑的圓與x軸相切于點P?若存在,請求出點P的坐標;若不存在,請說明理由.4、如圖,在⊙O中,,∠ACB=60°,求證∠AOB=∠BOC=∠COA.5、如圖,四邊形ABCD內(nèi)接于⊙O,AB為⊙O的直徑,過點C作CE⊥AD交AD的延長線于點E,延長EC,AB交于點F,∠ECD=∠BCF.(1)求證:CE為⊙O的切線;(2)若DE=1,CD=3,求⊙O的半徑.-參考答案-一、單選題1、D【解析】【分析】根據(jù)多邊形內(nèi)角和公式可直接進行排除選項.【詳解】解:A、是一個三角形,其內(nèi)角和為180°;B、是一個四邊形,其內(nèi)角和為360°;C、是一個五邊形,其內(nèi)角和為540°;D、是一個六邊形,其內(nèi)角和為720°;∴內(nèi)角和最大的是六邊形;故選D.【考點】本題主要考查多邊形內(nèi)角和,熟練掌握多邊形內(nèi)角和公式是解題的關鍵.2、B【解析】【分析】將每一句話進行分析和處理即可得出本題答案.【詳解】A.直徑是弦,正確.B.∵在同圓或等圓中,相等的圓心角所對的弧相等,∴相等的圓心角所對的弧相等,錯誤.C.弦的垂直平分線一定經(jīng)過圓心,正確.D.平分弧的半徑垂直于弧所對的弦,正確.故答案選:B.【考點】本題考查了圓中弦、圓心角、弧度之間的關系,熟練掌握該知識點是本題解題的關鍵.3、A【解析】【分析】連接OD,如圖,利用折疊性質(zhì)得由弧AD、線段AC和CD所圍成的圖形的面積等于陰影部分的面積,AC=OC,則OD=2OC=6,CD=3,從而得到∠CDO=30°,∠COD=60°,然后根據(jù)扇形面積公式,利用由弧AD、線段AC和CD所圍成的圖形的面積=S扇形AOD-S△COD,進行計算即可.【詳解】解:連接OD,如圖,∵扇形紙片折疊,使點A與點O恰好重合,折痕為CD,∴AC=OC,∴OD=2OC=6,∴CD=,∴∠CDO=30°,∠COD=60°,∴由弧AD、線段AC和CD所圍成的圖形的面積=S扇形AOD﹣S△COD=﹣=6π﹣,∴陰影部分的面積為6π﹣.故選A.【考點】本題考查了扇形面積的計算:陰影面積的主要思路是將不規(guī)則圖形面積轉(zhuǎn)化為規(guī)則圖形的面積.記住扇形面積的計算公式.也考查了折疊性質(zhì).4、B【解析】【分析】連接OB,OC,令M為OP中點,連接MA,MB,證明Rt△OPB≌Rt△OPA,可得BP=AP,∠OPB=∠OPA,∠BOC=∠AOC,可推出為等腰三角形,可判斷A;根據(jù)△OBP與△OAP為直角三角形,OP為斜邊,可得PM=OM=BM=AM,可判斷C;證明△OBC≌△OAC,可得PC⊥AB,根據(jù)△BPA為等腰三角形,可判斷D;無法證明與相互垂直平分,即可得出答案.【詳解】解:連接OB,OC,令M為OP中點,連接MA,MB,∵B,C為切點,∴∠OBP=∠OAP=90°,∵OA=OB,OP=OP,∴Rt△OPB≌Rt△OPA,∴BP=AP,∠OPB=∠OPA,∠BOC=∠AOC,∴為等腰三角形,故A正確;∵△OBP與△OAP為直角三角形,OP為斜邊,∴PM=OM=BM=AM∴點A、B都在以為直徑的圓上,故C正確;∵∠BOC=∠AOC,OB=OA,OC=OC,∴△OBC≌△OAC,∴∠OCB=∠OCA=90°,∴PC⊥AB,∵△BPA為等腰三角形,∴為的邊上的中線,故D正確;無法證明與相互垂直平分,故選:B.【考點】本題考查了全等三角形的判定與性質(zhì),等腰三角形的判定與性質(zhì),圓的性質(zhì),掌握知識點靈活運用是解題關鍵.5、B【解析】【詳解】分析:直接利用弧長公式計算得出答案.詳解:的展直長度為:=6π(m).故選B.點睛:此題主要考查了弧長計算,正確掌握弧長公式是解題關鍵.二、填空題1、4【解析】【分析】根據(jù)圓錐的底面半徑可以求出底面周長即為展開后的弧長,側(cè)面積即為展開后扇形的面積,再根據(jù)扇形的面積公式求出扇形的半徑即為圓錐的母線.【詳解】∵底面半徑為3,∴底面周長=2×3π=6π.∴圓錐的母線=.故答案為:4.【考點】本題考查圓錐與扇形的結(jié)合,關鍵在于理解圓錐周長是扇形弧長,圓錐母線是扇形半徑.2、【解析】【分析】根據(jù)題意在中求出,利用垂徑定理得出結(jié)果.【詳解】由題意,在中,,,由垂徑定理知,,故答案為:.【考點】本題考查了勾股定理及垂徑定理,熟練掌握垂徑定理是解決本題的關鍵.3、26【解析】【詳解】分析:連接OC,根據(jù)圓周角定理得到∠COD=2∠A,根據(jù)切線的性質(zhì)計算即可.詳解:連接OC,由圓周角定理得,∠COD=2∠A=64°,∵CD為⊙O的切線,∴OC⊥CD,∴∠D=90°-∠COD=26°,故答案為26.點睛:本題考查的是切線的性質(zhì)、圓周角定理,掌握圓的切線垂直于經(jīng)過切點的半徑是解題的關鍵.4、40【解析】【分析】若要利用∠BAD的度數(shù),需構(gòu)建與其相等的圓周角;連接BD,由圓周角定理可知∠ACD=∠ABD,在Rt△ABD中,求出∠ABD的度數(shù)即可得答案.【詳解】連接BD,如圖,∵AB為△ADC的外接圓⊙O的直徑,∴∠ADB=90°,∴∠ABD=90°﹣∠BAD=90°﹣50°=40°,∴∠ACD=∠ABD=40°,故答案為40.【考點】本題考查了圓周角定理及其推論:同弧所對的圓周角相等;半圓(?。┖椭睆剿鶎Φ膱A周角是直角,正確添加輔助線是解題的關鍵.5、6【解析】【分析】作直徑CD,如圖,連接BD,根據(jù)圓周角定理得到∠CBD=90°,∠D=60°,然后利用含30度的直角三角形三邊的關系求出CD,從而得到⊙O的半徑.【詳解】解:作直徑CD,如圖,連接BD,∵CD為⊙O直徑,∴∠CBD=90°,∵∠D=∠A=60°,∴BD=BC=×6=6,∴CD=2BD=12,∴OC=6,即⊙O的半徑是6.故答案為6.【考點】本題主要考查圓周角的性質(zhì),解決本題的關鍵是要熟練掌握圓周角的性質(zhì).三、解答題1、(1)①4;②(2)命題正確,證明見解析【解析】【分析】(1)①根據(jù)平行四邊形中AD=BC計算即可;②根據(jù)距離公式證明AD=AB即可說明四邊形是菱形;(2)由BC=AD求出B的橫坐標,再在解析式中求出B坐標,即可求出AB的解析式,同時根據(jù)頂點坐標特征求出的解析式,再利用反證法證明即可.(1)①∵平行四邊形∴∵A,D的坐標分別是,其中∴∵∴②∵,∴∵∴∵∴∴∵平行四邊形∴四邊形是菱形(2)命題正確,理由如下:拋物線的對稱軸為∴頂點坐標為∴頂點在定直線上移動即的解析式為,∵拋物線經(jīng)過點B,C.且對稱軸為,∴B點橫坐標為∴B點坐標為:設直線AB的解析式為則假設對所有的a,b,當時,存在的情形,∴對所有的a,b,當時,∴去分母整理得:∵∴,此時∴∵∴互相矛盾,假設不成立∴對所有的a,b,當時,一定不存在的情形.【考點】本題考查平行四邊形的性質(zhì)、菱形的判定、反證法、二次函數(shù)的性質(zhì).解題的關鍵是利用平行四邊形對邊相等找關系,最后一問計算量比較大,需要特別注意.2、(1)(2)見解析【解析】【分析】(1)連接,由,得,由弧長公式即得的長為;(2)根據(jù)切于點,,可得,有,而,即可得,從而平分.(1)解:連接OA,∵∠ACB=20°,∴∠AOD=40°,∴,.(2)證明:,,切于點,,,,,,平分.【考點】本題考查與圓有關的計算及圓的性質(zhì),解題的關鍵是掌握弧長公式及圓的切線的性質(zhì).3、(1)1,3,y=2x2﹣4x+1(2)0<a(3)存在,P(1,0)或P(,0)【解析】【分析】(1)將A(0,m),B(n,7)代入y=2x+1,可求m、n的值,再將A(0,1),B(3,7)代入y=2x2+bx+c,可求函數(shù)解析式;(2)由題意可得y=2x+1-a,聯(lián)立,得到2x2-6x+a=0,再由判別式Δ≥0即可求a是取值范圍;(3)設Q(t,s),則,半徑,再由AQ2=t2+(s-1)2=(s+1)2,即可求t的值.(1)將A(0,m),B(n,7)代入y=2x+1,可得m=1,n=3,∴A(0,1),B(3,7),再將A(0,1),B(3,7)代入y=2x2+bx+c得,,可得,∴y=2x2﹣4x+1,故答案為:1,3,y=2x2﹣4x+1;(2)由題意可得y=2x+1﹣a,聯(lián)立,∴2x2﹣6x+a=0,∵直線l與拋物線C仍有公共點∴Δ=36﹣8a≥0,∴a,∴0<a;(3)存在以AQ為直徑的圓與x軸相切,理由如下:設Q(t,s),∴M(,),P(,0),∴半徑r,∵AQ2=t2+(s﹣1)2=(s+1)2,∴t2=4s,∵s=2t2﹣4t+1,∴t2=4(2t2﹣4t+1),∴t=2或t,∴P(1,0)或P(,0),∴以AQ為直徑的圓與x軸相切時,P點坐標為P(1,0)或P(,0).,【考點】本題考查二次函數(shù)的綜合應用,熟練掌握二次函數(shù)的圖象及性質(zhì),平行線的性質(zhì)是解題的關鍵.4、詳見解析.【解析】【詳解】試題分析:根據(jù)弧相等,則對應的弦相等從而證明AB=AC,則△ABC易證是等邊三角形,然后根據(jù)同圓中弦相等,則對應的圓心角相等即可證得.試題解析:證明:∵,∴AB=AC,△ABC為等腰三角形(相等的弧所對的弦相等)∵∠ACB=60°∴△ABC為等邊三角形,AB=BC=CA∴∠AOB=∠BOC=∠COA(相等的弦所對的圓心角相等)5、(1)見解析;(2)⊙O的半徑是4.5【解析】【分析】(1)如圖1,連接OC,先根據(jù)四邊形ABCD內(nèi)接于⊙O,得,再根據(jù)等量代換和直角三角形的性質(zhì)可得,由切線的判定可得結(jié)論;(2)如圖2,過點O作于G,連接OC

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
  • 6. 下載文件中如有侵權(quán)或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論