版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)
文檔簡介
試卷第=page22頁,共=sectionpages11頁試卷第=page22頁,共=sectionpages22頁人教版8年級數(shù)學(xué)下冊《平行四邊形》章節(jié)測評考試時間:90分鐘;命題人:教研組考生注意:1、本卷分第I卷(選擇題)和第Ⅱ卷(非選擇題)兩部分,滿分100分,考試時間90分鐘2、答卷前,考生務(wù)必用0.5毫米黑色簽字筆將自己的姓名、班級填寫在試卷規(guī)定位置上3、答案必須寫在試卷各個題目指定區(qū)域內(nèi)相應(yīng)的位置,如需改動,先劃掉原來的答案,然后再寫上新的答案;不準使用涂改液、膠帶紙、修正帶,不按以上要求作答的答案無效。第I卷(選擇題20分)一、單選題(5小題,每小題4分,共計20分)1、如圖,在四邊形中,AB∥CD,添加下列一個條件后,一定能判定四邊形是平行四邊形的是()A. B. C. D.2、如圖,已知平行四邊形ABCD的面積為8,E、F分別是BC、CD的中點,則△AEF的面積為()A.2 B.3 C.4 D.53、如圖,在中,,,AD平分,E是AD中點,若,則CE的長為()A. B. C. D.4、如圖,已知正方形ABCD的邊長為6,點E,F(xiàn)分別在邊AB,BC上,BE=CF=2,CE與DF交于點H,點G為DE的中點,連接GH,則GH的長為()A. B. C.4.5 D.4.35、如圖,矩形ABCD中,AC交BD于點O,且AB=24,BC=10,將AC繞點C順時針旋轉(zhuǎn)90°至CE.連接AE,且F、G分別為AE、EC的中點,則四邊形OFGC的面積是()A.100 B.144 C.169 D.225第Ⅱ卷(非選擇題80分)二、填空題(5小題,每小題6分,共計30分)1、如圖,菱形ABCD的對角線AC,BD相交于點O,E為DC的中點,若,則菱形的周長為__________.2、如圖,在平面直角坐標系中,點A,B,C的坐標分別為(8,0),(8,6),(0,6),點D為線段BC上一動點,將△OCD沿OD翻折,使點C落到點E處.當B,E兩點之間距離最短時,點D的坐標為____.3、如圖,在△ABC中,D,E分別是邊AB,AC的中點,∠B=50°.現(xiàn)將△ADE沿DE折疊點A落在三角形所在平面內(nèi)的點為A1,則∠BDA1的度數(shù)為_____.4、如圖,M,N分別是矩形ABCD的邊AD,AB上的點,將矩形ABCD沿MN折疊,使點A恰好落在邊BC上的點E處,連接MC,若AB=8,AD=16,BE=4,則MC的長為________.5、如圖,在正方形ABCD中,,E是AB的中點,P是AD上任意一點,連接PE,PC,若是等腰三角形,則AP的長可能是______.三、解答題(5小題,每小題10分,共計50分)1、如圖,在平面直角坐標系中,ΔABC三個頂點的坐標分別為A(1,1)、B(4,2)、C(3,5).(1)請畫出△ABC關(guān)于x軸的對稱圖形ΔA1B1C1;(2)借助網(wǎng)格,利用無刻度直尺畫出線段CD,使CD平分ΔABC的面積.(保留確定點D的痕跡).2、如圖所示,正方形中,點E,F(xiàn)分別為BC,CD上一點,點M為EF上一點,D,M關(guān)于直線AF對稱.連結(jié)DM并延長交AE的延長線于N,求證:.3、△ABC為等邊三角形,AB=4,AD⊥BC于點D,E為線段AD上一點,AE=.以AE為邊在直線AD右側(cè)構(gòu)造等邊△AEF.連結(jié)CE,N為CE的中點.
(1)如圖1,EF與AC交于點G,①連結(jié)NG,求線段NG的長;②連結(jié)ND,求∠DNG的大?。?)如圖2,將△AEF繞點A逆時針旋轉(zhuǎn),旋轉(zhuǎn)角為α.M為線段EF的中點.連結(jié)DN、MN.當30°<α<120°時,猜想∠DNM的大小是否為定值,并證明你的結(jié)論.4、△ABC和△GEF都是等邊三角形.問題背景:如圖1,點E與點C重合且B、C、G三點共線.此時△BFC可以看作是△AGC經(jīng)過平移、軸對稱或旋轉(zhuǎn)得到.請直接寫出得到△BFC的過程.遷移應(yīng)用:如圖2,點E為AC邊上一點(不與點A,C重合),點F為△ABC中線CD上一點,延長GF交BC于點H,求證:.聯(lián)系拓展:如圖3,AB=12,點D,E分別為AB、AC的中點,M為線段BD上靠近點B的三等分點,點F在射線DC上運動(E、F、G三點按順時針排列).當最小時,則△MDG的面積為_______.5、如圖,已知正方形中,點是邊延長線上一點,連接,過點作,垂足為點,與交于點.(1)求證:;(2)若,,求BG的長.-參考答案-一、單選題1、C【解析】【分析】由平行線的性質(zhì)得,再由,得,證出,即可得出結(jié)論.【詳解】解:一定能判定四邊形是平行四邊形的是,理由如下:,,,,,又,四邊形是平行四邊形,故選:C.【點睛】本題考查了平行四邊形的判定,解題的關(guān)鍵是熟練掌握平行四邊形的判定,證明出.2、B【解析】【分析】連接AC,由平行四邊形的性質(zhì)可得,再由E、F分別是BC,CD的中點,即可得到,,,由此求解即可.【詳解】解:如圖所示,連接AC,∵四邊形ABCD是平行四邊形,∴AD∥BC,AD=BC,AB=CD,AB∥CD,∴∵E、F分別是BC,CD的中點,∴,,,∴,故選B.【點睛】本題主要考查了平行四邊形的性質(zhì),與三角形中線有關(guān)的面積問題,解題的關(guān)鍵在于能夠熟練掌握平行四邊形的性質(zhì).3、B【解析】【分析】根據(jù)三角形內(nèi)角和定理求出∠BAC,根據(jù)角平分線的定義∠DAB=∠B,求出AD,根據(jù)直角三角形的性質(zhì)解答即可.【詳解】解:∵∠ACB=90°,∠B=30°,∴∠BAC=90°-30°=60°,∵AD平分∠BAC,∴∠DAB=∠BAC=30°,∴∠DAB=∠B,∴AD=BD=a,在Rt△ACB中,E是AD中點,∴CE=AD=,故選:B.【點睛】本題考查的是直角三角形的性質(zhì)、角平分線的定義,掌握直角三角形斜邊上的中線是斜邊的一半是解題的關(guān)鍵.4、A【解析】【分析】根據(jù)正方形的四條邊都相等可得BC=DC,每一個角都是直角可得∠B=∠DCF=90°,然后利用“邊角邊”證明△CBE≌△DCF,得∠BCE=∠CDF,進一步得∠DHC=∠DHE=90°,從而知GH=DE,利用勾股定理求出DE的長即可得出答案.【詳解】解:∵四邊形ABCD為正方形,∴∠B=∠DCF=90°,BC=DC,在△CBE和△DCF中,,∴△CBE≌△DCF(SAS),∴∠BCE=∠CDF,∵∠BCE+∠DCH=90°,∴∠CDF+∠DCH=90°,∴∠DHC=∠DHE=90°,∵點G為DE的中點,∴GH=DE,∵AD=AB=6,AE=AB﹣BE=6﹣2=4,∴,∴GH=.故選A.【點睛】本題主要考查了正方形的性質(zhì),全等三角形的性質(zhì)與判定,勾股定理,直角三角形斜邊上的中線,解題的關(guān)鍵在于能夠熟練掌握相關(guān)知識進行求解.5、C【解析】【分析】先根據(jù)矩形的性質(zhì)、三角形中位線定理可得,再根據(jù)平行四邊形的判定可得四邊形為平行四邊形,然后根據(jù)旋轉(zhuǎn)的性質(zhì)可得,從而可得,最后根據(jù)正方形的判定可得四邊形為正方形,由此即可得.【詳解】解:四邊形為矩形,,,分別為的中點,,,四邊形為平行四邊形,又繞點順時針旋轉(zhuǎn),,,平行四邊形為正方形,四邊形的面積是,故選:C.【點睛】本題考查了矩形的性質(zhì)、正方形的判定與性質(zhì)、三角形中位線定理等知識點,熟練掌握正方形的判定與性質(zhì)是解題關(guān)鍵.二、填空題1、16【解析】【分析】由菱形的性質(zhì)和三角形中位線定理即可得菱形的邊長,從而可求得菱形的周長.【詳解】∵四邊形ABCD是菱形,且對角線相交于點O∴點O是AC的中點∵E為DC的中點∴OE為△CAD的中位線∴AD=2OE=2×2=4∴菱形的周長為:4×4=16故答案為:16【點睛】本題考查了菱形的性質(zhì)及三角形中位線定理、菱形周長等知識,掌握這些知識是解答本題的關(guān)鍵.2、(3,6)【解析】【分析】連接OB,證得當O、E、B在同一直線上時,BE取得最小值,再利用勾股定理構(gòu)造方程求解即可.【詳解】解:連接OB,∵點A,B,C的坐標分別為(8,0),(8,6),(0,6),∴OA=8,AB=6,BC=8,OC=6,∵∠COA=90°,∴四邊形OABC為矩形,OB=,由折疊的性質(zhì)知:OC=OE=6,CD=DE,∴BEOB-OE=10-6=4,∴當O、E、B在同一直線上時,BE取得最小值,此時BE=4,∠DEB=90°,設(shè)CD=DE=x,則BD=8-x,∵,解得:x=3,即CD=3,∴點D的坐標為(3,6).【點睛】本題考查了矩形的判定和性質(zhì),坐標與圖形,折疊的性質(zhì),勾股定理,解題的關(guān)鍵是學(xué)會利用參數(shù)構(gòu)建方程解決問題,3、80°【解析】【分析】由翻折的性質(zhì)得∠ADE=∠A1DE,由中位線的性質(zhì)得DE//BC,由平行線的性質(zhì)得∠ADE=∠B=50°,即可解決問題.【詳解】解:由題意得:∠ADE=∠A1DE;∵D、E分別是邊AB、AC的中點,∴DE//BC,∴∠ADE=∠B=∠A1DE=50°,∴∠A1DA=100°,∴∠BDA1=180°?100°=80°.故答案為:80°.【點睛】本題主要考查了翻折變換及其應(yīng)用問題;同時還考查了三角形的中位線定理等幾何知識點.熟練掌握各性質(zhì)是解題的關(guān)鍵.4、10【解析】【分析】過E作EF⊥AD于F,根據(jù)矩形ABCD沿MN折疊,使點A恰好落在邊BC上的點E處,得出△ANM≌△ENM,可得AM=EM,根據(jù)矩形ABCD,得出∠B=∠A=∠D=90°,再證四邊形ABEF為矩形,得出AF=BE=4,F(xiàn)E=AB=8,設(shè)AM=EM=m,F(xiàn)M=m-4,根據(jù)勾股定理,即,解方程m=10即可.【詳解】解:過E作EF⊥AD于F,∵矩形ABCD沿MN折疊,使點A恰好落在邊BC上的點E處,∴△ANM≌△ENM,∴AM=EM,∵矩形ABCD,∴∠B=∠A=∠D=90°,∵FE⊥AD,∴∠AFE=∠B=∠A=90°,∴四邊形ABEF為矩形,∴AF=BE=4,F(xiàn)E=AB=8,設(shè)AM=EM=m,F(xiàn)M=m-4在Rt△FEM中,根據(jù)勾股定理,即,解得m=10,∴MD=AD-AM=16-10=6,在Rt△MDC中,∴MC=.故答案為10.【點睛】本題考查折疊軸對稱性質(zhì),矩形判定與性質(zhì),勾股定理,掌握折疊軸對稱性質(zhì),矩形判定與性質(zhì),勾股定理是解題關(guān)鍵.5、或或【解析】【分析】分三種情況:當時,當時,當時,利用等腰三角形的性質(zhì)和正方形的性質(zhì)進行求解即可.【詳解】解:如圖1,當時,∵四邊形ABCD是正方形,∴∠B=∠D=90°,BC=DC,∴,∴則,∵E是AB的中點,∴∴;如圖2.當點P與點D重合時,∵四邊形ABCD是正方形,∴AD=BC,∠A=∠B=90°,∵E是AB的中點,∴AE=BE,∴△ADE≌△BCE(SAS),∴即PE=CE,是等腰三角形.∴;如圖3.當時,設(shè),則,在直角△PDC中,,在直角△AEP中,,則.解得,即.綜上所述,AP的長可能是1或2或.故答案為:1或2或.【點睛】本題主要考查了等腰三角形的性質(zhì),正方形的性質(zhì),全等三角形的性質(zhì)與判定,勾股定理,解題的關(guān)鍵在于能夠熟練掌握等腰三角形的性質(zhì)和正方形的性質(zhì).三、解答題1、(1)見解析;(2)見解析;【分析】(1)根據(jù)關(guān)于軸對稱的點的坐標變化作圖即可;(2)利用格點特征以及矩形對角線互相平分且相等的性質(zhì)取中點從而求解.【詳解】解:(1)如圖所示,ΔA1B1C1即為所求,(2)連接格點,交于點,已知、為矩形的對角線,連接,根據(jù)矩形的性質(zhì)可得點為線段的中點,即為所求.【點睛】本題考查了網(wǎng)格作圖中的軸對稱變換和矩形的性質(zhì),解題的關(guān)鍵是掌握并運用相關(guān)性質(zhì)進行求解.2、見解析【分析】連結(jié),由對稱的性質(zhì)可知,進而可證,即可得,由∠AON=90°,可得.【詳解】證明:連結(jié),、關(guān)于對稱,∴垂直平分,,∴,∴,,在Rt和Rt中,∴,又,∴,∴.【點睛】本題是四邊形綜合題,主要考查了軸對稱的性質(zhì),等腰直角三角形的判定,全等三角形的判定與性質(zhì),綜合性較強,有一定難度.準確作出輔助線是解題的關(guān)鍵.有關(guān)45°角的問題,往往利用全等,構(gòu)造等腰直角三角形,使問題迅速獲解.3、(1)①;②;(2)的大小是定值,證明見解析.【分析】(1)①先根據(jù)等邊三角形的性質(zhì)、勾股定理可得,從而可得,再利用勾股定理可得,然后根據(jù)等邊三角形的性質(zhì)可得,最后根據(jù)直角三角形斜邊上的中線等于斜邊的一半即可得;②先根據(jù)直角三角形斜邊上的中線等于斜邊的一半可得,再根據(jù)等腰三角形的性質(zhì)可得,從而可得,然后根據(jù)四邊形的內(nèi)角和即可得;(2)連接,先證出,根據(jù)全等三角形的性質(zhì)可得,從而可得,再根據(jù)三角形中位線定理可得,然后根據(jù)三角形的外角性質(zhì)、角的和差即可得出結(jié)論.【詳解】解:(1)①∵是等邊三角形,,,∴,∴,∵,∴,∴,∵是等邊三角形,,,∴,即,又∵點為的中點,∴;②如圖,連接,由(1)①知,,∵,點為的中點,∴,,,∴;(2)的大小是定值,證明如下:如圖,連接,∵和都是等邊三角形,∴,∴,即,在和中,,∴,∴,∵,∴,∵點為的中點,點為的中點,∴,∴,∵,即點是的中點,∴,∴,∵,∴,∴的大小為定值.【點睛】本題考查了等邊三角形的性質(zhì)、直角三角形斜邊上的中線等于斜邊的一半、三角形中位線定理等知識點,較難的是題(2),通過作輔助線,構(gòu)造全等三角形和利用到三角形中位線定理是解題關(guān)鍵.4、(1)以點C為旋轉(zhuǎn)中心將逆時針旋轉(zhuǎn)就得到;(2)見解析;(3).【分析】(1)只需要利用SAS證明△BCF≌△ACG即可得到答案;(2)法一:以為邊作,與的延長線交于點K,如圖,先證明,然后證明,得到,則,過點F作FM⊥BC于M,求出,即可推出,則,即:;法二:過F作,.先證明△FCN≌△FCM得到CM=CN,利用勾股定理和含30度角的直角三角形的性質(zhì)求出,再證明得到,則;(3)如圖3-1所示,連接,GM,AG,先證明△ADE是等邊三角形,得到DE=AE,即可證明得到,即點G在的角平分線所在直線上運動.過G作,則,最小即是最小,故當M、G、P三點共線時,最??;如圖3-2所示,過點G作GQ⊥AB于Q,連接DG,求出DM和QG的長即可求解.【詳解】(1)∵△ABC和△GEF都是等邊三角形,∴BC=AC,CF=CG,∠ACB=∠FCG=60°,∴∠ACB+∠ACF=∠FCG+∠ACF,∴∠FCB=∠GCA,∴△BCF≌△ACG(SAS),∴△BFC可以看作是△AGC繞點C逆時針旋轉(zhuǎn)60度所得;(2)法一:證明:以為邊作,與的延長線交于點K,如圖,∵和均為等邊三角形,∴,∠GFE=60°,∴,∴∠EFH+∠ACB=180°,∴,∵,∴.∵是等邊的中線,∴,∴,∴∴.在與中,∴,∴,∴,過點F作FM⊥BC于M,∴KM=CM,∵∠K=30°,∴∴,∴,∴,即:;法二證明:過F作,.∴是等邊的中線,∴,,∴△FCN≌△FCM(AAS),F(xiàn)C=2FN,∴CM=CN,,同法一,.在與中,∴∴,∴;(3)如圖3-1所示,連接,GM,AG,∵D,E分別是AB,AC的中點,∴DE是△ABC的中位線,CD⊥AB,
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
- 6. 下載文件中如有侵權(quán)或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 專題直線方程課時訓(xùn)練原卷版年秋季高二數(shù)學(xué)上學(xué)期人教A版教案
- 新蘇教版小學(xué)一年級數(shù)學(xué)下冊我們認識的數(shù)教學(xué)體會教案
- 高中物理第四章第渦流電磁阻尼和電磁驅(qū)動新人教版選修教案(2025-2026學(xué)年)
- 姓名薄顏班級一年級五班市公開課金獎市賽課教案
- 二上第八單元原創(chuàng)狐貍分奶酪習(xí)題市公開課金獎市賽課教案
- 高中語文以意逆志知人論世長恨歌同步教新人教選修中國古代詩歌散文欣賞教案
- 高三一輪復(fù)習(xí)歷史中外歷史綱要下板塊單元總結(jié)教案
- 小學(xué)二年語文下冊《卡羅爾和她的小貓》教案
- 三年級美術(shù)復(fù)色教案北師大版(2025-2026學(xué)年)
- 幼兒園動物單詞教案
- 學(xué)堂在線 雨課堂 學(xué)堂云 醫(yī)學(xué)英語詞匯進階 期末考試答案
- 工程力學(xué)(本)2024國開機考答案
- 三軸轉(zhuǎn)臺仿真設(shè)計設(shè)計說明書
- 2015年版干部履歷表
- 陶棍陶板考察報告
- q gw2sjss.65金風風力發(fā)電機組防腐技術(shù)rna部分歸檔版
- 陜西北元化工集團有限公司 100 萬噸 - 年聚氯乙烯項目竣工驗收監(jiān)測報告
- 向知識分子介紹佛教剖析
- GB/T 19978-2005土工布及其有關(guān)產(chǎn)品刺破強力的測定
- 2023年自考試題公安管理學(xué)試卷及答案
- 水利工程檢測參數(shù)及取樣頻率8
評論
0/150
提交評論