版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報或認(rèn)領(lǐng)
文檔簡介
人教版8年級數(shù)學(xué)下冊《平行四邊形》同步練習(xí)考試時間:90分鐘;命題人:教研組考生注意:1、本卷分第I卷(選擇題)和第Ⅱ卷(非選擇題)兩部分,滿分100分,考試時間90分鐘2、答卷前,考生務(wù)必用0.5毫米黑色簽字筆將自己的姓名、班級填寫在試卷規(guī)定位置上3、答案必須寫在試卷各個題目指定區(qū)域內(nèi)相應(yīng)的位置,如需改動,先劃掉原來的答案,然后再寫上新的答案;不準(zhǔn)使用涂改液、膠帶紙、修正帶,不按以上要求作答的答案無效。第I卷(選擇題20分)一、單選題(5小題,每小題4分,共計20分)1、如圖,矩形OABC的邊OA長為2,邊AB長為1,OA在數(shù)軸上,以原點O為圓心,對角線OB的長為半徑畫弧,交正半軸于一點,則這個點表示的實數(shù)是()A.2.5 B.2 C. D.2、如圖,在菱形ABCD中,AB=5,AC=8,過點B作BE⊥CD于點E,則BE的長為()A. B. C.6 D.3、如圖,已知在正方形ABCD中,厘米,,點E在邊AB上,且厘米,如果點P在線段BC上以2厘米/秒的速度由B點向C點運(yùn)動,同時,點Q在線段CD上以a厘米/秒的速度由C點向D點運(yùn)動,設(shè)運(yùn)動時間為t秒.若存在a與t的值,使與全等時,則t的值為()A.2 B.2或1.5 C.2.5 D.2.5或24、如圖,菱形ABCD的對角線AC、BD的長分別為6和8,O為AC、BD的交點,H為AB上的中點,則OH的長度為()A.3 B.4 C.2.5 D.55、已知中,,,CD是斜邊AB上的中線,則的度數(shù)是()A. B. C. D.第Ⅱ卷(非選擇題80分)二、填空題(5小題,每小題6分,共計30分)1、如圖,在正方形ABCD中,AB=4,E為對角線AC上與A,C不重合的一個動點,過點E作EF⊥AB于點F,EG⊥BC于點G,連接DE,F(xiàn)G,下列結(jié)論:①DE=FG;②DE⊥FG;③∠BFG=∠ADE;④FG的最小值為3.其中正確結(jié)論的序號為__.2、如圖,直線l經(jīng)過正方形ABCD的頂點B,點A,C到直線l的距離分別是1,3,則正方形ABCD的面積是_____.3、如圖,Rt△ABD中,∠D=90°,AB=8,BD=4,在BD延長線上取一點C,使得DC=BD,在直線AD左側(cè)有一動點P滿足∠PAD=∠PDB,連接PC,則線段CP長的最大值為________.4、如圖,在矩形ABCD中,BC=2,AB=x,點E在邊CD上,且CEx,將BCE沿BE折疊,若點C的對應(yīng)點落在矩形ABCD的邊上,則x的值為_______.5、已知正方形ABCD的一條對角線長為2,則它的面積是______.三、解答題(5小題,每小題10分,共計50分)1、如圖,△ABC中,點D是邊AC的中點,過D作直線PQ∥BC,∠BCA的平分線交直線PQ于點E,點G是△ABC的邊BC延長線上的點,∠ACG的平分線交直線PQ于點F.求證:四邊形AECF是矩形.2、如圖,正方形網(wǎng)格中的每個小正方形邊長都是1,每個小格的頂點叫做格點,以格點為頂點分別按下列要求畫三角形.(1)在圖1中,畫一個三邊長都是有理數(shù)的直角三角形;(2)在圖2中,畫一個以BC為斜邊的直角三角形,使它們的三邊長都是無理數(shù)且都不相等;(3)在圖3中,畫一個正方形,使它的面積是10.3、如圖,在中,AE平分,于點E,點F是BC的中點(1)如圖1,BE的延長線與AC邊相交于點D,求證:(2)如圖2,中,,求線段EF的長.4、如圖:已知△BCD是等腰直角三角形,且∠DCB=90°,過點D作AD∥BC,使AD=BC,在AD上取一點E,連結(jié)CE,點B關(guān)于CE的對稱點為B1,連結(jié)B1D,并延長B1D交BA的延長線于點F,延長CE交B1F于點G,連結(jié)BG.(1)求證:∠CBG=∠CDB1;(2)若AE=DE,BC=10,求BG長;(3)在(2)的條件下,H為直線BG上一點,使△HCG為等腰三角形,則所有滿足要求的BH的長是.(直接寫出答案)5、如圖,在平行四邊形中,,..點在上由點向點出發(fā),速度為每秒;點在邊上,同時由點向點運(yùn)動,速度為每秒.當(dāng)點運(yùn)動到點時,點,同時停止運(yùn)動.連接,設(shè)運(yùn)動時間為秒.(1)當(dāng)為何值時,四邊形為平行四邊形?(2)設(shè)四邊形的面積為,求與之間的函數(shù)關(guān)系式.(3)當(dāng)為何值時,四邊形的面積是四邊形的面積的四分之三?求出此時的度數(shù).(4)連接,是否存在某一時刻,使為等腰三角形?若存在,請求出此刻的值;若不存在,請說明理由.-參考答案-一、單選題1、D【解析】【分析】利用矩形的性質(zhì),求證明,進(jìn)而在中利用勾股定理求出的長度,弧長就是的長度,利用數(shù)軸上的點表示,求出弧與數(shù)軸交點表示的實數(shù)即可.【詳解】解:四邊形OABC是矩形,,在中,由勾股定理可知:,,弧長為,故在數(shù)軸上表示的數(shù)為,故選:.【點睛】本題主要是考查了矩形的性質(zhì)、勾股定理解三角形以及數(shù)軸上的點的表示,熟練利用矩形性質(zhì),得到直角三角形,然后通過勾股定理求邊長,是解決該類問題的關(guān)鍵.2、B【解析】【分析】根據(jù)菱形的性質(zhì)求得的長,進(jìn)而根據(jù)菱形的面積等于,即可求得的長【詳解】解:如圖,設(shè)的交點為,四邊形是菱形,,,在中,,菱形的面積等于故選B【點睛】本題考查了菱形的性質(zhì),掌握菱形的性質(zhì),求得的長是解題的關(guān)鍵.3、D【解析】【分析】根據(jù)題意分兩種情況討論若△BPE≌△CQP,則BP=CQ,BE=CP;若△BPE≌△CPQ,則BP=CP=5厘米,BE=CQ=6厘米進(jìn)行求解即可.【詳解】解:當(dāng),即點Q的運(yùn)動速度與點P的運(yùn)動速度都是2厘米/秒,若△BPE≌△CQP,則BP=CQ,BE=CP,∵AB=BC=10厘米,AE=4厘米,∴BE=CP=6厘米,∴BP=10-6=4厘米,∴運(yùn)動時間t=4÷2=2(秒);當(dāng),即點Q的運(yùn)動速度與點P的運(yùn)動速度不相等,∴BP≠CQ,∵∠B=∠C=90°,∴要使△BPE與△OQP全等,只要BP=PC=5厘米,CQ=BE=6厘米,即可.∴點P,Q運(yùn)動的時間t=(秒).綜上t的值為2.5或2.故選:D.【點睛】本題主要考查正方形的性質(zhì)以及全等三角形的判定,解決問題的關(guān)鍵是掌握正方形的四條邊都相等,四個角都是直角;兩邊及其夾角分別對應(yīng)相等的兩個三角形全等.同時要注意分類思想的運(yùn)用.4、C【解析】【分析】根據(jù)菱形的性質(zhì)求得邊長,進(jìn)而根據(jù)三角形中位線定理求得的長度.【詳解】∵四邊形ABCD是菱形,∴AO=OC,OB=OD,AO⊥BO,又∵點H是AD中點,∴OH是△DAB的中位線,在Rt△AOB中,AB5,則OHAB=2.5故選C【點睛】本題考查了菱形的性質(zhì),三角形中位線定理,求得的長是解題的關(guān)鍵.5、B【解析】【分析】由題意根據(jù)三角形的內(nèi)角和得到∠A=36°,由CD是斜邊AB上的中線,得到CD=AD,根據(jù)等腰三角形的性質(zhì)即可得到結(jié)論.【詳解】解:∵∠ACB=90°,∠B=54°,∴∠A=36°,∵CD是斜邊AB上的中線,∴CD=AD,∴∠ACD=∠A=36°.故選:B.【點睛】本題考查直角三角形的性質(zhì)與三角形的內(nèi)角和,熟練掌握直角三角形的性質(zhì)即直角三角形斜邊的中線等于斜邊的一半是解題的關(guān)鍵.二、填空題1、①②③【解析】【分析】①連接BE,可得四邊形EFBG為矩形,可得BE=FG;由△AEB≌△AED可得DE=BE,所以DE=FG;②由矩形EFBG可得OF=OB,則∠OBF=∠OFB;由∠OBF=∠ADE,則∠OFB=∠ADE;由四邊形ABCD為正方形可得∠BAD=90°,即∠AHD+∠ADH=90°,所以∠AHD+∠OFH=90°,即∠FMH=90°,可得DE⊥FG;③由②中的結(jié)論可得∠BFG=∠ADE;④由于點E為AC上一動點,當(dāng)DE⊥AC時,根據(jù)垂線段最短可得此時DE最小,最小值為2,由①知FG=DE,所以FG的最小值為2.【詳解】解:①連接BE,交FG于點O,如圖,∵EF⊥AB,EG⊥BC,∴∠EFB=∠EGB=90°.∵∠ABC=90°,∴四邊形EFBG為矩形.∴FG=BE,OB=OF=OE=OG.∵四邊形ABCD為正方形,∴AB=AD,∠BAC=∠DAC=45°.在△ABE和△ADE中,,∴△ABE≌△ADE(SAS).∴BE=DE.∴DE=FG.∴①正確;②延長DE,交FG于M,交FB于點H,∵△ABE≌△ADE,∴∠ABE=∠ADE.由①知:OB=OF,∴∠OFB=∠ABE.∴∠OFB=∠ADE.∵∠BAD=90°,∴∠ADE+∠AHD=90°.∴∠OFB+∠AHD=90°.即:∠FMH=90°,∴DE⊥FG.∴②正確;③由②知:∠OFB=∠ADE.即:∠BFG=∠ADE.∴③正確;④∵點E為AC上一動點,∴根據(jù)垂線段最短,當(dāng)DE⊥AC時,DE最?。逜D=CD=4,∠ADC=90°,∴AC==4.∴DE=AC=2.由①知:FG=DE,∴FG的最小值為2,∴④錯誤.綜上,正確的結(jié)論為:①②③.故答案為:①②③.【點睛】本題考查了全等三角形的性質(zhì)與判定,正方形的性質(zhì),勾股定理,垂線段最短,掌握正方形的性質(zhì)是解題的關(guān)鍵.2、10【解析】【分析】根據(jù)正方形的性質(zhì),結(jié)合題意易求證,,,即可利用“ASA”證明,得出.最后根據(jù)勾股定理可求出,即正方形的面積為10.【詳解】∵四邊形ABCD是正方形,∴,,∴.根據(jù)題意可知:,,∴,,∴在和中,,∴,∴.∵在中,,∴正方形ABCD的面積是10.故答案為:10.【點睛】本題考查正方形的性質(zhì),全等三角形的判定和性質(zhì)以及勾股定理.利用數(shù)形結(jié)合的思想是解答本題的關(guān)鍵.3、##【解析】【分析】如圖,取AD的中點O,連接OP、OC,然后求出OP、OC的長,最后根據(jù)三角形的三邊關(guān)系即可解答.【詳解】解:如圖,取AD的中點O,連接OP、OC∵∠PAD=∠PDB,∠PDB+∠ADP=90°,∴∠PAD+∠ADP=90°,即∠APD=90°,∵AO=OD,∴PO=OA=AD,∴∴OP=,∵BD=CD=4,OD=,∴∵PC≤OP+OC,∴PC≤,∴PC的最大值為.故填:.【點睛】本題主要考查了直角三角形斜邊中線的性質(zhì)、勾股定理等知識點,解題的關(guān)鍵在于正確添加常用輔助線,進(jìn)而求得OP、OC的長.4、或【解析】【分析】分兩種情況進(jìn)行解答,即當(dāng)點落在邊上和點落在邊上,分別畫出相應(yīng)的圖形,利用翻折變換的性質(zhì),勾股定理進(jìn)行計算即可.【詳解】解:如圖1,當(dāng)點落在邊上,由翻折變換可知,,,在△中,由勾股定理得,,,在中,由勾股定理得,,即,解得,或(舍去),如圖2,當(dāng)點落在邊上,由翻折變換可知,四邊形是正方形,,,故答案為:或.【點睛】本題考查翻折變換,解題的關(guān)鍵是掌握翻折變換的性質(zhì)以及勾股定理是解決問題的前提.5、6【解析】【分析】正方形的面積:邊長的平方或兩條對角線之積的一半,根據(jù)公式直接計算即可.【詳解】解:正方形ABCD的一條對角線長為2,故答案為:【點睛】本題考查的是正方形的性質(zhì),掌握“正方形的面積等于兩條對角線之積的一半”是解題的關(guān)鍵.三、解答題1、見解析【分析】先根據(jù)平行線的性質(zhì)得到∠DEC=∠BCE,∠DFC=∠GCF,再由角平分線的定義得到,,則∠DEC=∠DCE,∠DFC=∠DCF,推出DE=DC,DF=DC,則DE=DF,再由AD=CD,即可證明四邊形AECF是平行四邊形,再由∠ECF=∠DCE+∠DCF=,即可得證.【詳解】證明:∵PQ∥BC,∴∠DEC=∠BCE,∠DFC=∠GCF,∵CE平分∠BCA,CF平分∠ACG,∴,,∴∠DEC=∠DCE,∠DFC=∠DCF,∴DE=DC,DF=DC,∴DE=DF,∵點D是邊AC的中點,∴AD=CD,∴四邊形AECF是平行四邊形,∵∠BCA+∠ACG=180°,∴∠ECF=∠DCE+∠DCF=,∴平行四邊形AECF是矩形.【點睛】本題主要考查了矩形的判定,平行線的性質(zhì),角平分線的定義,等腰三角形的性質(zhì)與判定,等等,熟練掌握矩形的判定條件是解題的關(guān)鍵.2、(1)見解析;(2)見解析;(3)見解析【分析】(1)如圖,AB=4,BC=3,,利用勾股定理逆定理即可得到△ABC是直角三角形;(2)如圖,,,利用勾股定理逆定理即可得到△ABC是直角三角形;(3)如圖,,則,∠ABC=90°,即可得到四邊形ABCD是正方形,.【詳解】解:(1)如圖所示,AB=4,BC=3,,∴,∴△ABC是直角三角形;
(2)如圖所示,,∴,∴△ABC是直角三角形;
(3)如圖所示,,,∴,∴∠ABC=90°,∴四邊形ABCD是正方形,∴.
【點睛】本題主要考查了有理數(shù)與無理數(shù),正方形的判定,勾股定理和勾股定理的逆定理,熟知相關(guān)知識是解題的關(guān)鍵.3、(1)見解析;(2)2【分析】(1)利用ASA定理證明△AEB≌△AED,得到BE=ED,AD=AB,根據(jù)三角形中位線定理解答;(2)分別延長BE、AC交于點H,仿照(1)的過程解答.【詳解】解:(1)證明:∵AE平分,,∴∠BAE=∠DAE,∠AEB=∠AED=90°,在△AEB和△AED中,,∴△AEB≌△AED(ASA)∴BE=ED,AD=AB,∵點F是BC的中點,∴BF=FC,∴EF是△BCD的中位線,∴EF=CD=(AC-AD)=(AC-AB);(2)解:分別延長BE、AC交于點H,∵AE平分,,∴∠BAE=∠DAE,∠AEB=∠AED=90°,在△AEB和△AEH中,,∴△AEB≌△AEH(ASA)∴BE=EH,AH=AB=9,∵點F是BC的中點,∴BF=FC,∴EF是△BCD的中位線,∴EF=CH=(AH-AC)=2.【點睛】本題考查的是三角形中位線定理、全等三角形的判定和性質(zhì),掌握三角形的中位線平行于第三邊,且等于第三邊的一半是解題的關(guān)鍵.4、(1)證明過程見解析;(2)BG的長為4;(3)2或6﹣4或或6+4【分析】(1)連結(jié)BB1交CG于點M,交CD于點Q,證明四邊形ABCD是正方形,再根據(jù)對稱的性質(zhì)得到CE垂直平分BB1,得到△BCG≌△B1CG(SSS),即可得解;(2)設(shè)BG交AD于點N,得到△BCQ≌△CDE(ASA),得到CQ=DE=5,BQ=CE=5,再根據(jù)勾股定理得到BM,最后利用勾股定理計算即可;(3)根據(jù)點G的位置不同分4種情況進(jìn)行討論計算即可;【詳解】(1)證明:如圖1,連結(jié)BB1交CG于點M,交CD于點Q,∵AD∥BC,AD=BC,∴四邊形ABCD是平行四邊形,∵BC=DC,∠BCD=90°,∴四邊形ABCD是正方形,∵點B1與點B關(guān)于CE對稱,∴CE垂直平分BB1,∴BC=B1C,BG=B1G,∵CG=CG,∴△BCG≌△B1CG(SSS),∴∠CBG=∠CB1G,∵DC=B1C,∴∠CDB1=∠CB1G,∴∠CBG=∠CDB1.(2)解:如圖1,設(shè)BG交AD于點N,∵BC=CD=AD=10,∴DE=AD=5,∵∠CDE=90°,∴CE=,∵∠BCQ=∠CDE=∠BMC=90°,∴∠CBQ=90°﹣∠BCM=∠DCE,∴△BCQ≌△CDE(ASA),∴CQ=DE=5,BQ=CE=5,∵CM⊥BQ,∴S△BCQ=BQ?CM=BC?CQ,∴,∴CM=2,∴BM=,∵∠ABC=∠BAN=90°,∴∠GDN+∠CDB1=90°,∠ABN+∠CBG=90°,∴∠GDN=∠ABN,∵∠GND=∠ANB,∴∠GDN+∠GND=∠ABN+∠ANB=90°,∴∠BGB1=90°,∴∠BGM=∠B1GM=∠BGB1=45°,∵∠BMG=90°,∴∠BMG=∠BGM=45°,∴GM=BM=4,∴BG=,∴BG的長為4.(3)解:如圖1,由(2)得CM=2,GM=4,∴CG=2+4=6,如圖2,CH=CG=6,則∠CHG=∠CGH=45°,∴∠GCH=90°,∴GH=,∴BH=GH﹣BG=6﹣4=2;如圖3,HG=CG=6,且點H與點B在直線FB1的同側(cè),∴BH=HG﹣BG=6﹣4;如圖4,CH=GH,則∠HCG=∠HGC=45°,∴∠CHG=90°,∴CH2+GH2=CG2,∴2GH2=(6)2,∴GH=3,∴BH=BG﹣GH=4﹣3=;如圖5,HG=CG=6,且點H與點B在直線FB1的異側(cè),∴BH=HG+BG=6+4,綜上所述,BH的長為2或6﹣4或或6+4,故答案為:2或6﹣4或或6+4.【點睛】本題主要考查了全等三角形的綜合,勾股定理,垂直平分線的判定與性質(zhì),正方形的性質(zhì),準(zhǔn)確分析計算是解題的關(guān)鍵.5、(1);(2)y=S四邊形ABPQ=2t+32(0<t≤8);(3)t=8,;(4)當(dāng)t=4或
或時,為等腰三角形,理由見解析.【分析】(1)利用平行四邊形的對邊相等AQ=BP建立方程求解即可;
(2)先構(gòu)造直角三角形,求出AE,再用梯形的面積公式即可得出結(jié)論;
(3)利用面積關(guān)系求出t,即可求出
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 中心校安全制度
- 老年高血壓慢性腎臟病非透析階段血壓與腎功能保護(hù)方案
- 老年高血壓患者家庭血壓監(jiān)測合并甲狀腺功能異常篩查方案
- 老年高血壓患者α受體阻滯劑與利尿劑聯(lián)用致體位性低血壓風(fēng)險防范方案
- 交通運(yùn)輸線路規(guī)劃及管理制度內(nèi)容
- 建筑工程進(jìn)度管理制度內(nèi)容
- 老年高血壓合并AKI的多藥聯(lián)合方案優(yōu)化
- 老年髖部骨折患者術(shù)后康復(fù)訓(xùn)練中的功能代償策略
- 老年骨質(zhì)疏松癥患者作業(yè)療法預(yù)防ADL跌倒方案
- 老年重癥患者能量需求的計算方法
- 民法典物業(yè)管理解讀課件
- 新華書店管理辦法
- 企業(yè)文化與員工滿意度關(guān)系研究
- 中國重癥超聲臨床應(yīng)用專家共識
- 糖水店員工管理制度
- 來料檢驗控制程序(含表格)
- 醫(yī)院供氧、供電、供水故障脆弱性分析報告
- 分布式基站光伏電站建設(shè)標(biāo)準(zhǔn)
- 潔凈區(qū)環(huán)境監(jiān)測培訓(xùn)課件
- 酸棗扦插快繁技術(shù)規(guī)程DB1305T+098-2016
- 鋁材銷售技巧培訓(xùn)
評論
0/150
提交評論