版權(quán)說(shuō)明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡(jiǎn)介
一、解答題1.在如圖所示的平面直角坐標(biāo)系中,A(1,3),B(3,1),將線段A平移至CD,C(m,-1),D(1,n)(1)m=_____,n=______(2)點(diǎn)P的坐標(biāo)是(c,0)①設(shè)∠ABP=,請(qǐng)寫出∠BPD和∠PDC之間的數(shù)量關(guān)系(用含的式子表示,若有多種數(shù)量關(guān)系,選擇一種加以說(shuō)明)②當(dāng)三角形PAB的面積不小于3且不大于10,求點(diǎn)p的橫坐標(biāo)C的取值范圍(直接寫出答案即可)2.已知,.點(diǎn)在上,點(diǎn)在上.(1)如圖1中,、、的數(shù)量關(guān)系為:;(不需要證明);如圖2中,、、的數(shù)量關(guān)系為:;(不需要證明)(2)如圖3中,平分,平分,且,求的度數(shù);(3)如圖4中,,平分,平分,且,則的大小是否發(fā)生變化,若變化,請(qǐng)說(shuō)明理由,若不變化,求出么的度數(shù).3.綜合與探究(問(wèn)題情境)王老師組織同學(xué)們開展了探究三角之間數(shù)量關(guān)系的數(shù)學(xué)活動(dòng)(1)如圖1,,點(diǎn)、分別為直線、上的一點(diǎn),點(diǎn)為平行線間一點(diǎn),請(qǐng)直接寫出、和之間的數(shù)量關(guān)系;(問(wèn)題遷移)(2)如圖2,射線與射線交于點(diǎn),直線,直線分別交、于點(diǎn)、,直線分別交、于點(diǎn)、,點(diǎn)在射線上運(yùn)動(dòng),①當(dāng)點(diǎn)在、(不與、重合)兩點(diǎn)之間運(yùn)動(dòng)時(shí),設(shè),.則,,之間有何數(shù)量關(guān)系?請(qǐng)說(shuō)明理由.②若點(diǎn)不在線段上運(yùn)動(dòng)時(shí)(點(diǎn)與點(diǎn)、、三點(diǎn)都不重合),請(qǐng)你畫出滿足條件的所有圖形并直接寫出,,之間的數(shù)量關(guān)系.4.已知:如圖(1)直線AB、CD被直線MN所截,∠1=∠2.(1)求證:AB//CD;(2)如圖(2),點(diǎn)E在AB,CD之間的直線MN上,P、Q分別在直線AB、CD上,連接PE、EQ,PF平分∠BPE,QF平分∠EQD,則∠PEQ和∠PFQ之間有什么數(shù)量關(guān)系,請(qǐng)直接寫出你的結(jié)論;(3)如圖(3),在(2)的條件下,過(guò)P點(diǎn)作PH//EQ交CD于點(diǎn)H,連接PQ,若PQ平分∠EPH,∠QPF:∠EQF=1:5,求∠PHQ的度數(shù).5.(1)如圖①,若∠B+∠D=∠E,則直線AB與CD有什么位置關(guān)系?請(qǐng)證明(不需要注明理由).(2)如圖②中,AB//CD,又能得出什么結(jié)論?請(qǐng)直接寫出結(jié)論.(3)如圖③,已知AB//CD,則∠1+∠2+…+∠n-1+∠n的度數(shù)為.6.如圖,直線HDGE,點(diǎn)A在直線HD上,點(diǎn)C在直線GE上,點(diǎn)B在直線HD、GE之間,∠DAB=120°.(1)如圖1,若∠BCG=40°,求∠ABC的度數(shù);(2)如圖2,AF平分∠HAB,BC平分∠FCG,∠BCG=20°,比較∠B,∠F的大??;(3)如圖3,點(diǎn)P是線段AB上一點(diǎn),PN平分∠APC,CN平分∠PCE,探究∠HAP和∠N的數(shù)量關(guān)系,并說(shuō)明理由.7.請(qǐng)觀察下列等式,找出規(guī)律并回答以下問(wèn)題.,,,,……(1)按照這個(gè)規(guī)律寫下去,第5個(gè)等式是:______;第n個(gè)等式是:______.(2)①計(jì)算:.②若a為最小的正整數(shù),,求:.8.規(guī)定:求若干個(gè)相同的有理數(shù)(均不等于0)的除法運(yùn)算叫做除方,如2÷2÷2,(-3)÷(-3)÷(-3)÷(-3)等.類比有理數(shù)的乘方,我們把2÷2÷2記作2③,讀作“2的圈3次方”,(-3)÷(-3)÷(-3)÷(-3)記作(-3)④,讀作“-3的圈4次方”,一般地,把(a≠0)記作a?,讀作“a的圈
n次方”.(初步探究)(1)直接寫出計(jì)算結(jié)果:2③=___,()⑤=___;(2)關(guān)于除方,下列說(shuō)法錯(cuò)誤的是___A.任何非零數(shù)的圈2次方都等于1;
B.對(duì)于任何正整數(shù)n,1?=1;C.3④=4③;
D.負(fù)數(shù)的圈奇數(shù)次方結(jié)果是負(fù)數(shù),負(fù)數(shù)的圈偶數(shù)次方結(jié)果是正數(shù).(深入思考)我們知道,有理數(shù)的減法運(yùn)算可以轉(zhuǎn)化為加法運(yùn)算,除法運(yùn)算可以轉(zhuǎn)化為乘法運(yùn)算,有理數(shù)的除方運(yùn)算如何轉(zhuǎn)化為乘方運(yùn)算呢?(1)試一試:仿照上面的算式,將下列運(yùn)算結(jié)果直接寫成冪的形式.(-3)④=___;
5⑥=___;(-)⑩=___.(2)想一想:將一個(gè)非零有理數(shù)a的圈n次方寫成冪的形式等于___;(3)算一算:÷(?)④×(?2)⑤?(?)⑥÷9.對(duì)于實(shí)數(shù)a,我們規(guī)定:用符號(hào)表示不大于的最大整數(shù),稱為a的根整數(shù),例如:,=3.(1)仿照以上方法計(jì)算:=______;=_____.(2)若,寫出滿足題意的x的整數(shù)值______.如果我們對(duì)a連續(xù)求根整數(shù),直到結(jié)果為1為止.例如:對(duì)10連續(xù)求根整數(shù)2次=1,這時(shí)候結(jié)果為1.(3)對(duì)100連續(xù)求根整數(shù),____次之后結(jié)果為1.(4)只需進(jìn)行3次連續(xù)求根整數(shù)運(yùn)算后結(jié)果為1的所有正整數(shù)中,最大的是____.10.據(jù)說(shuō),我國(guó)著名數(shù)學(xué)家華羅庚在一次訪問(wèn)途中,看到飛機(jī)鄰座的乘客閱讀的雜志上有一道智力題:一個(gè)數(shù)32768,它是一個(gè)正數(shù)的立方,希望求它的立方根,華羅庚不假思索給出了答案,鄰座乘客非常驚奇,很想得知其中的奧秘,你知道華羅庚是怎樣準(zhǔn)確計(jì)算出的嗎?請(qǐng)按照下面的問(wèn)題試一試:(1)由,因?yàn)椋?qǐng)確定是______位數(shù);(2)由32768的個(gè)位上的數(shù)是8,請(qǐng)確定的個(gè)位上的數(shù)是________,劃去32768后面的三位數(shù)768得到32,因?yàn)?,?qǐng)確定的十位上的數(shù)是_____________(3)已知13824和分別是兩個(gè)數(shù)的立方,仿照上面的計(jì)算過(guò)程,請(qǐng)計(jì)算:=____;11.觀察下面的變形規(guī)律:;;;….解答下面的問(wèn)題:(1)仿照上面的格式請(qǐng)寫出=;(2)若n為正整數(shù),請(qǐng)你猜想=;(3)基礎(chǔ)應(yīng)用:計(jì)算:.(4)拓展應(yīng)用1:解方程:=2016(5)拓展應(yīng)用2:計(jì)算:.12.在已有運(yùn)算的基礎(chǔ)上定義一種新運(yùn)算:,的運(yùn)算級(jí)別高于加減乘除運(yùn)算,即的運(yùn)算順序要優(yōu)先于運(yùn)算,試根據(jù)條件回答下列問(wèn)題.(1)計(jì)算:;(2)若,則;(3)在數(shù)軸上,數(shù)的位置如下圖所示,試化簡(jiǎn):;(4)如圖所示,在數(shù)軸上,點(diǎn)分別以1個(gè)單位每秒的速度從表示數(shù)-1和3的點(diǎn)開始運(yùn)動(dòng),點(diǎn)向正方向運(yùn)動(dòng),點(diǎn)向負(fù)方向運(yùn)動(dòng),秒后點(diǎn)分別運(yùn)動(dòng)到表示數(shù)和的點(diǎn)所在的位置,當(dāng)時(shí),求的值.13.如圖,在平面直角坐標(biāo)系中,,CD//x軸,CD=AB.(1)求點(diǎn)D的坐標(biāo):(2)四邊形OCDB的面積四邊形OCDB;(3)在y軸上是否存在點(diǎn)P,使△PAB=四邊形OCDB;若存在,求出點(diǎn)P的坐標(biāo),若不存在,請(qǐng)說(shuō)明理由.14.已知,定點(diǎn),分別在直線,上,在平行線,之間有一動(dòng)點(diǎn).(1)如圖1所示時(shí),試問(wèn),,滿足怎樣的數(shù)量關(guān)系?并說(shuō)明理由.(2)除了(1)的結(jié)論外,試問(wèn),,還可能滿足怎樣的數(shù)量關(guān)系?請(qǐng)畫圖并證明(3)當(dāng)滿足,且,分別平分和,①若,則__________°.②猜想與的數(shù)量關(guān)系.(直接寫出結(jié)論)15.(了解概念)在平面直角坐標(biāo)系中,若,式子的值就叫做線段的“勾股距”,記作.同時(shí),我們把兩邊的“勾股距”之和等于第三邊的“勾股距”的三角形叫做“等距三角形”.(理解運(yùn)用)在平面直角坐標(biāo)系中,.(1)線段的“勾股距”;(2)若點(diǎn)在第三象限,且,求并判斷是否為“等距三角形”﹔(拓展提升)(3)若點(diǎn)在軸上,是“等距三角形”,請(qǐng)直接寫出的取值范圍.16.如圖,數(shù)軸上兩點(diǎn)A、B對(duì)應(yīng)的數(shù)分別是﹣1,1,點(diǎn)P是線段AB上一動(dòng)點(diǎn),給出如下定義:如果在數(shù)軸上存在動(dòng)點(diǎn)Q,滿足|PQ|=2,那么我們把這樣的點(diǎn)Q表示的數(shù)稱為連動(dòng)數(shù),特別地,當(dāng)點(diǎn)Q表示的數(shù)是整數(shù)時(shí)我們稱為連動(dòng)整數(shù).(1)﹣3,0,2.5是連動(dòng)數(shù)的是;(2)關(guān)于x的方程2x﹣m=x+1的解滿足是連動(dòng)數(shù),求m的取值范圍;(3)當(dāng)不等式組的解集中恰好有4個(gè)解是連動(dòng)整數(shù)時(shí),求a的取值范圍.17.在平面直角坐標(biāo)系中,點(diǎn),滿足關(guān)系式.(1)求,的值;(2)若點(diǎn)滿足的面積等于,求的值;(3)線段與軸交于點(diǎn),動(dòng)點(diǎn)從點(diǎn)出發(fā),在軸上以每秒個(gè)單位長(zhǎng)度的速度向下運(yùn)動(dòng),動(dòng)點(diǎn)從點(diǎn)出發(fā),以每秒個(gè)單位長(zhǎng)度的速度向右運(yùn)動(dòng),問(wèn)為何值時(shí)有,請(qǐng)直接寫出的值.18.如圖,在平面直角坐標(biāo)系xOy中,對(duì)于任意兩點(diǎn)A(x1,y1)與B(x2,y2)的“非常距離”,給出如下定義:若|x1﹣x2|≥|y1﹣y2|,則點(diǎn)A與點(diǎn)B的“非常距離”為|x1﹣x2|;若|x1﹣x2|<|y1﹣y2|,則點(diǎn)A與點(diǎn)B的“非常距離”為|y1﹣y2|.(1)填空:已知點(diǎn)A(3,6)與點(diǎn)B(5,2),則點(diǎn)A與點(diǎn)B的“非常距離”為;(2)已知點(diǎn)C(﹣1,2),點(diǎn)D為y軸上的一個(gè)動(dòng)點(diǎn).①若點(diǎn)C與點(diǎn)D的“非常距離”為2,求點(diǎn)D的坐標(biāo);②直接寫出點(diǎn)C與點(diǎn)D的“非常距離”的最小值.19.兩個(gè)兩位數(shù)的和是68,在較大的兩位數(shù)的右邊接著寫較小的兩位數(shù),得到一個(gè)四位數(shù);在較大的兩位數(shù)的左邊寫上較小的兩位數(shù),也得到一個(gè)四位數(shù).已知前一個(gè)四位數(shù)比后一個(gè)四位數(shù)大990.若設(shè)較大的兩位數(shù)為x,較小的兩位數(shù)為y,回答下列問(wèn)題:(1)可得到下列哪一個(gè)方程組?A.B.C.D.(2)解所確定的方程組,求這兩個(gè)兩位數(shù).20.如圖,學(xué)校印刷廠與A,D兩地有公路、鐵路相連,從A地購(gòu)進(jìn)一批每噸8000元的白紙,制成每噸10000元的作業(yè)本運(yùn)到D地批發(fā),已知公路運(yùn)價(jià)1.5元/(t?km),鐵路運(yùn)價(jià)1.2元/(t?km).這兩次運(yùn)輸支出公路運(yùn)費(fèi)4200元,鐵路運(yùn)費(fèi)26280元.(1)白紙和作業(yè)本各多少噸?(2)這批作業(yè)本的銷售款比白紙的購(gòu)進(jìn)款與運(yùn)輸費(fèi)的和多多少元?21.某工廠接受了20天內(nèi)生產(chǎn)1200臺(tái)GH型電子產(chǎn)品的總?cè)蝿?wù).已知每臺(tái)GH型產(chǎn)品由4個(gè)G型裝置和3個(gè)H型裝置配套組成.工廠現(xiàn)有80名工人,每個(gè)工人每天能加工6個(gè)G型裝置或3個(gè)H型裝置.工廠將所有工人分成兩組同時(shí)開始加工,每組分別加工一種裝置,并要求每天加工的G、H型裝置數(shù)量正好全部配套組成GH型產(chǎn)品.(1)按照這樣的生產(chǎn)方式,工廠每天能配套組成多少套GH型電子產(chǎn)品?請(qǐng)列出二元一次方程組解答此問(wèn)題.(2)為了在規(guī)定期限內(nèi)完成總?cè)蝿?wù),工廠決定補(bǔ)充一些新工人,這些新工人只能獨(dú)立進(jìn)行G型裝置的加工,且每人每天只能加工4個(gè)G型裝置.設(shè)原來(lái)每天安排x名工人生產(chǎn)G型裝置,后來(lái)補(bǔ)充m名新工人,求x的值(用含m的代數(shù)式表示)22.?dāng)?shù)軸上有兩個(gè)動(dòng)點(diǎn)M,N,如果點(diǎn)M始終在點(diǎn)N的左側(cè),我們稱作點(diǎn)M是點(diǎn)N的“追趕點(diǎn)”.如圖,數(shù)軸上有2個(gè)點(diǎn)A,B,它們表示的數(shù)分別為-3,1,已知點(diǎn)M是點(diǎn)N的“追趕點(diǎn)”,且M,N表示的數(shù)分別為m,n.(1)由題意得:點(diǎn)A是點(diǎn)B的“追趕點(diǎn)”,AB=1-(-3)=4(AB表示線段AB的長(zhǎng),以下相同);類似的,MN=____________.(2)在A,M,N三點(diǎn)中,若其中一個(gè)點(diǎn)是另外兩個(gè)點(diǎn)所構(gòu)成線段的中點(diǎn),請(qǐng)用含m的代數(shù)式來(lái)表示n.(3)若AM=BN,MN=BM,求m和n值.23.在平面直角坐標(biāo)系中,點(diǎn),點(diǎn),點(diǎn).(1)的面積為______;(2)已知點(diǎn),,那么四邊形的面積為______.(3)奧地利數(shù)學(xué)家皮克發(fā)現(xiàn)了一類快速求解格點(diǎn)多邊形的方法,被稱為皮克定理:如果用m表示格點(diǎn)多邊形內(nèi)的格點(diǎn)數(shù),n表示格點(diǎn)多邊形邊上的格點(diǎn)數(shù),那么格點(diǎn)多邊形的面積S和m與n之間滿足一種數(shù)量關(guān)系.例如剛剛求解的幾個(gè)多邊形面積中,我們可以得到如表中信息:形內(nèi)格點(diǎn)數(shù)m邊界格點(diǎn)數(shù)n格點(diǎn)多邊形面積S611四邊形811五邊形208根據(jù)上述的例子,猜測(cè)皮克公式為______(用m,n表示),試計(jì)算圖②中六邊形的面積為______(本大題無(wú)需寫出解題過(guò)程,寫出正確答案即可).24.如果3個(gè)數(shù)位相同的自然數(shù)m,n,k滿足:m+n=k,且k各數(shù)位上的數(shù)字全部相同,則稱數(shù)m和數(shù)n是一對(duì)“黃金搭檔數(shù)”.例如:因?yàn)?5,63,88都是兩位數(shù),且25+63=88,則25和63是一對(duì)“黃金搭檔數(shù)”.再如:因?yàn)?52,514,666都是三位數(shù),且152+514=666,則152和514是一對(duì)“黃金搭檔數(shù)”.(1)分別判斷87和12,62和49是否是一對(duì)“黃金搭檔數(shù)”,并說(shuō)明理由;(2)已知兩位數(shù)s和兩位數(shù)t的十位數(shù)字相同,若s和t是一對(duì)“黃金搭檔數(shù)”,并且s與t的和能被7整除,求出滿足題意的s.25.閱讀材料:關(guān)于x,y的二元一次方程ax+by=c有一組整數(shù)解,則方程ax+by=c的全部整數(shù)解可表示為(t為整數(shù)).問(wèn)題:求方程7x+19y=213的所有正整數(shù)解.小明參考閱讀材料,解決該問(wèn)題如下:解:該方程一組整數(shù)解為,則全部整數(shù)解可表示為(t為整數(shù)).因?yàn)榻獾茫驗(yàn)閠為整數(shù),所以t=0或-1.所以該方程的正整數(shù)解為和.(1)方程3x-5y=11的全部整數(shù)解表示為:(t為整數(shù)),則=;(2)請(qǐng)你參考小明的解題方法,求方程2x+3y=24的全部正整數(shù)解;(3)方程19x+8y=1908的正整數(shù)解有多少組?請(qǐng)直接寫出答案.26.對(duì)于實(shí)數(shù)x,若,則符合條件的中最大的正數(shù)為的內(nèi)數(shù),例如:8的內(nèi)數(shù)是5;7的內(nèi)數(shù)是4.(1)1的內(nèi)數(shù)是______,20的內(nèi)數(shù)是______,6的內(nèi)數(shù)是______;(2)若3是x的內(nèi)數(shù),求x的取值范圍;(3)一動(dòng)點(diǎn)從原點(diǎn)出發(fā),以3個(gè)單位/秒的速度按如圖1所示的方向前進(jìn),經(jīng)過(guò)秒后,動(dòng)點(diǎn)經(jīng)過(guò)的格點(diǎn)(橫,縱坐標(biāo)均為整數(shù)的點(diǎn))中能圍成的最大實(shí)心正方形的格點(diǎn)數(shù)(包括正方形邊界與內(nèi)部的格點(diǎn))為,例如當(dāng)時(shí),,如圖2①……;當(dāng)時(shí),,如圖2②,③;……①用表示的內(nèi)數(shù);②當(dāng)?shù)膬?nèi)數(shù)為9時(shí),符合條件的最大實(shí)心正方形有多少個(gè),在這些實(shí)心正方形的格點(diǎn)中,直接寫出離原點(diǎn)最遠(yuǎn)的格點(diǎn)的坐標(biāo).(若有多點(diǎn)并列最遠(yuǎn),全部寫出)27.在平面直角坐標(biāo)系中,點(diǎn),,,且,,滿足.(1)請(qǐng)用含的式子分別表示,兩點(diǎn)的坐標(biāo);(2)當(dāng)實(shí)數(shù)變化時(shí),判斷的面積是否發(fā)生變化?若不變,求其值;若變化,求其變化范圍;(3)如圖,已知線段與軸相交于點(diǎn),直線與直線交于點(diǎn),若,求實(shí)數(shù)的取值范圍.28.對(duì),定義一種新的運(yùn)算,規(guī)定:(其中).已知,.(1)求、的值;(2)若,解不等式組.29.某地葡萄豐收,準(zhǔn)備將已經(jīng)采摘下來(lái)的11400公斤葡萄運(yùn)送杭州,現(xiàn)有甲、乙、丙三種車型共選擇,每輛車運(yùn)載能力和運(yùn)費(fèi)如表表示(假設(shè)每輛車均滿載)車型甲乙丙汽車運(yùn)載量(公斤/輛)600800900汽車運(yùn)費(fèi)(元/輛)500600700(1)若全部葡萄都用甲、乙兩種車型來(lái)運(yùn),需運(yùn)費(fèi)8700元,則需甲、乙兩種車型各幾輛?(2)為了節(jié)省運(yùn)費(fèi),現(xiàn)打算用甲、乙、丙三種車型都參與運(yùn)送,已知它們的總輛數(shù)為15輛,你能分別求出這三種車型的輛數(shù)嗎?怎樣安排運(yùn)費(fèi)最省?30.如圖1,在平面直角坐標(biāo)系中,A(a,0),C(b,2),且滿足,過(guò)C作軸于B,(1)求a,b的值;(2)在y軸上是否存在點(diǎn)P,使得△ABC和△OCP的面積相等,若存在,求出點(diǎn)P坐標(biāo),若不存在,試說(shuō)明理由.(3)若過(guò)B作BD∥AC交y軸于D,且AE,DE分別平分∠CAB,∠ODB,如圖2,圖3,①求:∠CAB+∠ODB的度數(shù);②求:∠AED的度數(shù).【參考答案】***試卷處理標(biāo)記,請(qǐng)不要?jiǎng)h除一、解答題1.(1)-1,-3.(2)①當(dāng)點(diǎn)P在直線AB,CD之間時(shí),∠BPD-∠PDC=α.當(dāng)點(diǎn)P在直線CD的下方時(shí),∠BPD+∠PDC=α.當(dāng)點(diǎn)P在直線AB的上方時(shí),∠BPD+∠PDC=α;②-6<m≤1或7≤m<14【分析】(1)由題意,線段AB向左平移2個(gè)單位,向下平移4個(gè)單位得到線段CD,利用平移規(guī)律求解即可.(2)①分三種情形求解,如圖1中,當(dāng)點(diǎn)P在直線AB,CD之間時(shí),∠BPD-∠PDC=α.如圖2中,當(dāng)點(diǎn)P在直線CD的下方時(shí),∠BPD+∠PDC=α.如圖3中,當(dāng)點(diǎn)P在直線AB的上方時(shí),同法可證∠BPD+∠PDC=α.分別利用平行線的性質(zhì)求解即可.②求出點(diǎn)P在直線AB兩側(cè),△PAB的面積分別為3和10時(shí),m的值,即可判斷.【詳解】解:(1)由題意,線段AB向左平移2個(gè)單位,向下平移4個(gè)單位得到線段CD,∵A(1,3),B(3,1),∴C(-1,-1),D(1,-3),∴m=-1,n=-3.故答案為:-1,-3.(2)如圖1中,當(dāng)點(diǎn)P在直線AB,CD之間時(shí),∠BPD-∠PDC=α.理由:過(guò)點(diǎn)P作PE∥AB,∵AB∥CD,∴PE∥CD∥AB,∴∠ABP=∠BPE,∠PDC=∠DPE,∴∠BPD-∠PDC=∠BPD-∠DPE=∠BPE=α.如圖2中,當(dāng)點(diǎn)P在直線CD的下方時(shí),∠BPD+∠PDC=α.理由:過(guò)點(diǎn)P作PE∥AB,∵AB∥CD,∴PE∥CD∥AB,∴∠ABP=∠BPE,∠PDC=∠DPE,∴∠BPD+∠PDC=∠BPD+∠DPE=∠BPE=α.如圖3中,當(dāng)點(diǎn)P在直線AB的上方時(shí),同法可證∠BPD+∠PDC=α.(3)如圖4中,過(guò)點(diǎn)B作BH⊥x軸于H,過(guò)點(diǎn)A作AT⊥BH交BH于點(diǎn)T,延長(zhǎng)AB交x軸于E.當(dāng)點(diǎn)P在直線AB的下方時(shí),S△PAB=S梯形ATHP-S△ABT-S△PBH=(2+3-m)?3-×2×2-?(3-m)?1=-m+4,當(dāng)△PAB的面積=3時(shí),-m+4=3,解得m=1,當(dāng)△PAB的面積=3時(shí),-m+4=10,解得m=-6,∵△ABT是等腰直角三角形,∴∠ABT=45°=∠HBE,∴BH=EH=1,∴E(4,0),根據(jù)對(duì)稱性可知,當(dāng)點(diǎn)P在直線AB的右側(cè)時(shí),當(dāng)△PAB的面積=3時(shí),m=7,當(dāng)△PAB的面積=3時(shí),m=14,觀察圖象可知,-6<m≤1或7≤m<14.【點(diǎn)睛】本題屬于三角形綜合題,考查了三角形的面積,平行線的判定和性質(zhì)等知識(shí),解題的關(guān)鍵是學(xué)會(huì)利用分割法求三角形面積,學(xué)會(huì)尋找特殊位置解決問(wèn)題,屬于中考??碱}型.2.(1)∠BME=∠MEN?∠END;∠BMF=∠MFN+∠FND.(2)120°(3)∠FEQ的大小沒(méi)發(fā)生變化,∠FEQ=30°.【分析】(1)過(guò)E作EHAB,易得EHABCD,根據(jù)平行線的性質(zhì)可求解;過(guò)F作FHAB,易得FHABCD,根據(jù)平行線的性質(zhì)可求解;(2)根據(jù)(1)的結(jié)論及角平分線的定義可得2(∠BME+∠END)+∠BMF?∠FND=180°,可求解∠BMF=60°,進(jìn)而可求解;(3)根據(jù)平行線的性質(zhì)及角平分線的定義可推知∠FEQ=∠BME,進(jìn)而可求解.【詳解】解:(1)過(guò)E作EHAB,如圖1,∴∠BME=∠MEH,∵ABCD,∴HECD,∴∠END=∠HEN,∴∠MEN=∠MEH+∠HEN=∠BME+∠END,即∠BME=∠MEN?∠END.如圖2,過(guò)F作FHAB,∴∠BMF=∠MFK,∵ABCD,∴FHCD,∴∠FND=∠KFN,∴∠MFN=∠MFK?∠KFN=∠BMF?∠FND,即:∠BMF=∠MFN+∠FND.故答案為∠BME=∠MEN?∠END;∠BMF=∠MFN+∠FND.(2)由(1)得∠BME=∠MEN?∠END;∠BMF=∠MFN+∠FND.∵NE平分∠FND,MB平分∠FME,∴∠FME=∠BME+∠BMF,∠FND=∠FNE+∠END,∵2∠MEN+∠MFN=180°,∴2(∠BME+∠END)+∠BMF?∠FND=180°,∴2∠BME+2∠END+∠BMF?∠FND=180°,即2∠BMF+∠FND+∠BMF?∠FND=180°,解得∠BMF=60°,∴∠FME=2∠BMF=120°;(3)∠FEQ的大小沒(méi)發(fā)生變化,∠FEQ=30°.由(1)知:∠MEN=∠BME+∠END,∵EF平分∠MEN,NP平分∠END,∴∠FEN=∠MEN=(∠BME+∠END),∠ENP=∠END,∵EQNP,∴∠NEQ=∠ENP,∴∠FEQ=∠FEN?∠NEQ=(∠BME+∠END)?∠END=∠BME,∵∠BME=60°,∴∠FEQ=×60°=30°.【點(diǎn)睛】本題主要考查平行線的性質(zhì)及角平分線的定義,作輔助線是解題的關(guān)鍵.3.(1);(2)①,理由見(jiàn)解析;②圖見(jiàn)解析,或【分析】(1)作PQ∥EF,由平行線的性質(zhì),即可得到答案;(2)①過(guò)作交于,由平行線的性質(zhì),得到,,即可得到答案;②根據(jù)題意,可對(duì)點(diǎn)P進(jìn)行分類討論:當(dāng)點(diǎn)在延長(zhǎng)線時(shí);當(dāng)在之間時(shí);與①同理,利用平行線的性質(zhì),即可求出答案.【詳解】解:(1)作PQ∥EF,如圖:∵,∴,∴,,∵∴;(2)①;理由如下:如圖,過(guò)作交于,∵,∴,∴,,∴;②當(dāng)點(diǎn)在延長(zhǎng)線時(shí),如備用圖1:∵PE∥AD∥BC,∴∠EPC=,∠EPD=,∴;當(dāng)在之間時(shí),如備用圖2:∵PE∥AD∥BC,∴∠EPD=,∠CPE=,∴.【點(diǎn)睛】本題考查了平行線的性質(zhì),解題的關(guān)鍵是熟練掌握兩直線平行同旁內(nèi)角互補(bǔ),兩直線平行內(nèi)錯(cuò)角相等,從而得到角的關(guān)系.4.(1)見(jiàn)解析;(2)∠PEQ+2∠PFQ=360°;(3)30°【分析】(1)首先證明∠1=∠3,易證得AB//CD;(2)如圖2中,∠PEQ+2∠PFQ=360°.作EH//AB.理由平行線的性質(zhì)即可證明;(3)如圖3中,設(shè)∠QPF=y(tǒng),∠PHQ=x.∠EPQ=z,則∠EQF=∠FQH=5y,想辦法構(gòu)建方程即可解決問(wèn)題;【詳解】(1)如圖1中,∵∠2=∠3,∠1=∠2,∴∠1=∠3,∴AB//CD.(2)結(jié)論:如圖2中,∠PEQ+2∠PFQ=360°.理由:作EH//AB.∵AB//CD,EH//AB,∴EH//CD,∴∠1=∠2,∠3=∠4,∴∠2+∠3=∠1+∠4,∴∠PEQ=∠1+∠4,同法可證:∠PFQ=∠BPF+∠FQD,∵∠BPE=2∠BPF,∠EQD=2∠FQD,∠1+∠BPE=180°,∠4+∠EQD=180°,∴∠1+∠4+∠EQD+∠BPE=2×180°,即∠PEQ+2(∠FQD+∠BPF)=360°,∴∠PEQ+2∠PFQ=360°.(3)如圖3中,設(shè)∠QPF=y(tǒng),∠PHQ=x.∠EPQ=z,則∠EQF=∠FQH=5y,∵EQ//PH,∴∠EQC=∠PHQ=x,∴x+10y=180°,∵AB//CD,∴∠BPH=∠PHQ=x,∵PF平分∠BPE,∴∠EPQ+∠FPQ=∠FPH+∠BPH,∴∠FPH=y(tǒng)+z﹣x,∵PQ平分∠EPH,∴Z=y(tǒng)+y+z﹣x,∴x=2y,∴12y=180°,∴y=15°,∴x=30°,∴∠PHQ=30°.【點(diǎn)睛】本題考查了平行線的判定與性質(zhì),角平分線的定義等知識(shí).(2)中能正確作出輔助線是解題的關(guān)鍵;(3)中能熟練掌握相關(guān)性質(zhì),找到角度之間的關(guān)系是解題的關(guān)鍵.5.(1)AB//CD,證明見(jiàn)解析;(2)∠E1+∠E2+…∠En=∠B+∠F1+∠F2+…∠Fn-1+∠D;(3)(n-1)?180°【分析】(1)過(guò)點(diǎn)E作EF//AB,利用平行線的性質(zhì)則可得出∠B=∠BEF,再由已知及平行線的判定即可得出AB∥CD;(2)如圖,過(guò)點(diǎn)E作EM∥AB,過(guò)點(diǎn)F作FN∥AB,過(guò)點(diǎn)G作GH∥AB,根據(jù)探究(1)的證明過(guò)程及方法,可推出∠E+∠G=∠B+∠F+∠D,則可由此得出規(guī)律,并得出∠E1+∠E2+…∠En=∠B+∠F1+∠F2+…∠Fn-1+∠D;(3)如圖,過(guò)點(diǎn)M作EF∥AB,過(guò)點(diǎn)N作GH∥AB,則可由平行線的性質(zhì)得出∠1+∠2+∠MNG=180°×2,依此即可得出此題結(jié)論.【詳解】解:(1)過(guò)點(diǎn)E作EF//AB,∴∠B=∠BEF.∵∠BEF+∠FED=∠BED,∴∠B+∠FED=∠BED.∵∠B+∠D=∠E(已知),∴∠FED=∠D.∴CD//EF(內(nèi)錯(cuò)角相等,兩直線平行).∴AB//CD.(2)過(guò)點(diǎn)E作EM∥AB,過(guò)點(diǎn)F作FN∥AB,過(guò)點(diǎn)G作GH∥AB,∵AB∥CD,∴AB∥EM∥FN∥GH∥CD,∴∠B=∠BEM,∠MEF=∠EFN,∠NFG=∠FGH,∠HGD=∠D,∴∠BEF+∠FGD=∠BEM+∠MEF+∠FGH+∠HGD=∠B+∠EFN+∠NFG+∠D=∠B+∠EFG+∠D,即∠E+∠G=∠B+∠F+∠D.由此可得:開口朝左的所有角度之和與開口朝右的所有角度之和相等,∴∠E1+∠E2+…∠En=∠B+∠F1+∠F2+…∠Fn-1+∠D.故答案為:∠E1+∠E2+…∠En=∠B+∠F1+∠F2+…∠Fn-1+∠D.(3)如圖,過(guò)點(diǎn)M作EF∥AB,過(guò)點(diǎn)N作GH∥AB,∴∠APM+∠PME=180°,∵EF∥AB,GH∥AB,∴EF∥GH,∴∠EMN+∠MNG=180°,∴∠1+∠2+∠MNG=180°×2,依次類推:∠1+∠2+…+∠n-1+∠n=(n-1)?180°.故答案為:(n-1)?180°.【點(diǎn)睛】本題考查了平行線的性質(zhì)與判定,屬于基礎(chǔ)題,關(guān)鍵是過(guò)E點(diǎn)作AB(或CD)的平行線,把復(fù)雜的圖形化歸為基本圖形.6.(1)∠ABC=100°;(2)∠ABC>∠AFC;(3)∠N=90°﹣∠HAP;理由見(jiàn)解析.【分析】(1)過(guò)點(diǎn)B作BMHD,則HDGEBM,根據(jù)平行線的性質(zhì)求得∠ABM與∠CBM,便可求得最后結(jié)果;(2)過(guò)B作BPHDGE,過(guò)F作FQHDGE,由平行線的性質(zhì)得,∠ABC=∠HAB+∠BCG,∠AFC=∠HAF+∠FCG,由角平分線的性質(zhì)和已知角的度數(shù)分別求得∠HAF,∠FCG,最后便可求得結(jié)果;(3)過(guò)P作PKHDGE,先由平行線的性質(zhì)證明∠ABC=∠HAB+∠BCG,∠AFC=∠HAF+∠FCG,再根據(jù)角平分線求得∠NPC與∠PCN,由后由三角形內(nèi)角和定理便可求得結(jié)果.【詳解】解:(1)過(guò)點(diǎn)B作BMHD,則HDGEBM,如圖1,∴∠ABM=180°﹣∠DAB,∠CBM=∠BCG,∵∠DAB=120°,∠BCG=40°,∴∠ABM=60°,∠CBM=40°,∴∠ABC=∠ABM+∠CBM=100°;(2)過(guò)B作BPHDGE,過(guò)F作FQHDGE,如圖2,∴∠ABP=∠HAB,∠CBP=∠BCG,∠AFQ=∠HAF,∠CFQ=∠FCG,∴∠ABC=∠HAB+∠BCG,∠AFC=∠HAF+∠FCG,∵∠DAB=120°,∴∠HAB=180°﹣∠DAB=60°,∵AF平分∠HAB,BC平分∠FCG,∠BCG=20°,∴∠HAF=30°,∠FCG=40°,∴∠ABC=60°+20°=80°,∠AFC=30°+40°=70°,∴∠ABC>∠AFC;(3)過(guò)P作PKHDGE,如圖3,∴∠APK=∠HAP,∠CPK=∠PCG,∴∠APC=∠HAP+∠PCG,∵PN平分∠APC,∴∠NPC=∠HAP+∠PCG,∵∠PCE=180°﹣∠PCG,CN平分∠PCE,∴∠PCN=90°﹣∠PCG,∵∠N+∠NPC+∠PCN=180°,∴∠N=180°﹣∠HAP﹣∠PCG﹣90°+∠PCG=90°﹣∠HAP,即:∠N=90°﹣∠HAP.【點(diǎn)睛】本題考查了角平分線的定義,平行線性質(zhì)和判定:兩直線平行,同位角相等;兩直線平行,同旁內(nèi)角互補(bǔ);兩直線平行,內(nèi)錯(cuò)角相等.此題難度適中,注意掌握輔助線的作法,注意掌握數(shù)形結(jié)合思想與方程思想的應(yīng)用,理清各角度之間的關(guān)系是解題的關(guān)鍵,也是本題的難點(diǎn).7.(1),;(2)①;②【分析】(1)根據(jù)規(guī)律可得第5個(gè)算式;根據(jù)規(guī)律可得第n個(gè)算式;(2)①根據(jù)運(yùn)算規(guī)律可得結(jié)果.②利用非負(fù)數(shù)的性質(zhì)求出與的值,代入原式后拆項(xiàng)變形,抵消即可得到結(jié)果.【詳解】(1)根據(jù)規(guī)律得:第5個(gè)等式是,第n個(gè)等式是;(2)①,,,;②為最小的正整數(shù),,,,原式,,,,.【點(diǎn)睛】本題主要考查了數(shù)字的變化規(guī)律,發(fā)現(xiàn)規(guī)律,運(yùn)用規(guī)律是解答此題的關(guān)鍵.8.初步探究:(1),8;(2)C;深入思考:(1),,;(2);(3)-5.【分析】初步探究:(1)根據(jù)除方運(yùn)算的定義即可得出答案;(2)根據(jù)除方運(yùn)算的定義逐一判斷即可得出答案;深入思考:(1)根據(jù)除方運(yùn)算的定義即可得出答案;(2)根據(jù)(1)即可總結(jié)出(2)中的規(guī)律;(3)先按照除方的定義將每個(gè)數(shù)的圈n次方算出來(lái),再根據(jù)有理數(shù)的混合運(yùn)算法則即可得出答案.【詳解】解:初步探究:(1)2③=2÷2÷2=()⑤=(2)A:任何非零數(shù)的圈2次方就是兩個(gè)相同數(shù)相除,所以都等于1,故選項(xiàng)A錯(cuò)誤;B:因?yàn)槎嗌賯€(gè)1相除都是1,所以對(duì)于任何正整數(shù)n,1?都等于1,故選項(xiàng)B錯(cuò)誤;C:3④=3÷3÷3÷3=,4③=4÷4÷4=,3④≠4③,故選項(xiàng)C正確;D:負(fù)數(shù)的圈奇數(shù)次方,相當(dāng)于奇數(shù)個(gè)負(fù)數(shù)相除,則結(jié)果是負(fù)數(shù);負(fù)數(shù)的圈偶數(shù)次方,相當(dāng)于偶數(shù)個(gè)負(fù)數(shù)相除,則結(jié)果是正數(shù),故選項(xiàng)D錯(cuò)誤;故答案選擇:C.深入思考:(1)(-3)④=(-3)÷(-3)÷(-3)÷(-3)=
5⑥=5÷5÷5÷5÷5÷5=(-)⑩=(2)a?=a÷a÷a…÷a=(3)原式====-5【點(diǎn)睛】本題主要考查了除方運(yùn)算,運(yùn)用到的知識(shí)點(diǎn)是有理數(shù)的混合運(yùn)算,掌握有理數(shù)混合運(yùn)算的法則是解決本題的關(guān)鍵.9.(1)2;5;(2)1,2,3;(3)3;(4)255【分析】(1)先估算和的大小,再由并新定義可得結(jié)果;(2)根據(jù)定義可知x<4,可得滿足題意的x的整數(shù)值;(3)根據(jù)定義對(duì)120進(jìn)行連續(xù)求根整數(shù),可得3次之后結(jié)果為1;(4)最大的正整數(shù)是255,根據(jù)操作過(guò)程分別求出255和256進(jìn)行幾次操作,即可得出答案.【詳解】解:(1)∵22=4,62=36,52=25,∴5<<6,∴[]=[2]=2,[]=5,故答案為2,5;(2)∵12=1,22=4,且[]=1,∴x=1,2,3,故答案為1,2,3;(3)第一次:[]=10,第二次:[]=3,第三次:[]=1,故答案為3;(4)最大的正整數(shù)是255,理由是:∵[]=15,[]=3,[]=1,∴對(duì)255只需進(jìn)行3次操作后變?yōu)?,∵[]=16,[]=4,[]=2,[]=1,∴對(duì)256只需進(jìn)行4次操作后變?yōu)?,∴只需進(jìn)行3次操作后變?yōu)?的所有正整數(shù)中,最大的是255,故答案為255.【點(diǎn)睛】本題考查了估算無(wú)理數(shù)的大小的應(yīng)用,主要考查學(xué)生的閱讀能力和猜想能力,同時(shí)也考查了一個(gè)數(shù)的平方數(shù)的計(jì)算能力.10.(1)兩;(2)2,3;(3)24,-48.【分析】(1)根據(jù)題中所給的分析方法先求出這32768的立方根都是兩位數(shù);(2)繼續(xù)分析求出個(gè)位數(shù)和十位數(shù)即可;(3)利用(1)(2)中材料中的過(guò)程進(jìn)行分析可得結(jié)論.【詳解】解:(1)由103=1000,1003=1000000,∵1000<32768<100000,∴10<<100,∴是兩位數(shù);故答案為:兩;(2)∵只有個(gè)位數(shù)是2的立方數(shù)是個(gè)位數(shù)是8,∴的個(gè)位上的數(shù)是2劃去32768后面的三位數(shù)768得到32,因?yàn)?3=27,43=64,∵27<32<64,∴30<<40.∴的十位上的數(shù)是3.故答案為:2,3;(3)由103=1000,1003=1000000,1000<13824<1000000,∴10<<100,∴是兩位數(shù);∵只有個(gè)位數(shù)是4的立方數(shù)是個(gè)位數(shù)是4,∴的個(gè)位上的數(shù)是4劃去13824后面的三位數(shù)824得到13,因?yàn)?3=8,33=27,∵8<13<27,∴20<<30.∴=24;由103=1000,1003=1000000,1000<110592<1000000,∴10<<100,∴是兩位數(shù);∵只有個(gè)位數(shù)是8的立方數(shù)是個(gè)位數(shù)是2,∴的個(gè)位上的數(shù)是8,劃去110592后面的三位數(shù)592得到110,因?yàn)?3=64,53=125,∵64<110<125,∴40<<50.∴=-48;故答案為:24,-48.【點(diǎn)睛】此題考查立方根,解題關(guān)鍵在于理解一個(gè)數(shù)的立方的個(gè)位數(shù)就是這個(gè)數(shù)的個(gè)位數(shù)的立方的個(gè)位數(shù).11.(1);(2);(3);(4)x=2017;(5)【分析】(1)類比題目中方法解答即可;(2)根據(jù)題目中所給的算式總結(jié)出規(guī)律,解答即可;(3)利用總結(jié)的規(guī)律把每個(gè)式子拆分后合并即可解答;(4)方程左邊提取x后利用(3)的方法計(jì)算后,再解方程即可;(5)類比(3)的方法,拆項(xiàng)計(jì)算即可.【詳解】(1)故答案為:;(2)=故答案為:;(3)計(jì)算:==1﹣=;(4)=2016=2016,x=2017;(5).=+()+()+…+().=(1﹣).=.【點(diǎn)睛】本題是數(shù)字規(guī)律探究題,解決問(wèn)題基本思路是正確找出規(guī)律,根據(jù)所得的規(guī)律解決問(wèn)題.12.(1)5;(2)5或1;(3)1+y-2x;(4)t1=3;t2=【分析】(1)根據(jù)題中的新運(yùn)算列出算式,計(jì)算即可得到結(jié)果;(2)根據(jù)題中的新運(yùn)算列出方程,解方程即可得到結(jié)果;(3)根據(jù)題中的新運(yùn)算列出代數(shù)式,根據(jù)數(shù)軸得出x、y的取值范圍進(jìn)行化簡(jiǎn)即可;(4)根據(jù)A、B在數(shù)軸上的移動(dòng)方向和速度可分別用代數(shù)式表示出數(shù)和,再根據(jù)(2)的解題思路即可得到結(jié)果.【詳解】解:(1);(2)依題意得:,化簡(jiǎn)得:,所以或,解得:x=5或x=1;(3)由數(shù)軸可知:0<x<1,y<0,所以===(4)依題意得:數(shù)a=?1+t,b=3?t;因?yàn)?,所以,化?jiǎn)得:,解得:t=3或t=,所以當(dāng)時(shí),的值為3或.【點(diǎn)睛】本題主要考查了定義新運(yùn)算、有理數(shù)的混合運(yùn)算和解一元一次方程,根據(jù)定義新運(yùn)算列出關(guān)系式是解題的關(guān)鍵.13.(1)(2)7(3)點(diǎn)的坐標(biāo)為或【詳解】試題分析:⑴抓住∥軸,可以推出縱坐標(biāo)相等,而是橫坐標(biāo)之差的絕對(duì)值,以此可以求出點(diǎn)的坐標(biāo),根據(jù)圖示要舍去一種情況.⑵四邊形是梯形,根據(jù)點(diǎn)的坐標(biāo)可以求出此梯形的上、下底和高,面積可求.⑶存在性問(wèn)題可以先假設(shè)存在,在假設(shè)的基礎(chǔ)上以△=四邊形為等量關(guān)系建立方程,以此來(lái)探討在軸上是否存在著符合條件的點(diǎn).試題解析:⑴.∵∥軸,∴縱坐標(biāo)相等;∵∴點(diǎn)的縱坐標(biāo)也為2.設(shè)點(diǎn)的坐標(biāo)為,則.又,且,∴,解得:.由于點(diǎn)在第一象限,所以,所以的坐標(biāo)為.⑵.∵∥軸,且∴∴四邊形=.⑶.假設(shè)在軸上存在點(diǎn),使△=四邊形.設(shè)的坐標(biāo)為,則,而∴△=.∵△=四邊形,四邊形∴,解得;.均符合題意.∴在軸上存在點(diǎn),使△=四邊形.點(diǎn)的坐標(biāo)為或.14.(1)∠AEP+∠PFC=∠EPF;(2)∠AEP+∠EPF+∠PFC=360°;(3)①150°或30;②∠EPF+2∠EQF=360°或∠EPF=2∠EQF【分析】(1)由于點(diǎn)是平行線,之間有一動(dòng)點(diǎn),因此需要對(duì)點(diǎn)的位置進(jìn)行分類討論:如圖1,當(dāng)點(diǎn)在的左側(cè)時(shí),,,滿足數(shù)量關(guān)系為:;(2)當(dāng)點(diǎn)在的右側(cè)時(shí),,,滿足數(shù)量關(guān)系為:;(3)①若當(dāng)點(diǎn)在的左側(cè)時(shí),;當(dāng)點(diǎn)在的右側(cè)時(shí),可求得;②結(jié)合①可得,由,得出;可得,由,得出.【詳解】解:(1)如圖1,過(guò)點(diǎn)作,,,,,,;(2)如圖2,當(dāng)點(diǎn)在的右側(cè)時(shí),,,滿足數(shù)量關(guān)系為:;過(guò)點(diǎn)作,,,,,,;(3)①如圖3,若當(dāng)點(diǎn)在的左側(cè)時(shí),,,,分別平分和,,,;如圖4,當(dāng)點(diǎn)在的右側(cè)時(shí),,,;故答案為:或30;②由①可知:,;,.綜合以上可得與的數(shù)量關(guān)系為:或.【點(diǎn)睛】本題主要考查了平行線的性質(zhì),平行公理和及推論等知識(shí)點(diǎn),作輔助線后能求出各個(gè)角的度數(shù),是解此題的關(guān)鍵.15.(1)5;(2)dAC=11,△ABC不是為“等距三角形”;(3)m≥4【分析】(1)根據(jù)兩點(diǎn)之間的直角距離的定義,結(jié)合O、P兩點(diǎn)的坐標(biāo)即可得出結(jié)論;(2)根據(jù)兩點(diǎn)之間的直角距離的定義,用含x、y的代數(shù)式表示出來(lái)d(O,Q)=4,結(jié)合點(diǎn)Q(x,y)在第一象限,即可得出結(jié)論;(3)由點(diǎn)N在直線y=x+3上,設(shè)出點(diǎn)N的坐標(biāo)為(m,m+3),通過(guò)尋找d(M,N)的最小值,得出點(diǎn)M(2,-1)到直線y=x+3的直角距離.【詳解】解:(1)由“勾股距”的定義知:dOA=|2-0|+|3-0|=2+3=5,故答案為:5;(2)∵dAB=|4-2|+|2-3|=2+1=3,∴2dAB=6,∵點(diǎn)C在第三象限,∴m<0,n<0,dOC=|m-0|+|n-0|=|m|+|n|=-m-n=-(m+n),∵dOC=2dAB,∴-(m+n)=6,即m+n=-6,∴dAC=|2-m|+|3-n|=2-m+3-n=5-(m+n)=5+6=11,dBC=|4-m|+|2-m|=4-m+2-n=6-(m+n)=6+6=12,∵5+11≠12,11+12≠5,12+5≠11,∴△ABC不是為“等距三角形”;(3)點(diǎn)C在x軸上時(shí),點(diǎn)C(m,0),則dAC=|2-m|+3,dBC=|4-m|+2,①當(dāng)m<2時(shí),dAC=2-m+3=5-m,dBC=4-m+2=6-m,若△ABC是“等距三角形”,∴5-m+6-m=11-2m=3,解得:m=4(不合題意),又∵5-m+3=8-m≠6-m,②當(dāng)2≤m<4時(shí),dAC=m-2+3=m+1,dBC=4-m+2=6-m,若△ABC是“等距三角形”,則m+1+6-m=7≠3,6-m+3=m+1,解得:m=4(不和題意),③當(dāng)m≥4時(shí),dAC=m+1,dBC=m-2,若△ABC是“等距三角形”,則m+1+m-2=3,解得:m=4,m-2+3=m+1恒成立,∴m≥4時(shí),△ABC是“等距三角形”,綜上所述:△ABC是“等距三角形”時(shí),m的取值范圍為:m≥4.【點(diǎn)睛】本題考查坐標(biāo)與圖形的性質(zhì),關(guān)鍵是對(duì)“勾股距”和“等距三角形”新概念的理解,運(yùn)用“勾股距”和“等距三角形”解題.16.(1)﹣3,2.5;(2)﹣4<m<﹣2或0<m<2;(3)1≤a<2.【分析】(1)根據(jù)連動(dòng)數(shù)的定義逐一判斷即得答案;(2)先求得方程的解,再根據(jù)連動(dòng)數(shù)的定義得出相應(yīng)的不等式組,解不等式組即可求出結(jié)果;(3)先解不等式組中的每個(gè)不等式,再根據(jù)連動(dòng)整數(shù)的概念得到關(guān)于a的不等式組,解不等式組即可求得答案.【詳解】解:(1)設(shè)點(diǎn)P表示的數(shù)是x,則,若點(diǎn)Q表示的數(shù)是﹣3,由可得,解得:x=﹣1或﹣5,所以﹣3是連動(dòng)數(shù);若點(diǎn)Q表示的數(shù)是0,由可得,解得:x=2或﹣2,所以0不是連動(dòng)數(shù);若點(diǎn)Q表示的數(shù)是2.5,由可得,解得:x=﹣0.5或4.5,所以2.5是連動(dòng)數(shù);所以﹣3,0,2.5是連動(dòng)數(shù)的是﹣3,2.5,故答案為:﹣3,2.5;(2)解關(guān)于x的方程2x﹣m=x+1得:x=m+1,∵關(guān)于x的方程2x﹣m=x+1的解滿足是連動(dòng)數(shù),∴或,解得:﹣4<m<﹣2或0<m<2;故答案為:﹣4<m<﹣2或0<m<2;(3),解不等式①,得x>﹣3,解不等式②,得x≤1+a,∵不等式組的解集中恰好有4個(gè)解是連動(dòng)整數(shù),∴四個(gè)連動(dòng)整數(shù)解為﹣2,﹣1,1,2,∴2≤1+a<3,解得:1≤a<2,∴a的取值范圍是1≤a<2.【點(diǎn)睛】本題是新定義試題,以數(shù)軸為載體,主要考查了一元一次不等式組,正確理解連動(dòng)數(shù)與連動(dòng)整數(shù)、列出相應(yīng)的不等式組是解題的關(guān)鍵.17.(1),;(2)或;(3)或【分析】(1)根據(jù)一個(gè)數(shù)的平方與絕對(duì)值均非負(fù),且其和為0,則可得它們都為0,從而可求得a和b的值;(2)過(guò)點(diǎn)P作直線l垂直于x軸,延長(zhǎng)交直線于點(diǎn),設(shè)點(diǎn)坐標(biāo)為,過(guò)作交直線于點(diǎn),根據(jù)面積關(guān)系求出Q點(diǎn)坐標(biāo),再求出PQ的長(zhǎng)度,即可求出n的值;(3)先根據(jù)求出C點(diǎn)坐標(biāo),再根據(jù)求出D點(diǎn)坐標(biāo),根據(jù)題意可得F點(diǎn)坐標(biāo),由得關(guān)于t的方程,求出t值即可.【詳解】(1),,且,,(2)過(guò)作直線垂直于軸,延長(zhǎng)交直線于點(diǎn),設(shè)點(diǎn)坐標(biāo)為,過(guò)作交直線于點(diǎn),如圖所示∵∴解得,點(diǎn)坐標(biāo)為∵∴解得:或(3)當(dāng)或時(shí),有.如圖,延長(zhǎng)BA交x軸于點(diǎn)D,過(guò)A點(diǎn)作AG⊥x軸于點(diǎn)G,過(guò)B點(diǎn)作BN⊥x軸于點(diǎn)N,∵∴解得:∴∵∴解得:∵∴當(dāng)運(yùn)動(dòng)t秒時(shí),∴∵CE=t∴,∵∴解得:或.【點(diǎn)睛】本題主要考查三角形的面積,含絕對(duì)值方程解法,熟練掌握直角坐標(biāo)系的知識(shí),三角形的面積,梯形的面積等知識(shí)是解題的關(guān)鍵,難點(diǎn)在于對(duì)圖形進(jìn)行割補(bǔ)轉(zhuǎn)化為易求面積的圖形.18.(1)4;(2)①或;②1.【分析】(1)依照題意,分別求出和,比較大小,得出答案,(2)點(diǎn)在軸上所以橫坐標(biāo)為0,,所以點(diǎn)和點(diǎn)的縱坐標(biāo)差的絕對(duì)值應(yīng)為2,可得點(diǎn)坐標(biāo),(3)已知點(diǎn)和點(diǎn)的橫坐標(biāo)差的絕對(duì)值恒等于1,縱坐標(biāo)差的絕對(duì)是個(gè)動(dòng)點(diǎn)問(wèn)題,取值范圍和1比較,可得出最小值為1.【詳解】解:(1),,,,點(diǎn)與點(diǎn)的“非常距離”為4.故答案為:4.(2)①點(diǎn)在軸上所以橫坐標(biāo)為0,點(diǎn)和點(diǎn)的縱坐標(biāo)差的絕對(duì)值應(yīng)為2,設(shè)點(diǎn)的縱坐標(biāo)為,,解得或,點(diǎn)的坐標(biāo)為或,故點(diǎn)的坐標(biāo)為或;②最小值為1,理由為已知點(diǎn)和點(diǎn)的橫坐標(biāo)差的絕對(duì)值恒等于1,,設(shè)點(diǎn)的縱坐標(biāo)為,當(dāng)時(shí),,可得點(diǎn)與點(diǎn)的“非常距離”為1,當(dāng)或時(shí),,可得點(diǎn)與點(diǎn)的“非常距離”為.,點(diǎn)與點(diǎn)的“非常距離”的最小值為1,故點(diǎn)與點(diǎn)的“非常距離”的最小值為1.【點(diǎn)睛】本題考查了直角坐標(biāo)系坐標(biāo)結(jié)合絕對(duì)值的應(yīng)用,是新定義問(wèn)題,難點(diǎn)在于第三問(wèn)的動(dòng)點(diǎn)位置取值范圍討論,需要學(xué)生根據(jù)題意正確討論.19.(1)C;(2)39和29【分析】(1)首先設(shè)較大的兩位數(shù)為,較小的兩位數(shù)為,根據(jù)題意可得等量關(guān)系:①兩個(gè)兩位數(shù)的和為68,②比大990,根據(jù)等量關(guān)系列出方程組;(2)利用加減消元法解方程組即可.【詳解】解:(1)解:設(shè)較大的兩位數(shù)為,較小的兩位數(shù)為,根據(jù)題意,得故選:C;(2)化簡(jiǎn)得,①+②,得,即.①-②,得,即.所以這兩個(gè)數(shù)分別是39和29.【點(diǎn)睛】此題主要考查了由實(shí)際問(wèn)題抽象出二元一次方程組和解二元一次方程組,關(guān)鍵是弄清題目意思,表示出“較小的兩位數(shù)寫在較大的兩位數(shù)的右邊,得到一個(gè)四位數(shù)為”,把較小的兩位數(shù)寫在較大的兩位數(shù)的左邊,得到另一個(gè)四位數(shù)為.20.(1)白紙有100噸,作業(yè)本有90噸;(2)69520元【分析】(1)設(shè)白紙有噸,作業(yè)本有噸,根據(jù)共支出公路運(yùn)費(fèi)4200元,鐵路運(yùn)費(fèi)26280元.列出二元一次方程組,解之即可;(2)由銷售款(白紙的購(gòu)進(jìn)款與運(yùn)輸費(fèi)的和),進(jìn)行計(jì)算即可.【詳解】解:(1)設(shè)白紙有噸,作業(yè)本有噸,由題意,得,整理得:,解得.答:白紙有100噸,作業(yè)本有90噸;(2)(元).答:這批作業(yè)本的銷售款比白紙的購(gòu)進(jìn)款與運(yùn)輸費(fèi)的和多69520元.【點(diǎn)睛】本題考查了二元一次方程組的應(yīng)用,解題的關(guān)鍵是找準(zhǔn)等量關(guān)系,正確列出二元一次方程組.21.(1)按照這樣的生產(chǎn)方式,工廠每天能配套組成48套GH型電子產(chǎn)品;(2)x=.【解析】【分析】(1)設(shè)x人加工G型裝置,y人加工H型裝置,由題意可得:,解方程組,再由G配件總數(shù)除以4可得總套數(shù);(2)由題意可知:3(6x+4m)=3(80-x)×4,再用含m的式子表示x.【詳解】解:(1)設(shè)x人加工G型裝置,y人加工H型裝置,由題意可得:解得:,6×32÷4=48(套),答:按照這樣的生產(chǎn)方式,工廠每天能配套組成48套GH型電子產(chǎn)品.(2)由題意可知:3(6x+4m)=3(80-x)×4,解得:x=,【點(diǎn)睛】本題考核知識(shí)點(diǎn):列方程組解應(yīng)用題.解題關(guān)鍵點(diǎn):找出相等關(guān)系,列出方程.22.(1)n-m;(2)①M(fèi)是AN的中點(diǎn),n=2m+3;②A是MN中點(diǎn),n=-m-6;③N是AM的中點(diǎn),;(3)或或.【分析】(1)由兩點(diǎn)間距離直接求解即可;(2)分三種情況討論:①M(fèi)是A、N的中點(diǎn),n=2m+3;②當(dāng)A點(diǎn)在M、N點(diǎn)中點(diǎn)時(shí),n=﹣6﹣m;③N是M、A的中點(diǎn)時(shí),n;(3)由已知可得|m+3|=|n﹣1|,n﹣m|m+3|,分情況求解即可.【詳解】(1)MN=n﹣m.故答案為:n﹣m;(2)分三種情況討論:①M(fèi)是A、N的中點(diǎn),∴n+(-3)=2m,∴n=2m+3;②A是M、N點(diǎn)中點(diǎn)時(shí),m+n=-3×2,∴n=﹣6﹣m;③N是M、A的中點(diǎn)時(shí),-3+m=2n,∴n;(3)∵AM=BN,∴|m+3|=|n﹣1|.∵M(jìn)NBM,∴n﹣m|m+3|,∴或或或,∴或或或.∵n>m,∴或或.【點(diǎn)睛】本題考查了列代數(shù)式,解二元一次方程組以及數(shù)軸上兩點(diǎn)間的距離公式,解答本題的關(guān)鍵是:(1)根據(jù)兩點(diǎn)間的距離公式求出線段AB的長(zhǎng);(2)分三種情況討論;(3)分四種情況討論.解決該題型題目時(shí),結(jié)合數(shù)量關(guān)系表示出線段的長(zhǎng)度,再根據(jù)線段間的關(guān)系列出方程是關(guān)鍵.23.(1)10.5;(2)12.5;(3)10.5,12.5,23;;30【分析】(1)畫出圖形,根據(jù)三角形的面積公式求解;(2)畫出圖形,利用割補(bǔ)法求解;(3)設(shè)S=am+bn+c,其中a,b,c為常數(shù),根據(jù)表中數(shù)據(jù)列方程組求出a,b,c,然后根據(jù)公式即可求出六邊形的面積.【詳解】(1)如圖1,的底為7,高為3,所以面積為,故答案為:10.5;(2)如圖2,,故答案為:12.5;(3)由(1)、(2)可填表格如下:形內(nèi)格點(diǎn)數(shù)m邊界格點(diǎn)數(shù)n格點(diǎn)多邊形面積S61110.5四邊形81112.5五邊形20823設(shè)S=am+bn+c,其中a,b為常數(shù),由題意得,解得,∴皮克公式為,∵六邊形中,m=27,n=8,∴六邊形的面積為=30.【點(diǎn)睛】本題考查了坐標(biāo)與圖形的性質(zhì),三角形的面積,三元一次方程組的應(yīng)用等知識(shí),解題的關(guān)鍵是理解題意,靈活運(yùn)用所學(xué)知識(shí)解決問(wèn)題.24.(1)87和12是“黃金搭檔數(shù)”,62和49不是“黃金搭檔數(shù)”,理由見(jiàn)解析;(2)39或38【分析】(1)根據(jù)“黃金搭檔數(shù)”的定義分別判斷即可;(2)由已知設(shè)x,y為整數(shù),x,z為整數(shù),表示出,由s和t是一對(duì)“黃金搭檔數(shù)”,并且s與t的和能被7整除,綜合分析,列出方程組求解即可.【詳解】(1)解:∵∴87和12是一對(duì)“黃金搭檔數(shù)”;∵∴111與62,49數(shù)位不相同,∴62和49不是一對(duì)“黃金搭檔數(shù)”;故87和12是一對(duì)“黃金搭檔數(shù)”,62和49不是一對(duì)“黃金搭檔數(shù)”;(2)∵兩位數(shù)s和兩位數(shù)t的十位數(shù)字相同,∴設(shè)x,y為整數(shù),x,z為整數(shù),∴∵s和t是一對(duì)“黃金搭檔數(shù)”,∴是一個(gè)兩位數(shù),且各個(gè)數(shù)位上的數(shù)相同,又∵s與t的和能被7整除,∴,共有兩種情況:①,解得,∵x為整數(shù),∴不合題意,舍去;②,∵都是整數(shù),且∴解得或,故s為39或38.【點(diǎn)睛】本題考查三元一次方程組的整數(shù)解,解題關(guān)鍵是理解題目中的定義,根據(jù)已知條件列出方程組.25.(1)-1;(2)t=-2,-1,0,1;(3)13組【分析】(1)把x=2代入方程3x-5y=11得,求得y的值,即可求得θ的值;(2)參考小明的解題方法求解即可;(3)參考小明的解題方法求解后,即可得到結(jié)論.【詳解】解:(1)把x=2代入方程3x-5y=11得,6-6y=11,解得y=-1,∵方程3x-5y=11的全部整數(shù)解表示為:(t為整數(shù)),則θ=-1,故答案為-1;(2)方程2x+3y=24一組整數(shù)解為,則全部整數(shù)解可表示為(t為整數(shù)).因?yàn)椋獾?3<t<2.因?yàn)閠為整數(shù),所以t=-2,-1,0,1.(3)方程19x+8y=1908一組整數(shù)解為,則全部整數(shù)解可表示為(t為整數(shù)).∵,解得<t<12.5.因?yàn)閠為整數(shù),所以t=0,1,2,3,4,5,67,8,9,10,11,12,∴方程19x+8y=1908的正整數(shù)解有13組.【點(diǎn)睛】本題考查了二元一次方程的解,一元一次不等式的整數(shù)解,理解題意、掌握解題方法是本題的關(guān)鍵.26.(1)2,7,4;(2);(3)①t的內(nèi)數(shù);②符合條件的最大實(shí)心正方形有2個(gè),離原點(diǎn)最遠(yuǎn)的格點(diǎn)的坐標(biāo)有兩個(gè),為.【分析】(1)根據(jù)內(nèi)數(shù)的定義即可求解;(2)根據(jù)內(nèi)數(shù)的定義可列不等式,求解即可;(3)①分析可得當(dāng)時(shí),即t的內(nèi)數(shù)為2時(shí),;當(dāng)時(shí),即t的內(nèi)數(shù)為3時(shí),,當(dāng)時(shí),即t的內(nèi)數(shù)為4時(shí),……歸納可得結(jié)論;②分析可得當(dāng)t的內(nèi)數(shù)為奇數(shù)時(shí),最大實(shí)心正方形有2個(gè);當(dāng)t的內(nèi)數(shù)為偶數(shù)時(shí),最大實(shí)心正方形有1個(gè);且最大實(shí)心正方形的邊長(zhǎng)為:的內(nèi)數(shù)-1,即可求解.【詳解】解:(1),所以1的內(nèi)數(shù)是2;,所以20的內(nèi)數(shù)是7;,所以6的內(nèi)數(shù)是4;(2)∵3是x的內(nèi)數(shù),∴,解得;(3)①當(dāng)時(shí),即t的內(nèi)數(shù)為2時(shí),;當(dāng)時(shí),即t的內(nèi)數(shù)為3時(shí),,當(dāng)時(shí),即t的內(nèi)數(shù)為4時(shí),,……∴t的內(nèi)數(shù);②當(dāng)t的內(nèi)數(shù)為2時(shí),最大實(shí)心正方形有1個(gè);當(dāng)t的內(nèi)數(shù)為3時(shí),最大實(shí)心正方形有2個(gè),當(dāng)t的內(nèi)數(shù)為4時(shí),最大實(shí)心正方形有1個(gè),……即當(dāng)t的內(nèi)數(shù)為奇數(shù)時(shí),最大實(shí)心正方形
溫馨提示
- 1. 本站所有資源如無(wú)特殊說(shuō)明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒(méi)有圖紙預(yù)覽就沒(méi)有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。
最新文檔
- 2026年重慶財(cái)經(jīng)職業(yè)學(xué)院?jiǎn)握新殬I(yè)技能測(cè)試題庫(kù)參考答案詳解
- 2026年廣西體育高等??茖W(xué)校單招職業(yè)適應(yīng)性考試題庫(kù)及完整答案詳解1套
- 稅務(wù)籌劃面試題庫(kù)及答案
- 護(hù)士實(shí)踐類面試題及答案
- 2025年福州仲裁委秘書處公開招聘勞務(wù)派遣工作人員11人備考題庫(kù)及參考答案詳解1套
- 2025年黃埔海關(guān)國(guó)際旅行衛(wèi)生保健中心公開招聘非占編聘用人員的備考題庫(kù)及參考答案詳解
- 2025年麗江市古城區(qū)疾病預(yù)防控制中心臨聘人員招聘?jìng)淇碱}庫(kù)及參考答案詳解一套
- 青島市衛(wèi)生健康委員會(huì)直屬事業(yè)單位校園招聘2026屆高校畢業(yè)生備考題庫(kù)及一套參考答案詳解
- 施工應(yīng)急預(yù)案(3篇)
- 2025年北京郵電大學(xué)體育部教師招聘?jìng)淇碱}庫(kù)含答案詳解
- 2025年國(guó)考《行測(cè)》全真模擬試卷一及答案
- 國(guó)家開放大學(xué)2025年商務(wù)英語(yǔ)4綜合測(cè)試答案
- 2025年國(guó)家開放大學(xué)《合同法》期末考試備考題庫(kù)及答案解析
- 鋁合金被動(dòng)門窗施工方案
- 留置看護(hù)輔警相關(guān)刷題
- 交警輔警談心談話記錄模板范文
- 基于SLP法的京東物流園3C類倉(cāng)庫(kù)布局優(yōu)化研究
- 2025年《公差配合與技術(shù)測(cè)量》(習(xí)題答案)
- DB64-T 778-2024 蘋果整形修剪技術(shù)規(guī)程
- 中鐵快運(yùn)物流
- 設(shè)備檢修施工環(huán)保方案(3篇)
評(píng)論
0/150
提交評(píng)論