中考數(shù)學總復習《旋轉(zhuǎn)》考試綜合練習含答案詳解(新)_第1頁
中考數(shù)學總復習《旋轉(zhuǎn)》考試綜合練習含答案詳解(新)_第2頁
中考數(shù)學總復習《旋轉(zhuǎn)》考試綜合練習含答案詳解(新)_第3頁
中考數(shù)學總復習《旋轉(zhuǎn)》考試綜合練習含答案詳解(新)_第4頁
中考數(shù)學總復習《旋轉(zhuǎn)》考試綜合練習含答案詳解(新)_第5頁
已閱讀5頁,還剩26頁未讀 繼續(xù)免費閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)

文檔簡介

中考數(shù)學總復習《旋轉(zhuǎn)》考試綜合練習考試時間:90分鐘;命題人:教研組考生注意:1、本卷分第I卷(選擇題)和第Ⅱ卷(非選擇題)兩部分,滿分100分,考試時間90分鐘2、答卷前,考生務必用0.5毫米黑色簽字筆將自己的姓名、班級填寫在試卷規(guī)定位置上3、答案必須寫在試卷各個題目指定區(qū)域內(nèi)相應的位置,如需改動,先劃掉原來的答案,然后再寫上新的答案;不準使用涂改液、膠帶紙、修正帶,不按以上要求作答的答案無效。第I卷(選擇題20分)一、單選題(5小題,每小題4分,共計20分)1、如圖,矩形ABCD繞點A逆時針旋轉(zhuǎn)α(0°<α<90°)得到矩形AB'C′D',此時點B′恰好在DC邊上,若∠B'BC=15°,則α的大小為()A.15° B.25° C.30° D.45°2、如圖,將斜邊為4,且一個角為30°的直角三角形AOB放在直角坐標系中,兩條直角邊分別與坐標軸重合,D為斜邊的中點,現(xiàn)將三角形AOB繞O點順時針旋轉(zhuǎn)120°得到三角形EOC,則點D對應的點的坐標為()A.(1,﹣) B.(,1) C.(2,﹣2) D.(2,﹣2)3、如圖,已知正方形的邊長為4,以點C為圓心,2為半徑作圓,P是上的任意一點,將點P繞點D按逆時針方向旋轉(zhuǎn),得到點Q,連接,則的最大值是(

)A.6 B. C. D.4、如圖,在△ABC中,∠ACB=90°,AC=BC,D是AB邊上一點(點D與A,B不重合),連結(jié)CD,將線段CD繞點C按逆時針方向旋轉(zhuǎn)90°得到線段CE,連結(jié)DE交BC于點F,連接BE.當AD=BF時,∠BEF的度數(shù)是()A.45° B.60° C.62.5° D.67.5°5、圖,在中,,將繞頂點順時針旋轉(zhuǎn)到,當首次經(jīng)過頂點時,旋轉(zhuǎn)角(

)A.30° B.40° C.45° D.60°第Ⅱ卷(非選擇題80分)二、填空題(5小題,每小題6分,共計30分)1、如圖,將繞點O逆時針旋轉(zhuǎn)后得到,若恰好經(jīng)過點A,且,則的度數(shù)為_____________.2、如圖,在Rt△ABC中,∠ACB=90°,,點D為AB的中點,點P在AC上,且CP=1,將CP繞點C在平面內(nèi)旋轉(zhuǎn),點P的對應點為點Q,連接AQ,DQ.當∠ADQ=90°時,AQ的長為______.3、如圖,平面直角坐標系xOy在邊長為1的小正方形組成的網(wǎng)格中,正方形ABCD的邊AD在y軸正半軸上邊BC在第一象限,且,,將正方形ABCD繞點A順時針旋轉(zhuǎn)(),若點B的對應點恰好落在坐標軸上,則點C的對應點的坐標為_________.4、如圖,在正方形中,頂點A,,,在坐標軸上,且,以為邊構(gòu)造菱形(點在軸正半軸上),將菱形與正方形組成的圖形繞點逆時針旋轉(zhuǎn),每次旋轉(zhuǎn)45°,則第2022次旋轉(zhuǎn)結(jié)束時,點的坐標為______.5、定義:在平面內(nèi),一個點到圖形的距離是這個點到這個圖上所有點的最長距離,在平面內(nèi)有一個正方形,邊長為4,中心為O,在正方形外有一點P,OP=4,當正方形繞著點O旋轉(zhuǎn)時,則點P到正方形的最長距離的最小值為____________.三、解答題(5小題,每小題10分,共計50分)1、在RtABC中,∠ABC=90°,∠A=α,O為AC的中點,將點O沿BC翻折得到點,將ABC繞點順時針旋轉(zhuǎn),使點B與C重合,旋轉(zhuǎn)后得到ECF.(1)如圖1,旋轉(zhuǎn)角為.(用含α的式子表示)(2)如圖2,連BE,BF,點M為BE的中點,連接OM,①∠BFC的度數(shù)為.(用含α的式子表示)②試探究OM與BF之間的關(guān)系.(3)如圖3,若α=30°,請直接寫出的值為.2、如圖1,二次函數(shù)y=a(x+3)(x﹣4)的圖象交坐標軸于點A,B(0,﹣2),點P為x軸上一動點.(1)求該二次函數(shù)的解析式;(2)過點P作PQ⊥x軸,分別交線段AB、拋物線于點Q,C,連接AC.若OP=1,求△ACQ的面積;(3)如圖2,連接PB,將線段PB繞點P逆時針旋轉(zhuǎn)90°得到線段PD.當點D在拋物線上時,求點D的坐標.3、規(guī)定:在平面內(nèi),如果一個圖形繞一個定點旋轉(zhuǎn)一定的角度α(0°<α≤180°)后能與自身重合,那么就稱這個圖形是旋轉(zhuǎn)對稱圖形,轉(zhuǎn)動的這個角度α稱為這個圖形的一個旋轉(zhuǎn)角.例如:正方形繞著兩條對角線的交點O旋轉(zhuǎn)90°或180°后,能與自身重合(如圖1),所以正方形是旋轉(zhuǎn)對稱圖形,且有兩個旋轉(zhuǎn)角.根據(jù)以上規(guī)定,回答問題:(1)下列圖形是旋轉(zhuǎn)對稱圖形,但不是中心對稱圖形的是________;A.矩形

B.正五邊形

C.菱形

D.正六邊形(2)下列圖形中,是旋轉(zhuǎn)對稱圖形,且有一個旋轉(zhuǎn)角是60度的有:________(填序號);

(3)下列三個命題:①中心對稱圖形是旋轉(zhuǎn)對稱圖形;②等腰三角形是旋轉(zhuǎn)對稱圖形;③圓是旋轉(zhuǎn)對稱圖形,其中真命題的個數(shù)有(

)個;A.0

B.1

C.2

D.3(4)如圖2的旋轉(zhuǎn)對稱圖形由等腰直角三角形和圓構(gòu)成,旋轉(zhuǎn)角有45°,90°,135°,180°,將圖形補充完整.4、如圖1,直線上有一點O,過點O在直線上方作射線.將一直角三角板的直角頂點放在點O處,一條直角邊在射線上,另一邊在直線上方.將直角三角板繞著點O按每秒的速度逆時針旋轉(zhuǎn)一周,設(shè)旋轉(zhuǎn)時間為t秒.(1)當直角三角板旋轉(zhuǎn)到如圖2的位置時,恰好平分,此時,與之間有何數(shù)量關(guān)系?并說明理由;(2)在旋轉(zhuǎn)的過程中,若射線的位置保持不變,且.①當邊與射線相交時(如圖3),則的值為_______;②當邊所在的直線與平行時,求t的值.5、問題原型:如圖①,在等腰直角三角形ABC中,∠ACB=90°,BC=a.將邊AB繞點B順時針旋轉(zhuǎn)90°得到線段BD,連結(jié)CD.過點D作△BCD的BC邊上的高DE,

易證△ABC≌△BDE,從而得到△BCD的面積為.初步探究:如圖②,在Rt△ABC中,∠ACB=90°,BC=a.將邊AB繞點B順時針旋轉(zhuǎn)90°得到線段BD,連結(jié)CD.用含a的代數(shù)式表示△BCD的面積,并說明理由.簡單應用:如圖③,在等腰三角形ABC中,AB=AC,BC=a.將邊AB繞點B順時針旋轉(zhuǎn)90°得到線段BD,連結(jié)CD.直接寫出△BCD的面積.(用含a的代數(shù)式表示)-參考答案-一、單選題1、C【解析】【分析】由矩形的性質(zhì),可知∠ABC=90°,再由旋轉(zhuǎn),可知△ABB’為等腰三角形,根據(jù)內(nèi)角和求解即可.【詳解】解:連接BB′.∵四邊形ABCD是矩形,∴∠ABC=90°,∵∠CBB′=15°,∴∠ABB′=90°-15°=75°,∵AB=AB′,∴∠ABB′=∠AB′B=75°,∴∠BAB′=180°-2×75°=30°,∴α=30°,故選:C.【考點】本題考查旋轉(zhuǎn)的性質(zhì),矩形的性質(zhì),等腰三角形的性質(zhì)等知識,解題的關(guān)鍵是靈活運用所學知識解決問題.2、A【解析】【分析】根據(jù)題意畫出△AOB繞著O點順時針旋轉(zhuǎn)120°得到的△A′OB′,連接OD,OD′,過D′作DM⊥y軸,由旋轉(zhuǎn)的性質(zhì)得到∠DOD′=120°,根據(jù)AD=BD=OD=2,得到∠AOD度數(shù),進而求出∠MOD′度數(shù)為30°,在直角三角形OMD′中求出OM與MD′的長,即可確定出D′的坐標.【詳解】解:根據(jù)題意畫出△AOB繞著O點順時針旋轉(zhuǎn)120°得到的△A′OB′,連接OD,OD′,過D′作DM⊥y軸,∴∠DOD′=120°,∵D為斜邊AB的中點,∴AD=OD=AB=2,∴∠BAO=∠DOA=30°,∴∠MOD′=30°,在Rt△OMD′中,OD′=OD=2,∴MD′=1,OM==,則D的對應點D′的坐標為(1,﹣),故選:A.【考點】此題考查旋轉(zhuǎn)的性質(zhì),直角三角形斜邊中線等于斜邊的一半的性質(zhì),30度角所對的直角邊等于斜邊的一半的性質(zhì),勾股定理,正確掌握旋轉(zhuǎn)的性質(zhì)得到對應的旋轉(zhuǎn)圖形進行解答是解題的關(guān)鍵.3、A【解析】【分析】連接CP,AQ,以A為圓心,以AQ為半徑畫圓,延長BA交于E.根據(jù)正方形的性質(zhì),旋轉(zhuǎn)的性質(zhì),角的和差關(guān)系,全等三角形的判定定理和性質(zhì)求出AQ的長度,根據(jù)三角形三邊關(guān)系確定當點Q與點E重合時,BQ取得最大值,最后根據(jù)線段的和差關(guān)系計算即可.【詳解】解:如下圖所示,連接CP,AQ,以A為圓心,以AQ為半徑畫圓,延長BA交于E.∵正方形ABCD的邊長為4,的半徑為2,∴AD=CD=AB=4,∠ADC=90°,CP=2.∵點P繞點D按逆時針方向旋轉(zhuǎn)90°得到點Q,∴∠QDP=90°,QD=PD.∴∠ADC=∠QDP.∴∠ADC-∠QDC=∠QDP-∠QDC,即∠ADQ=∠CDP.∴.∴AQ=CP=2.∴AE=AQ=2.∵P是上任意一點,∴點Q在上移動.∴.∴當點Q與點E重合時,BQ取得最大值為BE.∴BE=AE+AB=6.故選:A.【考點】本題考查正方形的性質(zhì),旋轉(zhuǎn)的性質(zhì),角的和差關(guān)系,全等三角形的判定定理和性質(zhì),三角形三邊關(guān)系,線段的和差關(guān)系,綜合應用這些知識點是解題關(guān)鍵.4、D【解析】【分析】根據(jù)旋轉(zhuǎn)的性質(zhì)可得CD=CE和∠DCE=90°,結(jié)合∠ACB=90°,AC=BC,可證△ACD≌△BCE,依據(jù)全等三角形的性質(zhì)即可得到∠CBE=∠A=45°,再由AD=BF可得等腰△BEF,則可計算出∠BEF的度數(shù).【詳解】解:由旋轉(zhuǎn)性質(zhì)可得:CD=CE,∠DCE=90°.∵∠ACB=90°,AC=BC,∴∠A=45°.∴∠ACB?∠DCB=∠DCE?∠DCB.即∠ACD=∠BCE.∴△ACD≌△BCE.∴∠CBE=∠A=45°.∵AD=BF,∴BE=BF.∴∠BEF=∠BFE=67.5°.故選:D.【考點】本題考查了旋轉(zhuǎn)的性質(zhì)、全等三角形的判定與性質(zhì)以及等腰三角形的性質(zhì),解題的關(guān)鍵是熟練運用旋轉(zhuǎn)的性質(zhì)找出相等的線段和角,并能準確判定三角形全等,從而利用全等三角形性質(zhì)解決相應的問題.5、B【解析】【分析】根據(jù)平行四邊形的性質(zhì)及旋轉(zhuǎn)的性質(zhì)可知,然后可得,則有,進而問題可求解.【詳解】解:∵四邊形是平行四邊形,,∴,由旋轉(zhuǎn)的性質(zhì)可得,∴,∴;故選B.【考點】本題主要考查平行四邊形的性質(zhì)與旋轉(zhuǎn)的性質(zhì),熟練掌握平行四邊形的性質(zhì)與旋轉(zhuǎn)的性質(zhì)是解題的關(guān)鍵.二、填空題1、45°##45度【解析】【分析】由旋轉(zhuǎn)的性質(zhì)得出OA=OC,∠D=∠B,∠AOC=∠DOB=30°,從而得到∠C=∠OAC=75°,再求出∠AOD=30°,由三角形的外角性質(zhì)求出∠D,即可.【詳解】解:由旋轉(zhuǎn)的性質(zhì)得:OA=OC,∠D=∠B,∠AOC=∠DOB=30°,∴∠C=∠OAC=(180°-30°)÷2=75°,∵OC⊥OB,∴∠COB=90°,∴∠AOD=90°-30°-30°=30°,∴∠D=∠OAC-∠AOD=75°-30°=45°,∴∠B=45°.故答案為:45°【考點】本題考查了旋轉(zhuǎn)的性質(zhì)、等腰三角形的性質(zhì)、三角形內(nèi)角和定理;熟練掌握旋轉(zhuǎn)的性質(zhì),并能進行推理計算是解決問題的關(guān)鍵.2、或##或【解析】【分析】連接,根據(jù)題意可得,當∠ADQ=90°時,分點在線段上和的延長線上,且,勾股定理求得即可.【詳解】如圖,連接,在Rt△ABC中,∠ACB=90°,,,,,根據(jù)題意可得,當∠ADQ=90°時,點在上,且,,如圖,在中,,在中,故答案為:或.【考點】本題考查了旋轉(zhuǎn)的性質(zhì),勾股定理,直角三角形斜邊上中線的性質(zhì),確定點的位置是解題的關(guān)鍵.3、或##或【解析】【分析】分兩種情形:如圖1中,當B落在x軸的正半軸上時,過點作H⊥x軸于點H.利用全等三角形的性質(zhì)求解.當點落在y軸的負半軸上時,(4,?2).【詳解】如圖,當B落在x軸的正半軸上時,過點作H⊥x軸于點H,∵A(0,2),B(4,2),∴AB=4,OA=2,∴O=,∵∠AO=∠A=∠H=90°,∴∠AO+∠H=90°,∠H+∠H=90°,∴∠AO=∠H,∴△AO≌△H(AAS),∴OA=H=2,O=H=,∴OH=,∴當點B落在y軸的負半軸上時,C1(4,?2).綜上所述,滿足條件的點C的坐標為或;故答案為:或【考點】本題考查坐標與圖形變化?旋轉(zhuǎn),全等三角形的判定和性質(zhì)等知識,解題的關(guān)鍵是學會添加常用輔助線,構(gòu)造全等三角形解決問題.4、【解析】【分析】根據(jù)直角坐標系、正方形的性質(zhì),得,,根據(jù)勾股定理的性質(zhì),得;根據(jù)菱形的性質(zhì),得;根據(jù)圖形規(guī)律和旋轉(zhuǎn)的性質(zhì)分析,即可得到答案.【詳解】∵正方形中,頂點A,,,在坐標軸上,且∴,∴以為邊構(gòu)造菱形(點在軸正半軸上),∴∴根據(jù)題意,得菱形與正方形組成的圖形繞點逆時針旋轉(zhuǎn),每8次一個循環(huán)∵除以8,余數(shù)為6∴點的坐標和點的坐標相同根據(jù)題意,第2次旋轉(zhuǎn)結(jié)束時,即逆向旋轉(zhuǎn)時,點的坐標為:第4次旋轉(zhuǎn)結(jié)束時,即逆向旋轉(zhuǎn)時,點的坐標為:第6次旋轉(zhuǎn)結(jié)束時,即逆向旋轉(zhuǎn)時,點的坐標為:∴點的坐標為:故答案為:.【考點】本題考查了圖形規(guī)律、旋轉(zhuǎn)、菱形、正方形、勾股定理、直角坐標系的知識;解題的關(guān)鍵是熟練掌握旋轉(zhuǎn)、菱形、正方形的性質(zhì),從而完成求解.5、##【解析】【分析】由題意以及正方形的性質(zhì)得OP過正方形ABCD的頂點時,點P到正方形的最長距離取得最小值,最小值為PA.【詳解】解:如圖,OP過頂點A時,點O與這個圖上所有點的連線中,OA最大,此時點P到正方形的最長距離取得最小值,最小值為PA,∵正方形ABCD邊長為2,O為正方形中心,∴∠OAB=∠OBA=45°,OA⊥CB,∴OA=OB=,∵OP=4,∴最小值為PA=4-;故答案為:4-.【考點】本題考查了旋轉(zhuǎn)的性質(zhì),正方形的性質(zhì),理解點到圖形的距離是解題的關(guān)鍵.三、解答題1、(1);(2)①;②;(3)【解析】【分析】(1)連接OB,,,由,O為BC的中點,得到,則,,再由旋轉(zhuǎn)的性質(zhì)可得,,由此求解即可;(2)①連接,,由(1)可知(因為也是旋轉(zhuǎn)角),由旋轉(zhuǎn)的性質(zhì)可得,,則,可以得到,再由可以得到,由此即可求解;②連接OB,OE延長OM交EF于N,由①得,由旋轉(zhuǎn)的性質(zhì)可得,,然后證明,,得到,則,再證明△OBM≌△NEM得到,,從而推出MN為△BFE的中位線,得到,則;(3)連接與BF交于H,由,,可得,,由含30度角的直角三角形的性質(zhì)可以得到,,再由勾股定理可以得到,由此即可得到答案.【詳解】解:(1)如圖所示,連接OB,,,∵,O為BC的中點,∴,∴,∴,∵將點O沿BC翻折得到點,∴,由旋轉(zhuǎn)的性質(zhì)可得,,∴,∴旋轉(zhuǎn)角為,故答案為:;(2)①如圖所示,連接,,由(1)可知(因為也是旋轉(zhuǎn)角),由旋轉(zhuǎn)的性質(zhì)可得,,∴,∴,∵,∴,故答案為:;②如圖所示,連接OB,OE延長OM交EF于N,由①得,由旋轉(zhuǎn)的性質(zhì)可得,,∵,∴,∴,∵,∴,∴,∴,∴,∴∵M為BE的中點,∴,在△OBM和△NEM中,,∴△OBM≌△NEM(SAS),∴,,∴,∴N為EF的中點,∴MN為△BFE的中位線,∴,∴;(3)如圖所示,連接與BF交于H,∵,,∴,,∴,∵,∴,∴,∵,∴,∵,,∴,∵,∴.故答案為:.【考點】本題主要考查了旋轉(zhuǎn)的性質(zhì),等腰三角形的性質(zhì)與判定,直角三角形斜邊上的中線,三角形中位線定理,含30度角的直角三角形的性質(zhì),勾股定理,平行線的性質(zhì)與判定等等,解題的關(guān)鍵在于能夠熟練掌握旋轉(zhuǎn)的性質(zhì).2、(1);(2);(3)或【解析】【分析】(1)將代入,即可求解;(2)先求直線的解析式為,則,,可求;(3)設(shè),過點作軸垂線交于點,可證明,則,將點代入拋物線解析式得,求得或.【詳解】解:(1)將代入,,;(2)令,則,或,,設(shè)直線的解析式為,,,,,,軸,,,,;(3)設(shè),如圖2,過點作軸垂線交于點,,,,,,,,,,,解得或,或.【考點】本題是二次函數(shù)綜合題,考查了二次函數(shù)圖象和性質(zhì),待定系數(shù)法求拋物線解析式,三角形面積,全等三角形判定和性質(zhì),旋轉(zhuǎn)的性質(zhì)等,解題的關(guān)鍵是熟練掌握二次函數(shù)的圖象及性質(zhì),分類討論,數(shù)形結(jié)合.3、(1)B;(2)(1)(3)(5);(3)C;(4)見解析【解析】【分析】(1)根據(jù)旋轉(zhuǎn)對稱圖形的定義進行判斷;(2)先分別求每一個圖形中的旋轉(zhuǎn)角,然后再進行判斷;(3)根據(jù)旋轉(zhuǎn)對稱圖形的定義進行判斷;(4)利用旋轉(zhuǎn)對稱圖形的定義進行設(shè)計.【詳解】解:(1)矩形、正五邊形、菱形、正六邊形都是旋轉(zhuǎn)對稱圖形,但正五邊形不是中心對稱圖形,故選:B.(2)是旋轉(zhuǎn)對稱圖形,且有一個旋轉(zhuǎn)角是60度的有(1)(3)(5).故答案為:(1)(3)(5).(3)①中心對稱圖形,旋轉(zhuǎn)180°一定會和本身重合,是旋轉(zhuǎn)對稱圖形;故命題①正確;②等腰三角形繞一個定點旋轉(zhuǎn)一定的角度α(0°<α≤180°)后,不一定能與自身重合,只有等邊三角形是旋轉(zhuǎn)對稱圖形,故②不正確;③圓具有旋轉(zhuǎn)不變性,繞圓心旋轉(zhuǎn)任意角度一定能與自身重合,是旋轉(zhuǎn)對稱圖形;故命題③正確;即命題中①③正確,故選:C.(4)圖形如圖所示:【考點】本題考查旋轉(zhuǎn)對稱圖形,中心對稱圖形等知識,解題的關(guān)鍵是理解題意,靈活運用所學知識解決問題.4、(1),理由見解析(2)①;②或【解析】【分析】(1)由,可知,,由平分,可知,進而可證;

(2)由,,可知,,進而得,由此可求出結(jié)果;②由以及,結(jié)合題意可分兩種情況:當在直線上方時,或當在直線下方時,將兩種情況分別進行討論求解即可.(1),理由如下:∵,∴,,∵平分,∴,∴;(2)①;

∵,∴,∵,,∴,∴的值為.②∵,∴,(I)如圖3-1,當在直線上方時,∵,∴,∴,∵直角三角板繞點O按每秒的速度旋轉(zhuǎn),∴;(II)解法一:如圖3-2,當在直線下方時,∵,∴,∴,,∴直角三角板繞點O旋轉(zhuǎn)的角度為,∵直角三角板繞點O按每秒的速度逆時針旋轉(zhuǎn),∴,

解法二:如圖3-3,在②(Ⅰ)的基礎(chǔ)上,繼續(xù)將

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
  • 6. 下載文件中如有侵權(quán)或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

最新文檔

評論

0/150

提交評論