版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領
文檔簡介
云南省宣威市中考數(shù)學真題分類(勾股定理)匯編必考點解析考試時間:90分鐘;命題人:教研組考生注意:1、本卷分第I卷(選擇題)和第Ⅱ卷(非選擇題)兩部分,滿分100分,考試時間90分鐘2、答卷前,考生務必用0.5毫米黑色簽字筆將自己的姓名、班級填寫在試卷規(guī)定位置上3、答案必須寫在試卷各個題目指定區(qū)域內相應的位置,如需改動,先劃掉原來的答案,然后再寫上新的答案;不準使用涂改液、膠帶紙、修正帶,不按以上要求作答的答案無效。第I卷(選擇題14分)一、單選題(7小題,每小題2分,共計14分)1、如圖,有一塊直角三角形紙片,∠C=90°,AC=8,BC=6,將斜邊AB翻折,使點B落在直角邊AC的延長線上的點E處,折痕為AD,則BD的長為(
)A.2 B. C. D.42、如圖,矩形中,的平分線交于點E,,垂足為F,連接.下列結論:①;②;③;④;⑤若,則.其中正確的結論有(
)A.2個 B.3個 C.4個 D.5個3、如圖,桌上有一個圓柱形玻璃杯(無蓋)高6厘米,底面周長16厘米,在杯口內壁離杯口1.5厘米的A處有一滴蜜糖,在玻璃杯的外壁,A的相對方向有一小蟲P,小蟲離杯底的垂直距離為1.5厘米,小蟲爬到蜜糖處的最短距離是(
)A.厘米 B.10厘米 C.厘米 D.8厘米4、“趙爽弦圖”巧妙地利用面積關系證明了勾股定理,是我國古代數(shù)學的驕傲,如圖所示的“趙爽弦圖”是由四個全等的直角三角形和一個小正方形拼成的一個大正方形,設直角三角形較長直角邊長為a,較短直角邊長為b,若,大正方形的面積為13,則小正方形的面積為()A.3 B.4 C.5 D.65、如圖,一棵大樹在一次強臺風中距地面5m處折斷,倒下后樹頂端著地點A距樹底端B的距離為12m,這棵大樹在折斷前的高度為(
)A.10m B.15m C.18m D.20m6、如圖,在△ABC中,AB=2,∠ABC=60°,∠ACB=45°,D是BC的中點,直線l經(jīng)過點D,AE⊥l,BF⊥l,垂足分別為E,F(xiàn),則AE+BF的最大值為()A. B.2 C.2 D.37、如圖,在中,,,,為邊上一動點,于,于,為中點,則的最小值為(
).A. B. C. D.第Ⅱ卷(非選擇題86分)二、填空題(8小題,每小題2分,共計16分)1、把兩個同樣大小含角的三角尺按如圖所示的方式放置,其中一個三角尺的銳角頂點與另一個三角尺的直角頂點重合于點,且另外三個銳角頂點在同一直線上.若,則____.2、我國古代數(shù)學著作《九章算術》中的一個問題:一根竹子高1丈(1丈=10尺),折斷后頂端落在離竹子底端3尺處,問折斷處離地面的高度為多少尺?如圖,設折斷處離地面的高度為x尺,根據(jù)題意,可列出關于x方程為:__________.3、如圖,在網(wǎng)格中,每個小正方形的邊長均為1.點A、B,C都在格點上,若BD是△ABC的高,則BD的長為__________.4、某小區(qū)兩面直立的墻壁之間為安全通道,一架梯子斜靠在左墻DE時,梯子A到左墻的距離AE為0.7m,梯子頂端D到地面的是樣子離DE為2.4m,若梯子底端A保持不動,將梯子斜塞在右墻BC上,梯子頂端C到地面的距離CB為1.5m,則這兩面直立墻壁之間的安全道的寬BE為__________m.5、如圖,分別以此直角三角形的三邊為直徑在三角形的外部畫半圓,,,則_________.6、如圖,某農舍的大門是一個木制的長方形柵欄,它的高為2m,寬為1.5m,現(xiàn)需要在相對的頂點間用一塊木板加固,則木板的長為________.7、如圖,在Rt△ABC中,∠ABC=90°,AB=3,AC=5,點E在BC上,將△ABC沿AE折疊,使點B落在AC邊上的點B′處,則BE的長為________________.8、我國古代的數(shù)學名著《九章算術》中有這樣一道題目“今有立木,系索其末,委地三尺.引索卻行,去本八尺而索盡.問索長幾何?”譯文為“今有一豎立著的木柱,在木柱的上端系有繩索,繩索從木柱上端順木柱下垂后,堆在地面的部分尚有3尺,牽索沿地面退行,在離木柱根部8尺處時,繩索用盡問繩索長是多少?”示意圖如下圖所示,設繩索的長為尺,根據(jù)題意,可列方程為__________.三、解答題(7小題,每小題10分,共計70分)1、如圖,是一塊草坪,已知AD=12m,CD=9m,∠ADC=90°,AB=39m,BC=36m,求這塊草坪的面積.2、如圖,把長方形紙片沿折疊,使點落在邊上的點處,點落在點處.(1)試說明;(2)設,,,試猜想,,之間的關系,并說明理由.3、如圖是三個全等的直角三角形紙片,且,按如圖的三種方法分別將其折疊,使折痕(圖中虛線)過其中的一個頂點,且使該頂點所在角的兩邊重合,記折疊后不重疊部分面積分別為.(1)若,求的值.(2)若,求①單個直角三角形紙片的面積是多少?②此時的值是多少?4、有一只喜鵲在一棵3m高的小樹上覓食,它的巢筑在距離該樹24m的一棵大樹上,大樹高14m,且巢離樹頂部1m.當它聽到巢中幼鳥的叫聲,立即趕過去,如果它飛行的速度為5m/s,那它至少需要多少時間才能趕回巢中?5、小明爸爸給小明出了一道題:如圖,修公路遇到一座山,于是要修一條隧道.已知A,B,C在同一條直線上,為了在小山的兩側B,C同時施工,過點B作一直線m(在山的旁邊經(jīng)過),過點C作一直線l與m相交于D點,經(jīng)測量,,米,米.若施工隊每天挖100米,求施工隊幾天能挖完?6、如圖,煙臺市正政府決定在相距50km的A、B兩村之間的公路旁E點,修建一個大櫻桃批發(fā)市場,且使C、D兩村到E點的距離相等,已知DA⊥AB于A,CB⊥AB于B,DA=30km,CB=20km,那么大櫻桃批發(fā)市場E應建什么位置才能符合要求?7、設直角三角形的兩條直角邊長及斜邊上的高分別為a,b及h,求證:.-參考答案-一、單選題1、B【解析】【分析】根據(jù)勾股定理求出AB的長,利用翻折得到AE=AB=10,DE=BD,求出CE,由勾股定理得到,列得,求出BD.【詳解】解:∵∠C=90°,AC=8,BC=6,∴,由翻折得AE=AB=10,DE=BD,∴CE=AE-AC=10-8=2,在Rt△CED中,,∴,解得BD=,故選:B.【考點】此題考查了勾股定理的應用,翻折的性質,熟記勾股定理的計算公式是解題的關鍵.2、D【解析】【分析】根據(jù)AE平分∠DAE,可得,從而得到AB=BE,進而得到,可得①正確;然后證明△ABE≌△AFD,可得AB=BE=AF=FD,從而得到∠AED=∠CED,故②正確;再證得△DEF≌△DEC,可得③正確;再根據(jù)△ABF≌△DCF,可得BF=CF,故④正確;過點F作FG⊥BC于點G,可得,從而得到,進而得到,可得⑤正確;即可求解.【詳解】解:在矩形中,∠BAD=∠ADC=∠ABC=90°,AD=BC,AD∥BC,∵AE平分∠DAE,∴,∵AD∥BC,∴∠DAE=∠AEB=45°,∴∠AEB=∠BAE=45°,∴AB=BE,∴,∵,∴AE=AD,故①正確;在△ABE和△AFD中,∵∠BAE=∠DAE,∠ABE=∠AFD,AE=AD,∴△ABE≌△AFD(AAS),∴BE=DF,∴AB=BE=AF=FD,∴,∴∠AED=∠CED,故②正確;∵∠DAE=45°,DF⊥AE,∴∠ADF=45°,∴∠CDF=45°,∠EDF=∠ADE-∠ADF=22.5°,∴∠CDE=∠FDE=22.5°,∵∠AEB=45°,∠AED=67.5°,∴∠CED=67.5°,∴∠AED=∠CED,∵DE=DE,∴△DEF≌△DEC,∴DF=CD,∴DE⊥CF,故③正確;∵AB=CD,∠BAE=∠CDF=45°,AF=DF,∴△ABF≌△DCF,∴BF=CF,故④正確;如圖,過點F作FG⊥BC于點G,∴FG∥AB,∴∠EFG=∠BAE=45°,∴∠EFG=∠FEG,∴FG=GE,∵△DEF≌△DEC,∴CE=EF,∴,∴,∵BF=CF,∴BG=CG,∴,∵AB=1,,∴,,解得:,∴.故⑤正確;∴正確的有5個.故選:D【考點】本題主要考查了矩形的性質,全等三角形的判定和性質,等腰直角三角形的判定和性質,勾股定理等知識,熟練掌握相關知識點是解題的關鍵.3、B【解析】【分析】把圓柱沿著點A所在母線展開,把圓柱上最短距離轉化為將軍飲馬河型最短問題求解即可.【詳解】把圓柱沿著點A所在母線展開,如圖所示,作點A的對稱點B,連接PB,則PB為所求,根據(jù)題意,得PC=8,BC=6,根據(jù)勾股定理,得PB=10,故選B.【考點】本題考查了圓柱上的最短問題,利用圓柱展開,把問題轉化為將軍飲馬河問題,靈活使用勾股定理是解題的關鍵.4、C【解析】【詳解】解:如圖所示,∵(a+b)2=21∴a2+2ab+b2=21,∵大正方形的面積為13,即:a2+b2=13,∴2ab=21﹣13=8,∴小正方形的面積為13﹣8=5.故選C.5、C【解析】【詳解】∵樹的折斷部分與未斷部分、地面恰好構成直角三角形,且BC=5m,AB=12m,∴AC===13m,∴這棵樹原來的高度=BC+AC=5+13=18m.故選C.6、A【解析】【分析】把要求的最大值的兩條線段經(jīng)過平移后形成一條線段,然后再根據(jù)垂線段最短來進行計算即可.【詳解】解:如圖,過點C作CK⊥l于點K,過點A作AH⊥BC于點H,在Rt△AHB中,∵∠ABC=60°,AB=2,∴BH=1,AH=,在Rt△AHC中,∠ACB=45°,∴AC=,∵點D為BC中點,∴BD=CD,在△BFD與△CKD中,,∴△BFD≌△CKD(AAS),∴BF=CK,延長AE,過點C作CN⊥AE于點N,可得AE+BF=AE+CK=AE+EN=AN,在Rt△ACN中,AN<AC,當直線l⊥AC時,最大值為,綜上所述,AE+BF的最大值為.故選:A.【考點】本題主要考查了全等三角形的判定定理和性質定理及平移的性質,構建全等三角形是解答此題的關鍵.7、D【解析】【分析】先根據(jù)矩形的判定得出AEPF是矩形,再根據(jù)矩形的性質得出EF,AP互相平分,且EF=AP,再根據(jù)垂線段最短的性質就可以得出AP⊥BC時,AP的值最小,即AM的值最小,根據(jù)面積關系建立等式求出其解即可.【詳解】解:如圖,連接AP,∵AB=3,AC=4,BC=5,∴∠EAF=90°,∵PE⊥AB于E,PF⊥AC于F,∴四邊形AEPF是矩形,∴EF,AP互相平分.且EF=AP,∴EF,AP的交點就是M點.∵當AP的值最小時,AM的值就最小,∴當AP⊥BC時,AP的值最小,即AM的值最小.∵AP?BC=AB?AC,∴AP?BC=AB?AC,∵AB=3,AC=4,BC=5,∴5AP=3×4,∴AP=,∴AM=.故選:D.【考點】本題考查了矩形的性質的運用,勾股定理的運用,三角形的面積公式的運用,垂線段最短的性質的運用,解題的關鍵是求出AP的最小值.二、填空題1、.【解析】【分析】如圖,先利用等腰直角三角形的性質求出,,再利用勾股定理求出DF,即可得出結論.【詳解】如圖,過點作于,在中,,,,兩個同樣大小的含角的三角尺,,在中,根據(jù)勾股定理得,,,故答案為.【考點】此題主要考查了勾股定理,等腰直角三角形的性質,正確作出輔助線是解本題的關鍵.2、【解析】【分析】設折斷處離地面的高度為x尺,根據(jù)勾股定理列出方程即可【詳解】解:設折斷處離地面的高度為x尺,根據(jù)題意可得:故答案為:【考點】本題考查了勾股定理的應用,掌握勾股定理是解題的關鍵.3、##【解析】【分析】根據(jù)勾股定理計算AC的長,利用面積差可得三角形ABC的面積,由三角形的面積公式即可得到結論.【詳解】】解:由勾股定理得:AC=,∵S△ABC=3×4-×1×2-×3×2-×2×4=4,∴AC?BD=4,∴×2BD=4,∴BD=,故答案為:.【考點】本題考查了勾股定理,三角形的面積的計算,掌握勾股定理是解題的關鍵.4、2.7【解析】【分析】先根據(jù)勾股定理求出AD的長,同理可得出AB的長,進而可得出結論.【詳解】在Rt△ACB中,∵∠ACB=90°,AE=0.7米,DE=2.4米,∴AD2=0.72+2.42=6.25.在Rt△A′BD中,∵∠ABC=90°,BC=1.5米,AB2+BC2=AC2,∴AB2+1.52=6.25,∴AB2=4.∵AB>0,∴AB=2米.∴BE=AE+AB=0.7+2=2.7米.故答案為2.7.【考點】本題考查的是勾股定理的應用,在應用勾股定理解決實際問題時,勾股定理與方程的結合是解決實際問題常用的方法,關鍵是從題中抽象出勾股定理這一數(shù)學模型,畫出準確的示意圖.領會數(shù)形結合的思想的應用.5、【解析】【分析】根據(jù)題意設直角三角形的三邊為,分別表示出,得出,進而即可求解.【詳解】解:設直角三角形的三邊為,如圖,,,,,S1=18π,S3=50π,故答案為:.【考點】本題考查了勾股定理的應用,掌握勾股定理是解題的關鍵.6、2.5m【解析】【詳解】設木棒的長為xm,根據(jù)勾股定理可得:x2=22+1.52,解得x=2.5.故木棒的長為2.5m.故答案為2.5m.7、.【解析】【分析】首先根據(jù)勾股定理求出BC的長,根據(jù)折疊性質,可得=AB=3,=BE,∠B=∠=90°,然后設BE=,根據(jù)勾股定理,列出,求解即可.【詳解】解:∵∠ABC=90°,AB=3,AC=5,在Rt△ABC中,,將△ABC沿AE折疊,∴=AB=3,=BE,∠B=∠=90°,則,設BE=,EC=4-,,在Rt△中,由勾股定理得:,即,解得,∴BE=.故答案為.【考點】本題主要考查了翻折變換的性質及勾股定理的應用;解題的關鍵是準確找出圖形中隱含的相等關系.8、x2?(x?3)2=82【解析】【分析】設繩索長為x尺,根據(jù)勾股定理列出方程解答即可.【詳解】解:設繩索長為x尺,根據(jù)題意得:x2?(x?3)2=82,故答案為:x2?(x?3)2=82.【考點】本題考查了勾股定理的應用,找準等量關系,正確列出相應方程是解題的關鍵.三、解答題1、216平方米【解析】【分析】連接AC,根據(jù)勾股定理計算AC,根據(jù)勾股定理的逆定理判定三角形ABC是直角三角形,根據(jù)面積公式計算即可.【詳解】連接AC,∵AD=12,CD=9,∠ADC=90°,∴AC==15,∵AB=39,BC=36,AC=15∴,∴∠ACB=90°,∴這塊空地的面積為:==216(平方米),故這塊草坪的面積216平方米.【考點】本題考查了勾股定理及其逆定理,熟練掌握定理并靈活運用是解題的關鍵.2、(1)證明見解析;(2),,之間的關系是.理由見解析.【解析】【分析】(1)根據(jù)折疊的性質、平行的性質及等角對等邊即可說明;(2)根據(jù)折疊的性質將AE、AB、BF都轉化到直角三角形中,由勾股定理可得,,之間的關系.【詳解】(1)由折疊的性質,得,,在長方形紙片中,,∴,∴,∴,∴.(2),,之間的關系是.理由如下:由(1)知,由折疊的性質,得,,.在中,,所以,所以.【考點】本題主要考查了勾股定理,靈活利用折疊的性質進行線段間的轉化是解題的關鍵.3、(1)(2)①36;②【解析】【分析】(1)設DE=CE=x,則BE=4-x,依據(jù)S△ABE=AB×DE=BE×AC,即可得到x的值,進而得出S1的值.(2)①如圖1,依據(jù)S△ABE=AB×DE=BE×AC,即可得到DE=x,進而得出S1=x2;如圖2,依據(jù)S△ABN=AB×HN=AN×BC,即可得到EN=x,進而得出S2=x2,再根據(jù)S1+S2=13,即可得到x2=6,進而得出單個直角三角形紙片的面積.②如圖3,由折疊可得,AC=CF=3x,所以BF=BC-CF=4x-3x=x,則S3=S△CMF=S△ACM,所以S3=,即可求解.(1)解:∵AC∶BC∶AB=3∶4∶5,AC=3,∴BC=4,AB=5,由折疊可得,DE=CE,∠ADE=∠C=90°,AD=AC=3,設DE=CE=x,則BE=4﹣x,∵S△ABE=AB×DE=BE×AC,∴AB×DE=BE×AC,即5x=3(4﹣x),解得x=,∴S1=BD×DE==.(2)解:由AC:BC:AB=3:4:5,可設AC=3x,BC=4x,AB=5x,①如圖1,由折疊可得,AD=AC=3x,BD=5x-3x=2x,DE=CE,∠ADE=∠C=90°,∵S△ABE=AB×DE=BE×AC,∴AB×DE=BE×AC,即5x×DE=(4x-DE)×3x,解得DE=x,∴S1=BD×DE=×2x×x=x2;如圖2,由折疊可得,BC=BH=4x,HN=CN,∴AH=x,AN=3x-HN,∵S△ABN=AB×HN=AN×BC,∴AB×HN=AN×BC,即5x×HN=(3x-HN)×4x,解得HN=x,∴S2=AH×HN=×x×x=x2,∵S1+S2=13,∴x2+x2=13,解得x2=6,∴S△ABC=×3x×4x=6x2=36.答:單個直角三角形紙片的面積是36;②如圖3,由折疊可得,AC=CF=3x,∴BF=
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經(jīng)權益所有人同意不得將文件中的內容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
- 6. 下載文件中如有侵權或不適當內容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 學校開展校園安全隱患和矛盾糾紛大排查大整治大督查情況記錄表
- 2024年國家煙草專賣局中國煙草總公司考試真題
- 白坯布課程設計
- 2025年中日友好醫(yī)院公開招聘藥物臨床試驗研究中心I期臨床試驗病房合同制人員的備考題庫及一套答案詳解
- 2025恒豐銀行西安分行社會招聘(21人)備考考試題庫及答案解析
- 2025年智能電表十年市場增長:遠程抄表與能源監(jiān)測數(shù)據(jù)分析報告
- vb課程設計之背單詞
- 2025年大連市公安局面向社會公開招聘警務輔助人員348人備考題庫有答案詳解
- 2025年非遺緙絲十年傳承:高端定制與品牌建設報告
- 2025年中國社會科學院工業(yè)經(jīng)濟研究所非事業(yè)編制人員招聘備考題庫及參考答案詳解
- 少年宮剪紙社團活動記錄
- 生命科學前沿技術智慧樹知到答案章節(jié)測試2023年蘇州大學
- GB/T 16102-1995車間空氣中硝基苯的鹽酸萘乙二胺分光光度測定方法
- GB/T 15171-1994軟包裝件密封性能試驗方法
- 外科護理學期末試卷3套18p
- 人員出車次數(shù)統(tǒng)計表
- 飛行區(qū)培訓題庫
- 新蘇教版2022-2023六年級科學上冊《專項學習:像工程師那樣》課件
- 幕墻裝飾施工組織設計
- 科傻軟件使用說明書
- DB52∕T 1599-2021 高性能瀝青路面(Superpave)施工技術規(guī)范
評論
0/150
提交評論