中考數(shù)學總復習《旋轉(zhuǎn)》模擬試題【名校卷】附答案詳解_第1頁
中考數(shù)學總復習《旋轉(zhuǎn)》模擬試題【名校卷】附答案詳解_第2頁
中考數(shù)學總復習《旋轉(zhuǎn)》模擬試題【名校卷】附答案詳解_第3頁
中考數(shù)學總復習《旋轉(zhuǎn)》模擬試題【名校卷】附答案詳解_第4頁
中考數(shù)學總復習《旋轉(zhuǎn)》模擬試題【名校卷】附答案詳解_第5頁
已閱讀5頁,還剩23頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)

文檔簡介

中考數(shù)學總復習《旋轉(zhuǎn)》模擬試題考試時間:90分鐘;命題人:教研組考生注意:1、本卷分第I卷(選擇題)和第Ⅱ卷(非選擇題)兩部分,滿分100分,考試時間90分鐘2、答卷前,考生務必用0.5毫米黑色簽字筆將自己的姓名、班級填寫在試卷規(guī)定位置上3、答案必須寫在試卷各個題目指定區(qū)域內(nèi)相應的位置,如需改動,先劃掉原來的答案,然后再寫上新的答案;不準使用涂改液、膠帶紙、修正帶,不按以上要求作答的答案無效。第I卷(選擇題20分)一、單選題(5小題,每小題4分,共計20分)1、如圖,矩形ABCD中,AD=2,AB=,對角線AC上有一點G(異于A,C),連接DG,將△AGD繞點A逆時針旋轉(zhuǎn)60°得到△AEF,則BF的長為(

)A. B.2 C. D.22、如圖,已知正方形的邊長為4,以點C為圓心,2為半徑作圓,P是上的任意一點,將點P繞點D按逆時針方向旋轉(zhuǎn),得到點Q,連接,則的最大值是(

)A.6 B. C. D.3、下列所述圖形中,既是軸對稱圖形又是中心對稱圖形的是()A.等腰三角形 B.等邊三角形 C.菱形 D.平行四邊形4、如圖,邊長為5的等邊三角形中,M是高所在直線上的一個動點,連接,將線段繞點B逆時針旋轉(zhuǎn)得到,連接.則在點M運動過程中,線段長度的最小值是(

)A. B.1 C.2 D.5、下列幾何圖形中,是軸對稱圖形但不是中心對稱圖形的是(

)A.梯形 B.等邊三角形 C.平行四邊形 D.矩形第Ⅱ卷(非選擇題80分)二、填空題(5小題,每小題6分,共計30分)1、如圖,在坐標系中放置一菱形,已知,點B在y軸上,,先將菱形沿x軸的正方向無滑動翻轉(zhuǎn),每次翻轉(zhuǎn)60°,連續(xù)翻轉(zhuǎn)12次,點B的落點依次為,,,,則的橫坐標為______.2、如圖,平面直角坐標系xOy在邊長為1的小正方形組成的網(wǎng)格中,正方形ABCD的邊AD在y軸正半軸上邊BC在第一象限,且,,將正方形ABCD繞點A順時針旋轉(zhuǎn)(),若點B的對應點恰好落在坐標軸上,則點C的對應點的坐標為_________.3、如圖,在四邊形ABCD中,,將繞點C順時針旋轉(zhuǎn)60°后,點D的對應點恰好與點A重合,得到,,,則BD=______.4、如圖,△ABC中,AB=6,DE∥AC,將△BDE繞點B順時針旋轉(zhuǎn)得到△BD′E′,點D的對應點D′落在邊BC上.已知BE′=5,D′C=4,則BC的長為______.5、如圖,矩形ABCD中,AB=2,BC=1,將矩形ABCD繞頂點C順時針旋轉(zhuǎn)90°,得到矩形EFCG,連接AE,取AE的中點H,連接DH,則_______.三、解答題(5小題,每小題10分,共計50分)1、在Rt△ABC中,∠ACB=90°,AC=2,∠ABC=30°,點A關(guān)于直線BC的對稱點為A′,連接A′B,點P為直線BC上的動點(不與點B重合),連接AP,將線段AP繞點P逆時針旋轉(zhuǎn)60°,得到線段PD,連接A′D,BD.【問題發(fā)現(xiàn)】(1)如圖1,當點D在直線BC上時,線段BP與A′D的數(shù)量關(guān)系為,∠DA′B=;【拓展探究】(2)如圖2,當點P在BC的延長線上時,(1)中結(jié)論是否成立?若成立,請加以證明;若不成立,請說明理由;【問題解決】(3)當∠BDA′=30°時,求線段AP的長度.2、問題情境:數(shù)學活動課上,老師讓同學們以“三角形的旋轉(zhuǎn)”為主題開展數(shù)學活動,△ABC和△DEC是兩個全等的直角三角形紙片,其中∠ACB=∠DCE=90°,∠B=∠E=30°,AB=DE=4.解決問題:(1)如圖1,智慧小組將△DEC繞點C順時針旋轉(zhuǎn),發(fā)現(xiàn)當點D恰好落在AB邊上時,DE∥AC,請你幫他們證明這個結(jié)論;(2)縝密小組在智慧小組的基礎上繼續(xù)探究,當△DEC繞點C繼續(xù)旋轉(zhuǎn)到如圖2所示的位置時,連接AE、AD、BD,他們提出S△BDC=S△AEC,請你幫他們驗證這一結(jié)論是否正確,并說明理由.3、如圖,點,分別在正方形的邊,上,且,把繞點順時針旋轉(zhuǎn)得到.(1)求證:≌.(2)若,,求正方形的邊長.4、如圖1,在等腰Rt△ABC中,∠A=90°,點D、E分別在邊AB、AC上,AD=AE,連接DC,點M、P、N分別為DE、DC、BC的中點.

(1)觀察猜想:圖1中,線段PM與PN的數(shù)量關(guān)系是,位置關(guān)系是;(2)探究證明:把△ADE繞點A逆時針方向旋轉(zhuǎn)到圖2的位置,連接MN,BD,判斷△PMN的形狀,并說明理由;(3)拓展延伸:把△ADE繞點A在平面內(nèi)自由旋轉(zhuǎn),若AD=4,AB=10,求△PMN面積的最大值.5、正方形ABCD的邊長為3,E、F分別是AB、BC邊上的點,且∠EDF=45°.將△DAE繞點D逆時針旋轉(zhuǎn)90°,得到△DCM.(1)求證:EF=FM(2)當AE=1時,求EF的長.-參考答案-一、單選題1、A【解析】【分析】過點F作FH⊥BA交BA的延長線于點H,則∠FHA=90°,△AGD繞點A逆時針旋轉(zhuǎn)60°得到△AEF,得∠FAD=60°,AF=AD=2,又由四邊形ABCD是矩形,∠BAD=90°,得到∠FAH=30°,在Rt△AFH中,F(xiàn)H=AF=1,由勾股定理得AH=,得到BH=AH+AB=2,再由勾股定理得BF=.【詳解】解:如圖,過點F作FH⊥BA交BA的延長線于點H,則∠FHA=90°,∵△AGD繞點A逆時針旋轉(zhuǎn)60°得到△AEF∴∠FAD=60°,AF=AD=2,∵四邊形ABCD是矩形∴∠BAD=90°∴∠BAF=∠FAD+∠BAD=150°∴∠FAH=180°-∠BAF=30°在Rt△AFH中,F(xiàn)H=AF=1由勾股定理得AH=在Rt△BFH中,F(xiàn)H=1,BH=AH+AB=2由勾股定理得BF=故BF的長.故選:A【考點】本題考查了圖形的旋轉(zhuǎn),矩形的性質(zhì),含30度角的直角三角形的性質(zhì),勾股定理等知識,解決此題的關(guān)鍵在于作出正確的輔助線.2、A【解析】【分析】連接CP,AQ,以A為圓心,以AQ為半徑畫圓,延長BA交于E.根據(jù)正方形的性質(zhì),旋轉(zhuǎn)的性質(zhì),角的和差關(guān)系,全等三角形的判定定理和性質(zhì)求出AQ的長度,根據(jù)三角形三邊關(guān)系確定當點Q與點E重合時,BQ取得最大值,最后根據(jù)線段的和差關(guān)系計算即可.【詳解】解:如下圖所示,連接CP,AQ,以A為圓心,以AQ為半徑畫圓,延長BA交于E.∵正方形ABCD的邊長為4,的半徑為2,∴AD=CD=AB=4,∠ADC=90°,CP=2.∵點P繞點D按逆時針方向旋轉(zhuǎn)90°得到點Q,∴∠QDP=90°,QD=PD.∴∠ADC=∠QDP.∴∠ADC-∠QDC=∠QDP-∠QDC,即∠ADQ=∠CDP.∴.∴AQ=CP=2.∴AE=AQ=2.∵P是上任意一點,∴點Q在上移動.∴.∴當點Q與點E重合時,BQ取得最大值為BE.∴BE=AE+AB=6.故選:A.【考點】本題考查正方形的性質(zhì),旋轉(zhuǎn)的性質(zhì),角的和差關(guān)系,全等三角形的判定定理和性質(zhì),三角形三邊關(guān)系,線段的和差關(guān)系,綜合應用這些知識點是解題關(guān)鍵.3、C【解析】【分析】根據(jù)軸對稱圖形和中心對稱圖形的概念對各選項分析判斷即可得解.【詳解】解:A、等腰三角形是軸對稱圖形,不是中心對稱圖形,故本選項錯誤;B、等邊三角形是軸對稱圖形,不是中心對稱圖形,故本選項錯誤;C、菱形既是軸對稱圖形,又是中心對稱圖形,故本選項正確;D、平行四邊形不是軸對稱圖形,是中心對稱圖形,故本選項錯誤.故選C.【考點】本題考查了中心對稱圖形與軸對稱圖形的概念,軸對稱圖形的關(guān)鍵是尋找對稱軸,圖形兩部分折疊后可重合,中心對稱圖形是要尋找對稱中心,旋轉(zhuǎn)180度后兩部分重合.4、A【解析】【分析】取CB的中點G,連接MG,根據(jù)等邊三角形的性質(zhì)可得BH=BG,再求出∠HBN=∠MBG,根據(jù)旋轉(zhuǎn)的性質(zhì)可得MB=NB,然后利用“邊角邊”證明△MBG≌△NBH,再根據(jù)全等三角形對應邊相等可得HN=MG,然后根據(jù)垂線段最短可得MG⊥CH時最短,再根據(jù)∠BCH=30°求解即可.【詳解】解:如圖,取BC的中點G,連接MG,∵旋轉(zhuǎn)角為60°,∴∠MBH+∠HBN=60°,又∵∠MBH+∠MBC=∠ABC=60°,∴∠HBN=∠GBM,∵CH是等邊△ABC的對稱軸,∴HB=AB,∴HB=BG,又∵MB旋轉(zhuǎn)到BN,∴BM=BN,在△MBG和△NBH中,,∴△MBG≌△NBH(SAS),∴MG=NH,根據(jù)垂線段最短,MG⊥CH時,MG最短,即HN最短,此時∵∠BCH=×60°=30°,CG=AB=×5=2.5,∴MG=CG=,∴HN=,故選A.【考點】本題考查了旋轉(zhuǎn)的性質(zhì),等邊三角形的性質(zhì),全等三角形的判定與性質(zhì),垂線段最短的性質(zhì),作輔助線構(gòu)造出全等三角形是解題的關(guān)鍵,也是本題的難點.5、B【解析】【分析】根據(jù)軸對稱圖形和中心對稱圖形的定義以及性質(zhì)對各項進行分析即可.【詳解】A、梯形不是軸對稱圖形,也不是中心對稱圖形,故本選項說法錯誤;B、等邊三角形是軸對稱圖形,但不是中心對稱圖形,故本選項說法正確;C、平行四邊形不是軸對稱圖形,是中心對稱圖形,故本選項說法錯誤;D、矩形是軸對稱圖形,也是中心對稱圖形,故本選項說法錯誤.故選:B.【考點】本題考查了軸對稱圖形和中心對稱圖形的判斷,掌握軸對稱圖形和中心對稱圖形的定義以及性質(zhì)是解題的關(guān)鍵.二、填空題1、【解析】【分析】連接AC,根據(jù)條件可以求出AC,畫出第5次、第6次、第7次翻轉(zhuǎn)后的圖形,容易發(fā)現(xiàn)規(guī)律:每翻轉(zhuǎn)6次,圖形向右平移4,由于,因此點B向右平移8即可到達點,根據(jù)點B的坐標就可求出點的坐標.【詳解】連接AC,如圖所示,∵四邊形OABC是菱形,∴,∵,∴是等邊三角形,∴,∴,∵,∴,畫出第5次、第6次、第7次翻轉(zhuǎn)后的圖形,如圖所示,由圖可知:每翻轉(zhuǎn)6次,圖形向右平移4,∵,∴點B向右平移2×4=8個單位到點,∵B點的坐標為,∴的坐標為,故答案為:.【考點】本題考查了菱形的性質(zhì)、等邊三角形的判定與性質(zhì)等知識,考查了操作、探究、發(fā)現(xiàn)規(guī)律的能力.發(fā)現(xiàn)“每翻轉(zhuǎn)6次,圖形向右平移4”是解決本題的關(guān)鍵.2、或##或【解析】【分析】分兩種情形:如圖1中,當B落在x軸的正半軸上時,過點作H⊥x軸于點H.利用全等三角形的性質(zhì)求解.當點落在y軸的負半軸上時,(4,?2).【詳解】如圖,當B落在x軸的正半軸上時,過點作H⊥x軸于點H,∵A(0,2),B(4,2),∴AB=4,OA=2,∴O=,∵∠AO=∠A=∠H=90°,∴∠AO+∠H=90°,∠H+∠H=90°,∴∠AO=∠H,∴△AO≌△H(AAS),∴OA=H=2,O=H=,∴OH=,∴當點B落在y軸的負半軸上時,C1(4,?2).綜上所述,滿足條件的點C的坐標為或;故答案為:或【考點】本題考查坐標與圖形變化?旋轉(zhuǎn),全等三角形的判定和性質(zhì)等知識,解題的關(guān)鍵是學會添加常用輔助線,構(gòu)造全等三角形解決問題.3、【解析】【分析】連接BE,如圖,根據(jù)旋轉(zhuǎn)的性質(zhì)得∠BCE=60°,CB=CE,BD=AE,再判斷△BCE為等邊三角形得到BE=BC=9,∠CBE=60°,從而有∠ABE=90°,然后利用勾股定理計算出AE即可.【詳解】解:連接BE,如圖,∵△DCB繞點C順時針旋轉(zhuǎn)60°后,點D的對應點恰好與點A重合,得到△ACE,∴∠BCE=60°,CB=CE,BD=AE,∴△BCE為等邊三角形,∴BE=BC=9,∠CBE=60°,∵∠ABC=30°,∴∠ABE=90°,在Rt△ABE中,AE=.故答案為:.【考點】本題考查了旋轉(zhuǎn)的性質(zhì):對應點到旋轉(zhuǎn)中心的距離相等;對應點與旋轉(zhuǎn)中心所連線段的夾角等于旋轉(zhuǎn)角;旋轉(zhuǎn)前、后的圖形全等.4、.【解析】【詳解】解:由旋轉(zhuǎn)可得,BE=BE'=5,BD=BD',∵D'C=4,∴BD'=BC﹣4,即BD=BC﹣4,∵DE∥AC,∴,即,解得BC=(負值已舍去),即BC的長為.故答案為.【考點】本題主要考查了旋轉(zhuǎn)的性質(zhì),解一元二次方程以及平行線分線段成比例定理的運用,解題時注意:對應點到旋轉(zhuǎn)中心的距離相等.解決問題的關(guān)鍵是依據(jù)平行線分線段成比例定理,列方程求解.5、【解析】【分析】根據(jù)題意構(gòu)造并證明,通過全等得到,再結(jié)合矩形的性質(zhì)、旋轉(zhuǎn)的性質(zhì),及可求解;【詳解】如圖,延長DH交EF于點k,∵H是的中點又則故答案為:【考點】本題主要考查了矩形的性質(zhì)、三角形的全等證明,掌握相關(guān)知識并結(jié)合旋轉(zhuǎn)的性質(zhì)正確構(gòu)造全等三角形是解題的關(guān)鍵.三、解答題1、(1)相等;90°;(2)成立,證明見解析;(3)線段AP的長度為4或4.【解析】【分析】(1)首先推知AP=PB,PC=AP,根據(jù)全等三角形的性質(zhì)即可得到結(jié)論;(2)如圖②,連接AD,根據(jù)等邊三角形的性質(zhì)得到AB=AA′,由旋轉(zhuǎn)的性質(zhì)得到AP=DP,∠APD=60°,推出△AA′B是等邊三角形,得到PA=PD=AD,根據(jù)全等三角形的性質(zhì)即可得到結(jié)論;(3)如圖③,由(2)知,∠BA′D=90°根據(jù)已知條件得到D在BA的延長線上,由旋轉(zhuǎn)的性質(zhì)得到AP=DP,∠APD=60°,推出△AA′B是等邊三角形,得到PA=PD=AD,于是得到結(jié)論;如圖④,由(2)知,∠BA′D=90°,根據(jù)旋轉(zhuǎn)的性質(zhì)得到AP=DP,∠APD=60°,求得PA=PD=AD,∠PAD=∠BAA′=60°,根據(jù)全等三角形的性質(zhì)得到PB=DA′=4,根據(jù)勾股定理即可得到結(jié)論.【詳解】(1)在Rt△ABC中,∠ACB=90°,AC=2,∠ABC=30°,點A關(guān)于直線BC的對稱點為A′,則∠ABC=∠A′BC=30°,AB=A′B.∴∠ABA′=60°.∴△ABA′是等邊三角形,∴∠AA′B=60°,∵∠APD=60°,∴∠BAP=∠ABP=∠PAC=30°,∴AP=PB,PCAP,∵AP=PD,∴PCPD,∴PC=CD,∵AC=A′C,∠ACP=∠A′CD,∴△APC≌△A′DC(SAS),∴DA′=AP,∠CA′D=∠PAC=30°,∴PB=DA′,∠BA′D=60°+30°=90°,故答案為:相等;90°;(2)成立,證明如下:如圖②,連接AD,∵△AA′B是等邊三角形,∴AB=AA′,由旋轉(zhuǎn)的性質(zhì)可得:AP=DP,∠APD=60°,∴△APD是等邊三角形,∴PA=PD=AD,∴∠BAP=∠BAC+∠CAP,∠A′AD=∠PAD+∠CAP,∠BAC=∠PAD,∴∠BAP=∠A′AD,在△BAP與△A′AD中,∵,∴△BAP≌△A′AD(SAS),

∴BP=A′D,∠AA′D=∠ABC=30°.∵∠BA′A=60°,∴∠DA′B=∠BA′A+∠AA′D=90°;(3)如圖③,當點P在BC的延長線上時,由(2)知,∠BA′D=90°∵∠BDA′=30°,∴∠DBA′=60°,∴D在BA的延長線上,由旋轉(zhuǎn)的性質(zhì)可得:AP=DP,∠APD=60°,∴△APD是等邊三角形,∴PA=PD=AD,∵BA′=4,∴BD=8,∴AP=AD=4;如圖④,當點P在CB的延長線上時,由(2)知,∠BA′D=90°,∵∠BDA′=30°,∵BA′=4,∴DA′=4,由旋轉(zhuǎn)的性質(zhì)可得:AP=DP,∠APD=60°,∴△APD是等邊三角形,∴PA=PD=AD,∠PAD=∠BAA′=60°,∴∠PAB=∠DAA′,∵AB=AA′,∴△ABP≌△AA′D(SAS),∴PB=DA′=4,∵AC=2,BC=2,∴CP=6,∴AP4.綜上所述,線段AP的長度為4或4.【考點】本題屬于幾何變換綜合題,考查了全等三角形的判定和性質(zhì)、等邊三角形的判定和性質(zhì),正確的作出圖形是解題的關(guān)鍵.2、(1)證明見解析;(2)正確,理由見解析【解析】【分析】(1)如圖1中,根據(jù)旋轉(zhuǎn)的性質(zhì)可得AC=CD,然后求出△ACD是等邊三角形,根據(jù)等邊三角形的性質(zhì)可得∠ACD=60°,然后根據(jù)內(nèi)錯角相等,兩直線平行進行解答;(2)如圖2中,作DM⊥BC于M,AN⊥EC交EC的延長線于N.根據(jù)旋轉(zhuǎn)的性質(zhì)可得BC=CE,AC=CD,再求出∠ACN=∠DCM,然后利用“角角邊”證明△ACN和△DCM全等,根據(jù)全等三角形對應邊相等可得AN=DM,然后利用等底等高的三角形的面積相等證明.【詳解】解:(1)如圖1中,∵△DEC繞點C旋轉(zhuǎn)點D恰好落在AB邊上,∴AC=CD,∵∠BAC=90°﹣∠B=90°﹣30°=60°,∴△ACD是等邊三角形,∴∠ACD=60°,又∵∠CDE=∠BAC=60°,∴∠ACD=∠CDE,∴DE∥AC;(2)結(jié)論正確,理由如下:如圖2中,作DM⊥BC于M,AN⊥EC交EC的延長線于N.∵△DEC是由△ABC繞點C旋轉(zhuǎn)得到,∴BC=CE,AC=CD,∵∠ACN+∠BCN=90°,∠DCM+∠BCN=180°﹣90°=90°,∴∠ACN=∠DCM,在△ACN和△DCM中,,∴△ACN≌△DCM(AAS),∴AN=DM,∴△BDC的面積和△AEC的面積相等(等底等高的三角形的面積相等),即S△BDC=S△AEC.【考點】本題屬于幾何變換綜合題,主要考查了全等三角形的判定與性質(zhì),等邊三角形的判定與性質(zhì),旋轉(zhuǎn)的性質(zhì)的綜合應用,添加恰當輔助線構(gòu)造全等三角形是解題的關(guān)鍵.3、(1)證明見解析;(2)正方形的邊長為6.【解析】【分析】(1)先根據(jù)旋轉(zhuǎn)的性質(zhì)可得,再根據(jù)正方形的性質(zhì)、角的和差可得,然后根據(jù)三角形全等的判定定理即可得證;(2)設正方形的邊長為x,從而可得,再根據(jù)旋轉(zhuǎn)的性質(zhì)可得,從而可得,然后根據(jù)三角形全等的性質(zhì)可得,最后在中,利用勾股定理即可得.【詳解】(1)由旋轉(zhuǎn)的性質(zhì)得:四邊形ABCD是正方形,即,即在和中,;(2)設正方形的邊長為x,則由旋轉(zhuǎn)的性質(zhì)得:由(1)已證:又四邊形ABCD是正方形則在中,,即解得或(不符題意,舍去)故正方形的邊長為6.【考點】本題考查了正方形的性質(zhì)、旋轉(zhuǎn)的性質(zhì)、三角形全等的判定定理與性質(zhì)、勾股定理等知識點,較難的是題(2),熟練掌握旋轉(zhuǎn)的性質(zhì)與正方形的性質(zhì)是解題關(guān)鍵.4、(1),(2)詳見解析(3)詳見解析【解析】【分析】(1)利用三角形的中位線定理得出,,進而得出,即可得出結(jié)論,再利用三角形的中位線定理得出,再得出,最后利用互余得出結(jié)論;(2

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
  • 6. 下載文件中如有侵權(quán)或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論