版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領
文檔簡介
人教版8年級數學上冊《全等三角形》專題測評考試時間:90分鐘;命題人:教研組考生注意:1、本卷分第I卷(選擇題)和第Ⅱ卷(非選擇題)兩部分,滿分100分,考試時間90分鐘2、答卷前,考生務必用0.5毫米黑色簽字筆將自己的姓名、班級填寫在試卷規(guī)定位置上3、答案必須寫在試卷各個題目指定區(qū)域內相應的位置,如需改動,先劃掉原來的答案,然后再寫上新的答案;不準使用涂改液、膠帶紙、修正帶,不按以上要求作答的答案無效。第I卷(選擇題20分)一、單選題(5小題,每小題4分,共計20分)1、如圖,已知,添加以下條件,不能判定的是(
)A. B.C. D.2、如圖所示,在Rt△ABC中,AB=AC,D、E是斜邊BC上的兩點,且∠DAE=45°,將△ADC繞點A按順時針方向旋轉90°后得到△AFB,連接EF,有下列結論:①BE=DC;②∠BAF=∠DAC;③∠FAE=∠DAE;④BF=DC.其中正確的有()A.①②③④ B.②③ C.②③④ D.③④3、如圖,在△ABC和△A′B′C中,△ABC≌△A′B′C,AA′∥BC,,,則,滿足關系(
)A. B. C. D.4、如圖,Rt△ACB中,∠ACB=90°,△ACB的角平分線AD,BE相交于點P,過P作PF⊥AD交BC的延長線于點F,交AC于點H,則下列結論:①∠APB=135°;②AD=PF+PH;③DH平分∠CDE;④S四邊形ABDE=S△ABP;⑤S△APH=S△ADE,其中正確的結論有(
)個A.2 B.3 C.4 D.55、如圖給出了四組三角形,其中全等的三角形有(
)組.A.1 B.2 C.3 D.4第Ⅱ卷(非選擇題80分)二、填空題(5小題,每小題6分,共計30分)1、如圖,AB⊥BC于B,DC⊥BC于C,AB=6,BC=8,CD=2,點P為BC邊上一動點,當BP=________時,形成的Rt△ABP與Rt△PCD全等.2、如圖,已知∠1=∠2、AD=AB,若再增加一個條件不一定能使結論成立,則這個條件是_____.3、如圖,已知△ABC與△DEF全等,且∠A=72°、∠B=45°、∠E=63°、BC=10,EF=10,那么∠D=_____度.4、如圖,四邊形ABCD≌四邊形A′B′C′D′,則∠A的大小是______.5、如圖,AD,BE是的兩條高線,只需添加一個條件即可證明(不添加其它字母及輔助線),這個條件可以是______(寫出一個即可).三、解答題(5小題,每小題10分,共計50分)1、中,,,點是邊上的一個動點,連接,過點作于點.(1)如圖1,分別延長,相交于點,求證:;(2)如圖2,若平分,,求的長;(3)如圖3,是延長線上一點,平分,試探究,,之間的數量關系并說明理由.2、如圖,已知AC平分∠BAD,CE⊥AB于E,CF⊥AD于F,且BC=CD.(1)求證:△BCE≌△DCF;(2)求證:AB+AD=2AE.3、如圖,G為BC的中點,且DG⊥BC,DE⊥AB于E,DF⊥AC于F,BE=CF.(1)求證:AD是∠BAC的平分線;(2)如果AB=8,AC=6,求AE的長.4、如圖,是邊長為2的等邊三角形,是頂角為120°的等腰三角形,以點為頂點作,點、分別在、上.(1)如圖①,當時,則的周長為______;(2)如圖②,求證:.5、如圖,沿AC方向開山修路,為了加快施工進度,要在山的另一邊同時施工,工人師傅在AC上取一點B,在小山外取一點D,連接BD,并延長使DF=BD,過F點作AB的平行線段MF,連接MD,并延長,在其延長線上取一點E,使DE=DM,在E點開工就能使A、C、E成一條直線,請說明其中的道理;-參考答案-一、單選題1、D【解析】【分析】全等三角形的判定有SAS,ASA,AAS,SSS,根據全等三角形的判定定理逐個判斷即可.【詳解】解:在△ABC和△CDA中,,AC=CA;A.添加∠2=∠3,可用ASA判定;B.添加∠B=∠D,可用AAS判定;C.添加BC=DA,可用SAS判定;D.添加AB=DC,是SSA不能判定故選:D【考點】本題考查了全等三角形的判定定理,能熟記全等三角形的判定定理的內容是解此題的關鍵,注意:全等三角形的判定定理有SAS,ASA,AAS,SSS.2、C【解析】【分析】利用旋轉性質可得△ABF≌△ACD,根據全等三角形的性質一一判斷即可.【詳解】解:∵△ADC繞A順時針旋轉90°后得到△AFB,∴△ABF≌△ACD,∴∠BAF=∠CAD,AF=AD,BF=CD,故②④正確,∴∠EAF=∠BAF+∠BAE=∠CAD+∠BAE=∠BAC﹣∠DAE=90°﹣45°=45°=∠DAE故③正確無法判斷BE=CD,故①錯誤,故選:C.【考點】本題考查了旋轉的性質:旋轉前后兩圖形全等,解題的關鍵是熟練掌握基本知識,屬于中考常考題型.3、C【解析】【分析】根據△△,證得,=,再利用∥BC得到=,再根據三角形內角和定理即可得到結論.【詳解】∵△△,∴,∠ACB=,∴,=,∵∥BC,∴=,∴,故選:C.【考點】此題考查旋轉圖形的性質,等腰三角形的性質,兩直線平行內錯角相等,三角形的內角和定理.4、B【解析】【分析】①正確.利用三角形內角和定理以及角平分線的定義即可解決問題.②正確.證明△ABP≌△FBP,推出PA=PF,再證明△APH≌△FPD,推出PH=PD即可解決問題.③錯誤.利用反證法,假設成立,推出矛盾即可.④錯誤,可以證明S四邊形ABDE=2S△ABP.⑤正確.由DH∥PE,利用等高模型解決問題即可.【詳解】解:在△ABC中,AD、BE分別平分∠BAC、∠ABC∵∠ACB=90°∴∠A+∠B=90°又∵AD、BE分別平分∠BAC、∠ABC∴∠BAD+∠ABE=(∠A+∠B)=45°∴∠APB=135°,故①正確∴∠BPD=45°又∵PF⊥AD∴∠FPB=90°+45°=135°∴∠APB=∠FPB又∵∠ABP=∠FBPBP=BP∴△ABP≌△FBP(ASA)∴∠BAP=∠BFP,AB=FB,PA=PF在△APH和△FPD中∴△APH≌△FPD(ASA)∴PH=PD∴AD=AP+PD=PF+PH.故②正確∵△ABP≌△FBP,△APH≌△FPD∴S△APB=S△FPB,S△APH=S△FPD,PH=PD∵∠HPD=90°∴∠HDP=∠DHP=45°=∠BPD∴HD∥EP∴S△EPH=S△EPD∴S△APH=S△AED,故⑤正確∵S四邊形ABDE=S△ABP+S△AEP+S△EPD+S△PBD=S△ABP+(S△AEP+S△EPH)+S△PBD=S△ABP+S△APH+S△PBD=S△ABP+S△FPD+S△PBD=S△ABP+S△FBP=2S△ABP,故④不正確若DH平分∠CDE,則∠CDH=∠EDH∵DH∥BE∴∠CDH=∠CBE=∠ABE∴∠CDE=∠ABC∴DE∥AB,這個顯然與條件矛盾,故③錯誤故選B.【考點】本題考查了角平分線的判定與性質,三角形全等的判定方法,三角形內角和定理,三角形的面積等知識,解題的關鍵是正確尋找全等三角形解決問題,屬于中考??碱}型.5、D【解析】【詳解】分析:根據全等三角形的判定解答即可.詳解:圖A可以利用AAS證明全等,圖B可以利用SAS證明全等,圖C可以利用SAS證明全等,圖D可以利用ASA證明全等..其中全等的三角形有4組,故選D.點睛:此題考查全等三角形的判定的應用,注意:全等三角形的判定定理有SAS,ASA,AAS,SSS,題目比較典型,難度適中.二、填空題1、2【解析】【分析】當BP=2時,Rt△ABP≌Rt△PCD,由BC=8可得CP=6,進而可得AB=CP,BP=CD,再結合AB⊥BC、DC⊥BC可得∠B=∠C=90°,可利用SAS判定△ABP≌△PCD.【詳解】當BP=2時,Rt△ABP≌Rt△PCD.理由如下:∵BC=8,BP=2,∴PC=6,∴AB=PC.∵AB⊥BC,DC⊥BC,∴∠B=∠C=90°.在△ABP和△PCD中,∵,∴△ABP≌△PCD(SAS).故答案為:2.【考點】本題考查了全等三角形的判定,掌握全等三角形的判定方法(即SSS、SAS、ASA、AAS和HL)是解題的關鍵.注意:AAA、SSA不能判定兩個三角形全等,判定兩個三角形全等時,必須有邊的參與,若有兩邊一角相等時,角必須是兩邊的夾角.2、DE=BC【解析】【分析】根據題目中的條件可以得到,再增加條件則不一定成立,從而可以解答本題.【詳解】增加的條件為理由:∵∴∴∵∴不一定成立故答案為:.【考點】本題考查了三角形全等的判定定理,熟記并靈活運用各種判定方法是解題關鍵.3、【解析】【分析】△ABC中,根據三角形內角和定理求得∠C=63°,那么∠C=∠E.根據相等的角是對應角,相等的邊是對應邊得出△ABC≌△DFE,然后根據全等三角形的對應角相等即可求得∠D.【詳解】解:在△ABC中,∵∠A=72°,∠B=45°,∴∠C=180°﹣∠A﹣∠B=63°,∵∠E=63°,∴∠C=∠E.∵△ABC與△DEF全等,BC=10,EF=10,∴△ABC≌△DFE,∴∠D=∠A=72°,故答案為72.【考點】本題考查了全等三角形的性質;注意:題目條件中△ABC與△DEF全等,但是沒有明確對應頂點.得出△ABC≌△DFE是解題的關鍵.4、95°【解析】【分析】根據兩個多邊形全等,則對應角相等四邊形以及內角和即可完成【詳解】∵四邊形ABCD≌四邊形A′B′C′D′∴∠D=∠D′=130゜∵四邊形ABCD的內角和為360゜∴∠A=360゜-∠B-∠C-∠D=95゜故答案為:95゜【考點】本題考查了多邊形全等的性質、多邊形的內角和定理,掌握多邊形全等的性質是關鍵.5、(答案不唯一)【解析】【分析】根據已知條件可知,故只要添加一條邊相等即可證明.【詳解】解:添加,AD,BE是的兩條高線,,在與中,.故答案為:(答案不唯一).【考點】本題考查了三角形全等的判定,掌握三角形全等的判定是解題的關鍵.三、解答題1、(1)見解析(2)(3),理由見解析【解析】【分析】(1)欲證明BE=AD,只要證明即可;(2)如圖2,分別延長BF,AC交于點E,證,可求;(3)如圖3中,分別延長BF,AC交于點E,由(1)可得△ACD≌△BCE,得CD=CE,再證可得結論.(1)解:(1)∵,∴,又∵,∴.在和中,∴.∴.(2)解:如圖2,延長,交于點.∵,∴,∵平分,∴.在和中,∴.∴.由(1)可得,.∴.(3)解:.理由:如圖3,延長,交于點.由(1)可得,,∴.∵,∴,∵平分,∴.在和中,∴.∴.∵.∴.【考點】本題考查三角形綜合題、全等三角形的判定和性質、等腰直角三角形的性質等知識,解題的關鍵是學會添加常用輔助線,構造全等三角形解決問題,屬于中考壓軸題.2、詳見解析【解析】【分析】(1)由角平分線定義可證△BCE≌△DCF(HL);(2)先證Rt△FAC≌Rt△EAC,得AF=AE,由(1)可得AB+AD=(AE+BE)+(AF﹣DF)=AE+BE+AE﹣DF=2AE.【詳解】(1)證明:∵AC是角平分線,CE⊥AB于E,CF⊥AD于F,∴CE=CF,∠F=∠CEB=90°,在Rt△BCE和Rt△DCF中,∴△BCE≌△DCF;(2)解:∵CE⊥AB于E,CF⊥AD于F,∴∠F=∠CEA=90°,在Rt△FAC和Rt△EAC中,,∴Rt△FAC≌Rt△EAC,∴AF=AE,∵△BCE≌△DCF,∴BE=DF,∴AB+AD=(AE+BE)+(AF﹣DF)=AE+BE+AE﹣DF=2AE.【考點】本題考查了全等三角形的判定、性質和角平分線定義,注意:全等三角形的對應角相等,對應邊相等,直角三角形全等的判定定理有SAS,ASA,AAS,SSS,HL.3、(1)見解析;(2)7.【解析】【分析】(1)因為G為BC的中點,且DG⊥BC,則DG是線段BC的垂直平分線,考慮連接DB、DC,利用線段的垂直平分線的性質,又因為DE⊥AB,DF⊥AC,可通過DE=DF說明AD是∠BAC的平分線;(2)先通過△AED與△ADF的全等關系,說明AE與AF的關系,利用線段的和差關系,通過線段的加減求出AE的長.【詳解】(1)連接BD、DC∵DG⊥BC,G為BC的中點,∴BD=CD,∵DG⊥BC,DE⊥AB∴∠BED=∠CFD,在Rt△DBE和Rt△DFC中,∴△DBE≌△DFC∴DE=DF,∴∠BAD=∠FAD∴AD是∠BAC的平分線;(2)∵DE=DF,∠BAD=∠FAD,AD=AD∴△AED≌△ADF,∴AE=AF∵AB=AE+BE,AC=AF-CF,∴AB+AC=AE+AF,∵AB=8,AC=6,∴8+6=2AE,∴AE=7.【考點】本題考查了全等三角形的判定與性質、角平分線與線段垂直平分線的性質,解題的關鍵是熟練的掌握全等三角形的判定與性質以及角平分線與線段垂直平分線的性質.4、(1)4;(2)見解析【解析】【分析】(1)首先證明△BDM≌△CDN,進而得出△DMN是等邊三角形,∠BDM=∠CDN=30°,NC=BM=DM=MN,即可解決問題;(2)延長至點,使得,連接,首先證明,再證明,得出,進而得出結果即可.【詳解】解:(1)∵是等邊三角形,,,∴是等邊三角形,,則,∵是頂角的等腰三角形,,,在和中,,,,∵,∴是等邊三角形,,,,∴的周長.(2)如圖,延長至點,使得,連接,∵是等邊三角形,是頂角的等腰三角形
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯系上傳者。文件的所有權益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經權益所有人同意不得將文件中的內容挪作商業(yè)或盈利用途。
- 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
- 6. 下載文件中如有侵權或不適當內容,請與我們聯系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 2025云南楚雄大姚縣財政局招聘公益性崗位人員1人備考筆試題庫及答案解析
- 2025河北雄安新區(qū)中級人民法院招聘聘用制人員7人備考考試試題及答案解析
- 邯鄲市永年區(qū)公開招聘警務輔助人員20人備考題庫及一套答案詳解
- 2025年國家空間科學中心復雜航天系統(tǒng)電子備考題庫技術重點實驗室復雜系統(tǒng)研制與開發(fā)人員招聘備考題庫及1套參考答案詳解
- 2025年鹽城市機關事務管理局直屬事業(yè)單位公開選調工作人員備考題庫完整參考答案詳解
- 2025年為濱州市檢察機關公開招聘聘用制書記員的備考題庫完整參考答案詳解
- 2025年永康市龍山鎮(zhèn)人民政府工作人員招聘備考題庫有答案詳解
- 2025年象州縣機關事務管理局公開招聘編外工作人員備考題庫及完整答案詳解1套
- 2025年某國企備考題庫終端運維及電視電話會議保障人員招聘備考題庫及參考答案詳解
- 2025年晉江市圖書館公開招聘編外人員的備考題庫參考答案詳解
- 偏頭痛護理查房
- 2025年檔案工作的工作總結和計劃(5篇)
- 2025年光伏電站運維合同協議范本
- 保險反洗錢知識培訓課件
- 公路項目施工安全培訓課件
- 2025顱內動脈粥樣硬化性狹窄診治指南解讀課件
- 臺灣農會信用部改革:資產結構重塑與效能提升的深度剖析
- 單軌吊司機培訓課件
- 初級消防員培訓課程教學大綱
- 2025年廣東省中考物理試題卷(含答案)
- 高通量測序平臺考核試卷
評論
0/150
提交評論