重難點解析滬科版9年級下冊期末測試卷及1套參考答案詳解_第1頁
重難點解析滬科版9年級下冊期末測試卷及1套參考答案詳解_第2頁
重難點解析滬科版9年級下冊期末測試卷及1套參考答案詳解_第3頁
重難點解析滬科版9年級下冊期末測試卷及1套參考答案詳解_第4頁
重難點解析滬科版9年級下冊期末測試卷及1套參考答案詳解_第5頁
已閱讀5頁,還剩26頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報或認(rèn)領(lǐng)

文檔簡介

滬科版9年級下冊期末測試卷考試時間:90分鐘;命題人:教研組考生注意:1、本卷分第I卷(選擇題)和第Ⅱ卷(非選擇題)兩部分,滿分100分,考試時間90分鐘2、答卷前,考生務(wù)必用0.5毫米黑色簽字筆將自己的姓名、班級填寫在試卷規(guī)定位置上3、答案必須寫在試卷各個題目指定區(qū)域內(nèi)相應(yīng)的位置,如需改動,先劃掉原來的答案,然后再寫上新的答案;不準(zhǔn)使用涂改液、膠帶紙、修正帶,不按以上要求作答的答案無效。第I卷(選擇題16分)一、單選題(8小題,每小題2分,共計16分)1、如圖,該幾何體的左視圖是()A. B. C. D.2、如圖是一個含有3個正方形的相框,其中∠BCD=∠DEF=90°,AB=2,CD=3,EF=5,將它鑲嵌在一個圓形的金屬框上,使A,G,H三點剛好在金屬框上,則該金屬框的半徑是()A. B. C. D.3、拋一枚質(zhì)地均勻的硬幣三次,其中“至少有兩次正面朝上”的概率是()A. B. C. D.4、下列關(guān)于隨機(jī)事件的概率描述正確的是()A.拋擲一枚質(zhì)地均勻的硬幣出現(xiàn)“正面朝上”的概率為0.5,所以拋擲1000次就一定有500次“正面朝上”B.某種彩票的中獎率為5%,說明買100張彩票有5張會中獎C.隨機(jī)事件發(fā)生的概率大于或等于0,小于或等于1D.在相同條件下可以通過大量重復(fù)實驗,用一個隨機(jī)事件的頻率去估計概率5、如圖,中,,O是AB邊上一點,與AC、BC都相切,若,,則的半徑為()A.1 B.2 C. D.6、在一個不透明的口袋中裝有3張完全相同的卡片,卡片上面分別寫有數(shù)字,0,2,從中隨機(jī)抽出兩張不同卡片,則下列判斷正確的是()A.?dāng)?shù)字之和是0的概率為0 B.?dāng)?shù)字之和是正數(shù)的概率為C.卡片上面的數(shù)字之和是負(fù)數(shù)的概率為 D.?dāng)?shù)字之和分別是負(fù)數(shù)、0、正數(shù)的概率相同7、在一個不透明的盒子中裝有紅球、白球、黑球共40個,這些球除顏色外無其他差別,在看不見球的條件下,隨機(jī)從盒子中摸出一個球記錄顏色后放回.經(jīng)過多次試驗,發(fā)現(xiàn)摸到紅球的頻率穩(wěn)定在30%左右,則盒子中紅球的個數(shù)約為()A.12 B.15 C.18 D.238、下列圖形中,既是軸對稱圖形又是中心對稱圖形的是()A. B. C. D.第Ⅱ卷(非選擇題84分)二、填空題(7小題,每小題2分,共計14分)1、如圖,在⊙O中,=,AB=10,BC=12,D是上一點,CD=5,則AD的長為______.2、兩直角邊分別為6、8,那么的內(nèi)接圓的半徑為____________.3、如圖,已知⊙O的半徑為2,弦AB的長度為2,點C是⊙O上一動點若△ABC為等腰三角形,則BC2為_______.4、AB是的直徑,點C在上,,點P在線段OB上運(yùn)動.設(shè),則x的取值范圍是________.5、邊長為2的正三角形的外接圓的半徑等于___.6、如圖,PA是⊙O的切線,A是切點.若∠APO=25°,則∠AOP=___________°.7、如圖,與x軸交于、兩點,,點P是y軸上的一個動點,PD切于點D,則△ABD的面積的最大值是________;線段PD的最小值是________.三、解答題(7小題,每小題0分,共計0分)1、如圖,是的弦,是上的一點,且,于點,交于點.若的半徑為6,求弦的長.2、太原是國家歷史文化名城,有很多旅游的好去處,周末哥哥計劃帶弟弟出去玩,放假前他收集了太原動物園、晉祠公園、森林公園、汾河濕地公園四個景點的旅游宣傳卡片,這些卡片的大小、形狀及背面完全相同,分別用D,J,S,F(xiàn)表示,如圖所示,請用列表或畫樹狀圖的方法,求下列事件發(fā)生的概率.(1)把這四張卡片背面朝上洗勻后,弟弟從中隨機(jī)抽取一張,作好記錄后,將卡片放回洗勻,哥哥再抽取一張,求兩人抽到同一景點的概率;(2)把這四張卡片背面朝上洗勻后,弟弟和哥哥從中各隨機(jī)抽取一張(不放回),求兩人抽到動物園和森林公園的概率.3、新冠病毒在全球肆虐,疫情防控刻不容緩.某校為了解學(xué)生對新冠疫情防控知識的了解程度,組織七、八年級學(xué)生開展新冠疫情防控知識測試(滿分為10分).學(xué)校學(xué)生處從七、八年級學(xué)生中各隨機(jī)抽取了20名學(xué)生的成績進(jìn)行了統(tǒng)計.下面提供了部分信息.抽取的20名七年級學(xué)生的成績(單位:分)為:10,10,9,9,9,9,9,9,8,8,8,8,8,8,8,7,7,6,5,5.抽取的40名學(xué)生成績分析表:年級七年級八年級平均分88.1眾數(shù)8b中位數(shù)a8方差1.91.89請根據(jù)以上信息,解答下列問題:(1)直接寫出上表中a,b的值;(2)該校七、八年級共有學(xué)生2000人,估計此次測試成績不低于9分的學(xué)生有多少人?(3)在所抽取的七年級與八年級得10分的學(xué)生中,隨機(jī)抽取2名學(xué)生在全校學(xué)生大會上進(jìn)行新冠疫情防控知識宣講,求所抽取的2名學(xué)生恰好是1名七年級學(xué)生和1名八年級學(xué)生的概率.4、如圖,四邊形ABCD內(nèi)接于⊙O,AC是直徑,點C是劣弧BD的中點.(1)求證:.(2)若,,求BD.5、在所給的的正方形網(wǎng)格中,按下列要求操作:(單位正方形的邊長為1)(1)請在第二象限內(nèi)的格點上找一點,使是以為底的等腰三角形,且腰長是無理數(shù),求點的坐標(biāo);(2)畫出以點為中心,旋轉(zhuǎn)180°后的,并求的面積.6、如圖,在⊙O中,弦AC與弦BD交于點P,AC=BD.(1)求證AP=BP;(2)連接AB,若AB=8,BP=5,DP=3,求⊙O的半徑.7、如圖,已知AB是的直徑,點D為弦BC中點,過點C作切線,交OD延長線于點E,連結(jié)BE,OC.(1)求證:.(2)求證:BE是的切線.-參考答案-一、單選題1、C【分析】根據(jù)從左邊看得到的圖形是左視圖解答即可.【詳解】解:從左邊看是一個正方形被水平的分成3部分,中間的兩條分線是虛線,故C正確.故選C.【點睛】本題主要考查了簡單組合體的三視圖,掌握三視圖的定義成為解答本題的關(guān)鍵.2、A【分析】如圖,記過A,G,H三點的圓為則是,的垂直平分線的交點,記的交點為的交點為延長交于為的垂直平分線,結(jié)合正方形的性質(zhì)可得:再設(shè)利用勾股定理建立方程,再解方程即可得到答案.【詳解】解:如圖,記過A,G,H三點的圓為則是,的垂直平分線的交點,記的交點為的交點為延長交于為的垂直平分線,結(jié)合正方形的性質(zhì)可得:四邊形為正方形,則設(shè)而AB=2,CD=3,EF=5,結(jié)合正方形的性質(zhì)可得:而又而解得:故選A【點睛】本題考查的是正方形的性質(zhì),三角形外接圓圓心的確定,圓的基本性質(zhì),勾股定理的應(yīng)用,二次根式的化簡,確定過A,G,H三點的圓的圓心是解本題的關(guān)鍵.3、B【分析】根據(jù)隨機(jī)擲一枚質(zhì)地均勻的硬幣三次,可以分別假設(shè)出三次情況,畫出樹狀圖即可.【詳解】解:隨機(jī)擲一枚質(zhì)地均勻的硬幣三次,根據(jù)樹狀圖可知至少有兩次正面朝上的事件次數(shù)為:4,總的情況為8次,故至少有兩次正面朝上的事件概率是:.故選:B.【點睛】本題主要考查了樹狀圖法求概率,解題的關(guān)鍵是根據(jù)題意畫出樹狀圖.4、D【分析】根據(jù)隨機(jī)事件、必然事件以及不可能事件的定義即可作出判斷.【詳解】解:概率反映的是隨機(jī)性的規(guī)律,但每次試驗出現(xiàn)的結(jié)果具有不確定,故選項A、B錯誤;隨機(jī)事件發(fā)生的概率大于0,小于1,概率等于1的是必然事件,概率等于0的是不可能事件,故選項C錯誤;在相同條件下可以通過大量重復(fù)實驗,用一個隨機(jī)事件的頻率去估計概率,故選項D正確;故選:D.【點睛】本題考查了隨機(jī)事件、必然事件以及不可能事件的定義,解決本題需要正確理解必然事件、不可能事件、隨機(jī)事件的概念.必然事件指在一定條件下一定發(fā)生的事件.不可能事件是指在一定條件下,一定不發(fā)生的事件.不確定事件即隨機(jī)事件是指在一定條件下,可能發(fā)生也可能不發(fā)生的事件.5、D【分析】作OD⊥AC于D,OE⊥BC于E,如圖,設(shè)⊙O的半徑為r,根據(jù)切線的性質(zhì)得OD=OE=r,易得四邊形ODCE為正方形,則CD=OD=r,再證明△ADO∽△ACB,然后利用相似比得到,再根據(jù)比例的性質(zhì)求出r即可.【詳解】解:作OD⊥AC于D,OE⊥BC于E,如圖,設(shè)⊙O的半徑為r,∵⊙O與AC、BC都相切,∴OD=OE=r,而∠C=90°,∴四邊形ODCE為正方形,∴CD=OD=r,∵OD∥BC,∴△ADO∽△ACB,∴∵AF=AC-r,BC=3,AC=4,代入可得,∴r=.故選:D.【點睛】本題考查了切線的性質(zhì):圓的切線垂直于經(jīng)過切點的半徑.運(yùn)用切線的性質(zhì)來進(jìn)行計算或論證,常通過作輔助線連接圓心和切點,利用垂直構(gòu)造直角三角形解決有關(guān)問題.也考查了相似三角形的判定與性質(zhì).6、A【分析】列樹狀圖,得到共有6種等可能的情況,和為正數(shù)的有4種情況,和為負(fù)數(shù)的有2種情況,依次判斷即可.【詳解】解:列樹狀圖如下:共有6種等可能的情況,和為正數(shù)的有4種情況,和為負(fù)數(shù)的有2種情況,A.數(shù)字之和是0的概率為0,故該項符合題意;B.數(shù)字之和是正數(shù)的概率為,故該項不符合題意;C.卡片上面的數(shù)字之和是負(fù)數(shù)的概率為,故該項不符合題意;D.數(shù)字之和分別是負(fù)數(shù)、0、正數(shù)的概率不相同,故該項不符合題意;故選:A.【點睛】此題考查了列樹狀圖求事件的概率,概率的計算公式,正確列出樹狀圖解答是解題的關(guān)鍵.7、A【分析】由題意可設(shè)盒子中紅球的個數(shù)x,則盒子中球的總個數(shù)x,摸到紅球的頻率穩(wěn)定在30%左右,根據(jù)頻率與概率的關(guān)系可得出摸到紅球的概率為30%,再根據(jù)概率的計算公式計算即可.【詳解】解:設(shè)盒子中紅球的個數(shù)x,根據(jù)題意,得:解得x=12,所以盒子中紅球的個數(shù)是12,故選:A.【點睛】本題主要考查了利用頻率估計概率以及概率求法的運(yùn)用,利用概率的求法估計總體個數(shù),利用如果一個事件有n種可能,而且這些事件的可能性相同,其中事件A出現(xiàn)m種結(jié)果,那么事件A的概率P(A)=;頻率與概率的關(guān)系生:一般地,在大量的重復(fù)試驗中,隨著試驗次數(shù)的增加,事件A發(fā)生的頻率會穩(wěn)定于某個常數(shù)p,我們稱事件A發(fā)生的概率為p.8、D【詳解】解:.不是軸對稱圖形,也不是中心對稱圖形,故本選項不符合題意;.不是軸對稱圖形,是中心對稱圖形,故本選項不符合題意;.是軸對稱圖形,不是中心對稱圖形,故本選項不符合題意;.既是軸對稱圖形,又是中心對稱圖形,故本選項符合題意.故選:D.【點睛】本題考查了中心對稱圖形與軸對稱圖形的概念,解題的關(guān)鍵是掌握軸對稱圖形的關(guān)鍵是尋找對稱軸,圖形兩部分折疊后可重合,中心對稱圖形是要尋找對稱中心,旋轉(zhuǎn)180度后與原圖重合.二、填空題1、3【分析】過A作AE⊥BC于E,過C作CF⊥AD于F,根據(jù)圓周角定理可得∠ACB=∠B=∠D,AB=AC=10,再由等腰三角形的性質(zhì)可知BE=CE=6,根據(jù)相似三角形的判定證明△ABE∽△CDF,由相似三角形的性質(zhì)和勾股定理分別求得AE、DF、CF,AF即可求解.【詳解】解:過A作AE⊥BC于E,過C作CF⊥AD于F,則∠AEB=∠CFD=90°,∵=,AB=10,∴∠ACB=∠B=∠D,AB=AC=10,∵AE⊥BC,BC=12,∴BE=CE=6,∴,∵∠B=∠D,∠AEB=∠CFD=90°,∴△ABE∽△CDF,∴,∵AB=10,CD=5,BE=6,AE=8,∴,解得:DF=3,CF=4,在Rt△AFC中,∠AFC=90°,AC=10,CF=4,則,∴AD=DF+AF=3+2,故答案為:3+2.【點睛】本題考查圓周角定理、等腰三角形的性質(zhì)、相似三角形的判定與性質(zhì)、勾股定理,熟練掌握圓周角定理和相似三角形的判定與性質(zhì)是解答的關(guān)鍵.2、5【分析】直角三角形外接圓的直徑是斜邊的長.【詳解】解:由勾股定理得:AB==10,∵∠ACB=90°,∴AB是⊙O的直徑,∴這個三角形的外接圓直徑是10,∴這個三角形的外接圓半徑長為5,故答案為:5.【點睛】本題考查了三角形的外接圓與外心,知道直角三角形外接圓的直徑是斜邊的長是關(guān)鍵;外心是三邊垂直平分線的交點,外心到三個頂點的距離相等.3、4或12或【分析】分三種情況討論:當(dāng)AB=BC時、當(dāng)AB=AC時、當(dāng)AC=BC時,根據(jù)垂徑定理和勾股定理即可求解.【詳解】解:如圖1,當(dāng)AB=BC時,BC=2,故BC2=4;如圖2,當(dāng)AB=AC=2時,過A作AD⊥BC于D,連接OC,∴BD=CD,設(shè)OD=x,則在Rt△ACD中,AC2=CD2+AD2,在Rt△OCD中,OC2=CD2+OD2,∴CD2=AC2-AD2=OC2-OD2即22-(2-x)2=22-x2解得x=1∴CD=∴BC=2∴BC2=12;如圖3,當(dāng)AC=BC時,則C在AB的垂直平分線上,∴CD經(jīng)過圓心O,AD=BD==1,∵OA=2,∴OD=,∴CD=CO+OD=2+,CD=C'O-OD=2-,∴BC2=CD2+BD2=(2+)2+12=,BC2=CD2+BD2=(2-)2+12=,綜上,BC2為4或12或故答案為:4或12或.【點睛】本題考查了垂徑定理,等腰三角形的性質(zhì),勾股定理的應(yīng)用,熟練掌握性質(zhì)定理是解題的關(guān)鍵.4、【分析】分別求出當(dāng)點P與點O重合時,當(dāng)點P與點B重合時x的值,即可得到取值范圍.【詳解】解:當(dāng)點P與點O重合時,∵OA=OC,∴,即;當(dāng)點P與點B重合時,∵AB是的直徑,∴,∴x的取值范圍是.【點睛】此題考查了同圓中半徑相等的性質(zhì),直徑所對的圓周角是直角的性質(zhì),正確理解點P的運(yùn)動位置是解題的關(guān)鍵.5、【分析】過圓心作一邊的垂線,根據(jù)勾股定理可以計算出外接圓半徑.【詳解】如圖所示,是正三角形,故O是的中心,,∵正三角形的邊長為2,OE⊥AB∴,,∴,由勾股定理得:,∴,∴,∴(負(fù)值舍去).故答案為:.【點睛】本題考查了正多邊形和圓,解題的關(guān)鍵是根據(jù)題意畫出圖形,利用數(shù)形結(jié)合求解.6、65【分析】根據(jù)切線的性質(zhì)得到OA⊥AP,根據(jù)直角三角形的兩銳角互余計算,得到答案.【詳解】解:∵PA是⊙O的切線,∴OA⊥AP,∴,∵∠APO=25°,∴,故答案為:65.【點睛】本題考查的是切線的性質(zhì)、直角三角形的性質(zhì),掌握圓的切線垂直于經(jīng)過切點的半徑是解題的關(guān)鍵.7、【分析】根據(jù)題中點的坐標(biāo)可得圓的直徑,半徑為1,分析以AB定長為底,點D在圓上,高最大為圓的半徑,即可得出三角形最大的面積;連接AP,設(shè)點,根據(jù)切線的性質(zhì)及勾股定理可得,由其非負(fù)性即可得.【詳解】解:如圖所示:當(dāng)點P到如圖位置時,的面積最大,∵、,∴圓的直徑,半徑為1,∴以AB定長為底,點D在圓上,高最大為圓的半徑,如圖所示:此時面積的最大值為:;如圖所示:連接AP,∵PD切于點D,∴,∴,設(shè)點,在中,,,∴,在中,,∴,則,當(dāng)時,PD取得最小值,最小值為,故答案為:①;②.【點睛】題目主要考查切線的性質(zhì)及勾股定理的應(yīng)用,理解題意,作出相應(yīng)圖形求出解析式是解題關(guān)鍵.三、解答題1、【分析】連接OB,由圓周角定理得出∠AOB=2∠ACB=120°,再由垂徑定理得出∠AOE=∠AOB=60°、AB=2AE,在Rt△AOE中,由OA=2OE求解可得答案.【詳解】如圖,連接OB,則∠AOB=2∠ACB=120°,∵OD⊥AB,∴∠AOE=∠AOB=60°,∵AO=6,∴在Rt△AOE中,,∴AB=2AE,故答案為:.【點睛】本題主要考查圓周角定理,解題的關(guān)鍵是掌握圓周角定理:在同圓或等圓中,同弧或等弧所對的圓周角相等,都等于這條弧所對的圓心角的一半.垂直于弦的直徑平分這條弦,并且平分弦所對的兩條?。?、(1);(2).【分析】(1)根據(jù)題意列表可得共有16種等可能的結(jié)果,其中兩人抽到同一景點的結(jié)果有4種,進(jìn)而由概率公式求解即可;(2)根據(jù)題意列表可得共有12種等可能的結(jié)果,其中兩人抽到動物園和森林公園的結(jié)果有2種,進(jìn)而由概率公式求解即可.【詳解】解:(1)列表如下:DJSFD(D,D)(J,D)(S,D)(F,D)J(D,J)(J,J)(S,J)(F,J)S(D,S)(J,S)(S,S)(F,S)F(D,F)(J,F)(S,F)(F,F)所有等可能的情況數(shù)為16種,兩人抽到同一景點的結(jié)果有4種,所以兩人抽到同一景點的概率為.(2)列表如下:DJSFD(J,D)(S,D)(F,D)J(D,J)(S,J)(F,J)S(D,S)(J,S)(F,S)F(D,F)(J,F)(S,F)所有等可能的情況數(shù)為12種,其中兩人抽到動物園和森林公園的結(jié)果有2種,所以兩人抽到動物園和森林公園的概率為.【點睛】本題考查列表法與樹狀圖法:利用列表法或樹狀圖法展示所有等可能的結(jié)果n,再從中選出符合事件A或B的結(jié)果數(shù)目m,然后利用概率公式計算事件A或事件B的概率.3、(1)(2)(3)【分析】(1)根據(jù)眾數(shù)和中位數(shù)的概念求解可得;(2)用總?cè)藬?shù)乘以樣本中七、八年級不低于9分的學(xué)生人數(shù)和所占比例即可得,(3)根據(jù)列表法求概率即可.(1)根據(jù)抽取的20名七年級學(xué)生的成績找到第10個和第11個成績都是8,則中位數(shù)為8,即,根據(jù)條形統(tǒng)計圖可知9分的有6人,人數(shù)最多,則眾數(shù)為9,即(2)解:∵此次測試成績不低于9分的七年級學(xué)生有8人,八年級學(xué)生有9人∴此次測試成績不低于9分的學(xué)生有(人)(3)解:∵七年級得10分的有2人,八年級得10分的有3人設(shè)七年級的2人分別為,八年級的3人分別列表如下,根據(jù)列表可知,共有20種等可能結(jié)果,其中1名七年級學(xué)生和1名八年級學(xué)生的情形有12鐘則所抽取的2名學(xué)生恰好是1名七年級學(xué)生和1名八年級學(xué)生的概率為【點睛】本題考查了求中位數(shù),眾數(shù),根據(jù)樣本估計總體,列表法求概率,掌握以上知識是解題的關(guān)鍵.4、(1)見詳解;(2)【分析】(1)由題意及垂徑定理可知AC垂直平分BD,進(jìn)而問題可求解;(2)由題意易得,然后由(1)可知△ABD是等邊三角形,進(jìn)而問題可求解.【詳解】(1)證明:∵AC是直徑,點C是劣弧BD的中點,∴AC垂直平分BD,∴;(2)解:∵,,∴,∵,∴△ABD是等邊三角形,∵,∴.【點睛】本題主要考查垂徑定理、等邊三角形的性質(zhì)與判定及圓周角定理,熟練掌握垂徑定理、等邊三角形的性質(zhì)與判定及圓周角定理是解題的關(guān)鍵.5、(1)圖見解析,點的坐標(biāo)為(2)圖見解析,4【分析】(1)根據(jù)題意,腰長為無理數(shù)且為以AB為底的等腰三角形,只在第二象限,作圖即可確定點,然后寫出點的坐標(biāo)即可;(2)現(xiàn)確定旋轉(zhuǎn)后的點,然后依次連接即可,根據(jù)旋轉(zhuǎn)前后三角形的面積不變,利用表格及勾股定理確定三角形的底和高,即可得出面積.(1)解:如圖所示,點的坐標(biāo)為;,為無理數(shù),符合題意;(2)如圖所示:點的坐標(biāo),點的坐標(biāo)為,∵旋轉(zhuǎn)180°后

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

最新文檔

評論

0/150

提交評論