綜合解析人教版8年級數(shù)學上冊《全等三角形》定向訓練試題(含詳解)_第1頁
綜合解析人教版8年級數(shù)學上冊《全等三角形》定向訓練試題(含詳解)_第2頁
綜合解析人教版8年級數(shù)學上冊《全等三角形》定向訓練試題(含詳解)_第3頁
綜合解析人教版8年級數(shù)學上冊《全等三角形》定向訓練試題(含詳解)_第4頁
綜合解析人教版8年級數(shù)學上冊《全等三角形》定向訓練試題(含詳解)_第5頁
已閱讀5頁,還剩18頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)

文檔簡介

人教版8年級數(shù)學上冊《全等三角形》定向訓練考試時間:90分鐘;命題人:教研組考生注意:1、本卷分第I卷(選擇題)和第Ⅱ卷(非選擇題)兩部分,滿分100分,考試時間90分鐘2、答卷前,考生務(wù)必用0.5毫米黑色簽字筆將自己的姓名、班級填寫在試卷規(guī)定位置上3、答案必須寫在試卷各個題目指定區(qū)域內(nèi)相應(yīng)的位置,如需改動,先劃掉原來的答案,然后再寫上新的答案;不準使用涂改液、膠帶紙、修正帶,不按以上要求作答的答案無效。第I卷(選擇題20分)一、單選題(5小題,每小題4分,共計20分)1、如圖,平行四邊形ABCD中,E,F(xiàn)是對角線BD上的兩點,如果添加一個條件使△ABE≌△CDF,則添加的條件不能是()A.AE=CF B.BE=FD C.BF=DE D.∠1=∠22、下列語句中正確的是()A.斜邊和一銳角對應(yīng)相等的兩個直角三角形全等B.有兩邊對應(yīng)相等的兩個直角三角形全等C.有兩個角對應(yīng)相等的兩個直角三角形全等D.有一直角邊和一銳角對應(yīng)相等的兩個直角三角形全等3、如圖,△ABC和△EDF中,∠B=∠D=90°,∠A=∠E,點B,F(xiàn),C,D在同一條直線上,再增加一個條件,不能判定△ABC≌△EDF的是(

)A.AB=ED B.AC=EFC.AC∥EF D.BF=DC4、如圖,BD=BC,BE=CA,∠DBE=∠C=62°,∠BDE=75°,則∠AFE的度數(shù)等于()A.148° B.140° C.135° D.128°5、如圖,AD是的角平分線,,垂足為F,,和的面積分別為60和35,則的面積為A.25 B. C. D.第Ⅱ卷(非選擇題80分)二、填空題(5小題,每小題6分,共計30分)1、如圖,兩根旗桿間相距20米,某人從點B沿BA走向點A,一段時間后他到達點M,此時他分別仰望旗桿的頂點C和D,兩次視線的夾角為90°,且CM=DM.已知旗桿BD的高為12米,該人的運動速度為2米/秒,則這個人運動到點M所用時間是__________秒.2、如圖,在△ABC中,BD=CD,BE交AD于F,AE=EF,若BE=7CE,,則BF=_______.3、如圖,在△ABC中,AC=BC,∠ABC=54°,CE平分∠ACB,AD平分∠CAB,CE與AD交于點F,G為△ABC外一點,∠ACD=∠FCG,∠CBG=∠CAF,連接DG.下列結(jié)論:①△ACF≌△BCG;②∠BGC=117°;③S△ACE=S△CFD+S△BCG;④AD=DG+BG.其中結(jié)論正確的是_____________(只需要填寫序號).4、如圖,在中,,AD是的角平分線,過點D作,若,則______.5、如圖,已知BE=DC,請?zhí)砑右粋€條件,使得△ABE≌△ACD:_____.三、解答題(5小題,每小題10分,共計50分)1、如圖,在中,AB=AC,D是BA延長線上一點,E是AC的中點,連接DE并延長,交BC于點M,∠DAC的平分線交DM于點F.求證:AF=CM.2、如圖,已知:AO=BO,OC=OD.求證:∠ADC=∠BCD.3、【閱讀理解】課外興趣小組活動時,老師提出了如下問題:如圖,△ABC中,若AB=8,AC=6,求BC邊上的中線AD的取值范圍.小明在組內(nèi)經(jīng)過合作交流,得到了如下的解決方法:如圖,延長AD到點E,使DE=AD,連結(jié)BE.請根據(jù)小明的方法思考:(1)由已知和作圖能得到的理由是(

).A.SSS

B.SAS

C.AAS

D.ASA(2)AD的取值范圍是(

).A.

B.

C.

D.(3)【感悟】解題時,條件中若出現(xiàn)“中點”、“中線”字樣,可以考慮延長中線構(gòu)造全等三角形,把分散的已知條件和所求證的結(jié)論轉(zhuǎn)化到同一個三角形中.【問題解決】如圖,AD是△ABC的中線,BE交AC于點E,交AD于F,且AE=EF.求證:AC=BF.4、已知:如圖,點A,D,C,B在同一條直線上,AD=BC,AE=BF,CE=DF,求證:(1)△AEC≌△BFD(2)DE=CF5、如圖,是邊長為2的等邊三角形,是頂角為120°的等腰三角形,以點為頂點作,點、分別在、上.(1)如圖①,當時,則的周長為______;(2)如圖②,求證:.-參考答案-一、單選題1、A【解析】【分析】利用平行四邊形的性質(zhì)以及全等三角形的判定分別得出即可.【詳解】解:A、若添加條件:AE=CF,因為∠ABD=∠CDB,不是兩邊的夾角,所以不能證明△ABE≌△CDF,所以錯誤,符合題意,B、若添加條件:BE=FD,可以利用SAS證明△ABE≌△CDF,所以正確,不符合題意;C、若添加條件:BF=DE,可以得到BE=FD,可以利用SAS證明△ABE≌△CDF,所以正確,不符合題意;D、若添加條件:∠1=∠2,可以利用ASA證明△ABE≌△CDF,所以正確,不符合題意;故選:A.【考點】本題考查了平行四邊形的性質(zhì)、全等三角形的判定,解題的關(guān)鍵是掌握三角形的判定定理.2、A【解析】【分析】根據(jù)全等三角形的判定定理,用排除法以每一個選項進行分析從而確定最終答案.【詳解】A、正確,利用AAS來判定全等;B、不正確,兩邊的位置不確定,不一定全等;C、不正確,兩個三角形不一定全等;D、不正確,有一直角邊和一銳角對應(yīng)相等不一定能推出兩直角三角形全等,沒有相關(guān)判定方法對應(yīng).故選A【考點】本題考核知識點:全等三角形的判定.解題關(guān)鍵點:熟記全等三角形的相關(guān)判定.3、C【解析】【分析】根據(jù)全等三角形的判定方法即可判斷.【詳解】A.AB=ED,可用ASA判定△ABC≌△EDF;

B.AC=EF,可用AAS判定△ABC≌△EDF;

C.AC∥EF,不能用AAA判定△ABC≌△EDF,故錯誤;

D.BF=DC,可用AAS判定△ABC≌△EDF;

故選C.【考點】此題主要考查全等三角形的判定,解題的關(guān)鍵是熟知全等三角形的判定方法.4、A【解析】【分析】根據(jù)已知條件可知△ABC≌△EDB,由全等可得到∠A=∠E,并利用三角形內(nèi)角和可求得∠E,再應(yīng)用外角和求得∠AFE.【詳解】∵BD=BC,BE=CA,∠DBE=∠C,∴△ABC≌△EDB(SAS),∴∠A=∠E,∵∠DBE=62°,∠BDE=75°,∴∠E=180°﹣60°﹣75°=43°,∴∠A=43°,∵∠BDE+∠ADE=180°,∴∠ADE=105°,∴∠AFE=∠ADE+∠A=105°+43°=148°.故選:A.【考點】本題考查了全等三角形的判定和性質(zhì)、三角形外角和、內(nèi)角和定理,難度不大,但要注意數(shù)形結(jié)合思想的運用.5、D【解析】【分析】過點D作DH⊥AC于H,根據(jù)角平分線上的點到角的兩邊距離相等可得DF=DH,再利用“HL”證明Rt△ADF和Rt△ADH全等,Rt△DEF和Rt△DGH全等,然后根據(jù)全等三角形的面積相等列方程求解即可.【詳解】如圖,過點D作于H,是的角平分線,,,在和中,,≌,,在和中,≌,,和的面積分別為60和35,,=12.5,故選D.【考點】本題考查了角平分線上的點到角的兩邊距離相等的性質(zhì),全等三角形的判定與性質(zhì),熟記掌握相關(guān)性質(zhì)、正確添加輔助線構(gòu)造出全等三角形是解題的關(guān)鍵.二、填空題1、4【解析】【分析】根據(jù)角的等量代換求出,便可證出,利用全等的性質(zhì)得到,從而求出的長,再通過時間=路程÷速度列式計算即可.【詳解】解:根據(jù)題意可得:,,,∵∴又∵∴∴在和中∴∴∴∴時間=故答案為4【考點】本題主要考查了全等三角形的判定與性質(zhì),利用角的等量代換找出三角形全等的條件是解題的關(guān)鍵.2、或【解析】【分析】延長AD至G,使DG=AD,連接BG,可證明,則BG=AC,,根據(jù)AE=EF,得到,可證出,即得出AC=BF,從而得出BF的長.【詳解】解:如圖,延長AD至G,使DG=AD,連接BG,在和中,∴∴BG=AC,,又∵AE=EF,∴,又∵,∴,∴,∴BG=BF,∴AC=BF,又∵BE=7CE,AE=,∴BF+EF=,即BF+=,解得BF=.故答案為:【考點】本題考查了全等三角形的判定和性質(zhì),證明線段相等,一般轉(zhuǎn)化為證明三角形全等,正確地作出輔助線構(gòu)造全等三角形是解題的關(guān)鍵.3、①②④【解析】【分析】根據(jù)條件求得∠BAC=∠ABC=54°,∠ACB=72°,∠ACE=∠BCE=36°,∠CAF=∠BAF=27°,利用ASA證明△ACF≌△BCG,再根據(jù)SAS證明△CDF≌△CDG,據(jù)此即可推斷各選項的正確性.【詳解】解:在△ABC中,AC=BC,∠ABC=54°,∴∠BAC=∠ABC=54°,∠ACB=180°-54°-54°=72°,∵AC=BC,CE平分∠ACB,AD平分∠CAB,∴∠ACE=∠BCE=∠ACB=36°,∠CAF=∠BAF=∠BAC=27°,∵∠ACD=∠FCG=72°,∴∠BCG=∠FCG-36°=36°,在△ACF和△BCG中,,∴△ACF≌△BCG(ASA);故①正確;∴∠BGC=∠AFC=180°-36°-27°=117°,故②正確;∴CF=CG,AF=BG,在△CDF和△CDG中,,∴△CDF≌△CDG(SAS),∴DF=DG,∴AD=DF+AF=DG+BG,故④正確;∵S△CFD+S△BCG=S△CFD+S△ACF=S△ACD,而S△ACE不等于S△ACD,故③不正確;綜上,正確的是①②④,故答案為:①②④.【考點】本題考查了全等三角形的判定和性質(zhì),三角形內(nèi)角和定理,角平分線的定義,解題的關(guān)鍵是靈活運用所學知識解決問題,4、7【解析】【分析】先利用角平分線性質(zhì)證明CD=DE,再求出的值即可.【詳解】解:∵AD平分∠BAC交BC于點D,,DE⊥AB,∴CD=ED.∵,∴BD+CD=7,∴,故答案為:7.【考點】本題主要考查了角平分線的性質(zhì),解題的關(guān)鍵是熟練掌握角平分線的性質(zhì).5、∠B=∠C【解析】【分析】根據(jù)全等三角形的判定方法解答即可.【詳解】解:∵BE=DC,∠A=∠A,∴根據(jù)AAS,可以添加∠B=∠C,使得△ABE≌△ACD,故答案為:∠B=∠C.【考點】本題考查全等三角形的判定,解題的關(guān)鍵是熟練掌握全等三角形的判定方法,屬于中考??碱}型.三、解答題1、證明見解析.【解析】【分析】先根據(jù)等腰三角形的性質(zhì)可得,再根據(jù)三角形的外角性質(zhì)可得,然后根據(jù)角平分線的定義得,最后根據(jù)三角形全等的判定定理與性質(zhì)即可得證.【詳解】∵,∴,∴,∵AF是的平分線,∴,∵E是AC的中點,∴,在和中,,∴,∴.【考點】本題考查了等腰三角形的性質(zhì)、角平分線的定義、三角形全等的判定定理與性質(zhì)等知識點,熟練掌握三角形全等的判定方法是解題關(guān)鍵.2、見解析【解析】【分析】利用“邊角邊”證明△AOD和△BOC全等,根據(jù)全等三角形對應(yīng)角相等可得∠ADO=∠BCO,根據(jù)等邊對等角可得∠ODC=∠OCD,然后相減整理即可得證.【詳解】證明:在△AOD和△BOC中,,

∴△AOD≌△BOC(SAS),∴∠ADO=∠BCO,∵OC=OD,∴∠ODC=∠OCD,∴∠ADO﹣∠ODC=∠BCO﹣∠OCD,即∠ADC=∠BCD.【考點】本題考點:全等三角形的判定與性質(zhì).3、(1)B(2)C(3)見解析【解析】【分析】(1)根據(jù)AD=DE,∠ADC=∠BDE,BD=DC推出△ADC和△EDB全等即可;(2)根據(jù)全等得出BE=AC=6,AE=2AD,由三角形三邊關(guān)系定理得出8-6<2AD<8+6,求出即可;(3)延長AD到M,使AD=DM,連接BM,根據(jù)SAS證△ADC≌△MDB,推出BM=AC,∠CAD=∠M,根據(jù)AE=EF,推出∠CAD=∠AFE=∠BFD,求出∠BFD=∠M,根據(jù)等腰三角形的性質(zhì)求出即可.(1)∵在△ADC和△EDB中,∴△ADC≌△EDB(SAS),故選B;(2)∵由(1)知:△ADC≌△EDB,∴BE=AC=6,AE=2AD,∵在△ABE中,AB=8,由三角形三邊關(guān)系定理得:8-6<2AD<8+6,∴1<AD<7,故選:C.(3)延長AD到點M,使AD=DM,連接BM.∵AD是△ABC中線∴CD=BD∵在△ADC和△MDB中∴∴BM=AC(全等三角形的對應(yīng)邊相等)∠CAD=∠M(全等三角形的對應(yīng)角相等)∵AE=EF,∴∠CAD=∠AFE(等邊對等角)∵∠AFE=∠BFD,∴∠BFD=∠M,∴BF=BM(等角對等邊)又∵BM=AC,∴AC=BF.【考點】本題考查了三角形的中線,三角形的三邊關(guān)系定理,等腰三角形性質(zhì)和判定,全等三角形的性質(zhì)和判定等知識點,主要考查學生運用定理進行推理的能力.4、(1)見解析(2)見解析【解析】【分析】(1)由線段的和差可得AC=BD,繼而利用“SSS”即可求證結(jié)論;(2)由(1)可知∠A=∠B,繼而利用“SAS”求證△AED≌△BFC,根據(jù)全等三角形的性質(zhì)即可求證結(jié)論.(1)證明:∵AD=BC,∴AD+DC=BC+DC,即AC=BD,在△AEC和△BFD中,

∴△AEC≌△BFD(SSS),(2)由(1)可知△AEC≌△BFD,∴∠A=∠B,在△AED和△BFC中,,∴△AED≌△BFC(SAS),∴DE=CF【考點】本題考查了全等三角形的判定及其性質(zhì),解題的關(guān)鍵是能夠根據(jù)已知條件和隱藏條件正確選擇全等三角形的判定方法.5、(1)4;(2)見解析【解析】【分析】(1)首先證明△BDM

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
  • 6. 下載文件中如有侵權(quán)或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論