版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)
文檔簡介
一、選擇題1.求1+2+22+23+…+22020的值,可令S=1+2+22+23+…+22020,則2S=2+22+23+24+…+22021,因此2S-S=22021-1.仿照以上推理,計算出1+2020+20202+20203+…+20202020的值為()A. B. C. D.2.一列數(shù),,,……,其中=﹣1,=,=,……,=,則×××…×=()A.1 B.-1 C.2017 D.-20173.數(shù)軸上A,B,C,D四點中,兩點之間的距離最接近于的是()A.點C和點D B.點B和點C C.點A和點C D.點A和點B4.若,,則所有可能的值為()A.8 B.8或2 C.8或 D.或5.下列說法中,錯誤的有()①符號相反的數(shù)與為相反數(shù);②當時,;③如果,那么;④數(shù)軸上表示兩個有理數(shù)的點,較大的數(shù)表示的點離原點較遠;⑤數(shù)軸上的點不都表示有理數(shù).A.0個 B.1個 C.2個 D.3個6.若,則,,的大小關(guān)系正確的是()A. B. C. D.7.有下列四種說法:①數(shù)軸上有無數(shù)多個表示無理數(shù)的點;②帶根號的數(shù)不一定是無理數(shù);③平方根等于它本身的數(shù)為0和1;④沒有最大的正整數(shù),但有最小的正整數(shù);其中正確的個數(shù)是()A.1 B.2 C.3 D.48.如圖,四個有理數(shù)m,n,p,q在數(shù)軸上對應的點分別為M,N,P,Q,若n+p=0,則m,n,p,q四個有理數(shù)中,絕對值最大的一個是()A.p B.q C.m D.n9.下列命題中,①81的平方根是9;②的平方根是±2;③?0.003沒有立方根;④?64的立方根為±4;⑤,其中正確的個數(shù)有()A.1 B.2 C.3 D.410.設(shè)n為正整數(shù),且n<<n+1,則n的值為()A.5 B.6 C.7 D.8二、填空題11.將按下列方式排列,若規(guī)定表示第排從左向右第個數(shù),則(20,9)表示的數(shù)的相反數(shù)是___12.閱讀下列解題過程:計算:解:設(shè)①則②由②-①得,運用所學到的方法計算:______________.13.如果表示a、b的實數(shù)的點在數(shù)軸上的位置如圖所示,那么化簡|a﹣b|+的結(jié)果是_____.14.按一定規(guī)律排列的一列數(shù)依次為:,,,,,,按此規(guī)律排列下去,這列數(shù)中第個數(shù)及第個數(shù)(為正整數(shù))分別是__________.15.a(chǎn)※b是新規(guī)定的這樣一種運算法則:a※b=a+2b,例如3※(﹣2)=3+2×(﹣2)=﹣1.若(﹣2)※x=2+x,則x的值是_____.16.如圖所示為一個按某種規(guī)律排列的數(shù)陣:根據(jù)數(shù)陣的規(guī)律,第7行倒數(shù)第二個數(shù)是_____.17.對于正整數(shù)a,我們規(guī)定:若a為奇數(shù),則;若a為偶數(shù),則例如,,若,,,,,依此規(guī)律進行下去,得到一列數(shù),,,,,,為正整數(shù),則______.18.對于數(shù)x,符號[x]表示不大于x的最大整數(shù),例如[3.14]=3,[﹣7.59]=﹣8,則關(guān)于x的方程[]=2的整數(shù)解為_____.19.對兩數(shù)a,b規(guī)定一種新運算:,例如:,若不論取何值時,總有,則=______.20.已知M是滿足不等式的所有整數(shù)的和,N是的整數(shù)部分,則的平方根為__________.三、解答題21.若一個四位數(shù)t的前兩位數(shù)字相同且各位數(shù)字均不為0,則稱這個數(shù)為“前介數(shù)”;若把這個數(shù)的個位數(shù)字放到前三位數(shù)字組成的數(shù)的前面組成一個新的四位數(shù),則稱這個新的四位數(shù)為“中介數(shù)”;記一個“前介數(shù)”t與它的“中介數(shù)”的差為P(t).例如,5536前兩位數(shù)字相同,所以5536為“前介數(shù)”;則6553就為它的“中介數(shù)”,P(5536)=5536﹣6553=-1017.(1)P(2215)=,P(6655)=.(2)求證:任意一個“前介數(shù)”t,P(t)一定能被9整除.(3)若一個千位數(shù)字為2的“前介數(shù)”t能被6整除,它的“中介數(shù)”能被2整除,請求出滿足條件的P(t)的最大值.22.如果有一列數(shù),從這列數(shù)的第2個數(shù)開始,每一個數(shù)與它的前一個數(shù)的比等于同一個非零的常數(shù),這樣的一列數(shù)就叫做等比數(shù)列(GeometricSequences).這個常數(shù)叫做等比數(shù)列的公比,通常用字母q表示(q≠0).(1)觀察一個等比列數(shù)1,,…,它的公比q=;如果an(n為正整數(shù))表示這個等比數(shù)列的第n項,那么a18=,an=;(2)如果欲求1+2+4+8+16+…+230的值,可以按照如下步驟進行:令S=1+2+4+8+16+…+230…①等式兩邊同時乘以2,得2S=2+4+8+16++32+…+231…②由②﹣①式,得2S﹣S=231﹣1即(2﹣1)S=231﹣1所以請根據(jù)以上的解答過程,求3+32+33+…+323的值;(3)用由特殊到一般的方法探索:若數(shù)列a1,a2,a3,…,an,從第二項開始每一項與前一項之比的常數(shù)為q,請用含a1,q,n的代數(shù)式表示an;如果這個常數(shù)q≠1,請用含a1,q,n的代數(shù)式表示a1+a2+a3+…+an.23.數(shù)學中有很多的可逆的推理.如果,那么利用可逆推理,已知n可求b的運算,記為,如,則,則.①根據(jù)定義,填空:_________,__________.②若有如下運算性質(zhì):.根據(jù)運算性質(zhì)填空,填空:若,則__________;___________;③下表中與數(shù)x對應的有且只有兩個是錯誤的,請直接找出錯誤并改正.x1.5356891227錯誤的式子是__________,_____________;分別改為__________,_____________.24.定義:對任意一個兩位數(shù),如果滿足個位數(shù)字與十位數(shù)字互不相同,且都不為零,那么稱這個兩位數(shù)為“奇異數(shù)”.將一個“奇異數(shù)”的個位數(shù)字與十位數(shù)字對調(diào)后得到一個新的兩位數(shù),把這個新兩位數(shù)與原兩位數(shù)的和與的商記為例如:,對調(diào)個位數(shù)字與十位數(shù)字后得到新兩位數(shù)是,新兩位數(shù)與原兩位數(shù)的和為,和與的商為,所以根據(jù)以上定義,完成下列問題:(1)填空:①下列兩位數(shù):,,中,“奇異數(shù)”有.②計算:..(2)如果一個“奇異數(shù)”的十位數(shù)字是,個位數(shù)字是,且請求出這個“奇異數(shù)”(3)如果一個“奇異數(shù)”的十位數(shù)字是,個位數(shù)字是,且滿足,請直接寫出滿足條件的的值.25.規(guī)定:求若干個相同的有理數(shù)(均不等于0)的除法運算叫做除方,如2÷2÷2,(﹣3)÷(﹣3)÷(﹣3)÷(﹣3)等,類比有理數(shù)的乘方,我們把2÷2÷2記作2③,讀作“2的圈3次方,”(﹣3)÷(﹣3)÷(﹣3)÷(﹣3)記作(﹣3)④,讀作:“(﹣3)的圈4次方”.一般地,把個記作a?,讀作“a的圈n次方”(初步探究)(1)直接寫出計算結(jié)果:2③,(﹣)③.(深入思考)2④我們知道,有理數(shù)的減法運算可以轉(zhuǎn)化為加法運算,除法運算可以轉(zhuǎn)化為乘法運算,有理數(shù)的除方運算如何轉(zhuǎn)化為乘方運算呢?(2)試一試,仿照上面的算式,將下列運算結(jié)果直接寫成冪的形式.5⑥;(﹣)⑩.(3)猜想:有理數(shù)a(a≠0)的圈n(n≥3)次方寫成冪的形式等于多少.(4)應用:求(-3)8×(-3)⑨-(﹣)9×(﹣)⑧26.給定一個十進制下的自然數(shù),對于每個數(shù)位上的數(shù),求出它除以的余數(shù),再把每一個余數(shù)按照原來的數(shù)位順序排列,得到一個新的數(shù),定義這個新數(shù)為原數(shù)的“模二數(shù)”,記為.如.對于“模二數(shù)”的加法規(guī)定如下:將兩數(shù)末位對齊,從右往左依次將相應數(shù)位.上的數(shù)分別相加,規(guī)定:與相加得;與相加得與相加得,并向左邊一位進.如的“模二數(shù)”相加的運算過程如下圖所示.根據(jù)以上材料,解決下列問題:(1)的值為______,的值為_(2)如果兩個自然數(shù)的和的“模二數(shù)”與它們的“模二數(shù)”的和相等,則稱這兩個數(shù)“模二相加不變”.如,因為,所以,即與滿足“模二相加不變”.①判斷這三個數(shù)中哪些與“模二相加不變”,并說明理由;②與“模二相加不變”的兩位數(shù)有______個27.閱讀材料:求值:,解答:設(shè),將等式兩邊同時乘2得:,將得:,即.請你類比此方法計算:.其中n為正整數(shù)28.對任意一個三位數(shù)n,如果n滿足各數(shù)位上的數(shù)字互不相同,且都不為零,那么稱這個數(shù)為“夢幻數(shù)”,將一個“夢幻數(shù)”任意兩個數(shù)位上的數(shù)字對調(diào)后可以得到三個不同的新三數(shù),把這三個新三位數(shù)的和與111的商記為K(n),例如,對調(diào)百位與十位上的數(shù)字得到213,對調(diào)百位與個位上的數(shù)字得到321,對調(diào)十位與個位上的數(shù)字得到132,這三個新三位數(shù)的和為,,所以.(1)計算:和;(2)若x是“夢幻數(shù)”,說明:等于x的各數(shù)位上的數(shù)字之和;(3)若x,y都是“夢幻數(shù)”,且,猜想:________,并說明你猜想的正確性.29.閱讀型綜合題對于實數(shù)我們定義一種新運算(其中均為非零常數(shù)),等式右邊是通常的四則運算,由這種運算得到的數(shù)我們稱之為線性數(shù),記為,其中叫做線性數(shù)的一個數(shù)對.若實數(shù)都取正整數(shù),我們稱這樣的線性數(shù)為正格線性數(shù),這時的叫做正格線性數(shù)的正格數(shù)對.(1)若,則,;(2)已知,.若正格線性數(shù),(其中為整數(shù)),問是否有滿足這樣條件的正格數(shù)對?若有,請找出;若沒有,請說明理由.30.先閱讀然后解答提出的問題:設(shè)a、b是有理數(shù),且滿足,求ba的值.解:由題意得,因為a、b都是有理數(shù),所以a﹣3,b+2也是有理數(shù),由于是無理數(shù),所以a-3=0,b+2=0,所以a=3,b=﹣2,所以.問題:設(shè)x、y都是有理數(shù),且滿足,求x+y的值.【參考答案】***試卷處理標記,請不要刪除一、選擇題1.C解析:C【分析】由題意可知S=1+2020+20202+20203+…+20202020①,可得到2020S=2020+20202+20203+…+20202020+20202021②,然后由②-①,就可求出S的值.【詳解】解:設(shè)S=1+2020+20202+20203+…+20202020①則2020S=2020+20202+20203+…+20202020+20202021②由②-①得:2019S=20202021-1∴.故答案為:C.【點晴】本題主要考查探索數(shù)與式的規(guī)律,有理數(shù)的加減混合運算.2.B解析:B【詳解】因為=﹣1,所以=,=,=,通過觀察可得:,,,……的值按照﹣1,,三個數(shù)值為一周期循環(huán),將2017除以3可得672余1,所以的值是第673個周期中第一個數(shù)值﹣1,因為每個周期三個數(shù)值的乘積為:,所以×××…×=故選B.3.A解析:A【分析】先估算出的范圍,結(jié)合數(shù)軸可得答案.【詳解】解:∵4<6<9,∴2<<3,∴兩點之間的距離最接近于的是點C和點D.故選:A.【點睛】本題考查的是實數(shù)與數(shù)軸,熟知實數(shù)與數(shù)軸上各點是一一對應關(guān)系是解答此題的關(guān)鍵.4.D解析:D【分析】先求出a、b的值,再計算即可.【詳解】解:∵,∴a=±5,∵,∴b=±3,當a=5,b=3時,;當a=5,b=-3時,;當a=-5,b=3時,;當a=-5,b=-3時,;故選:D.【點睛】本題考查了絕對值、平方根和有理數(shù)加法運算,解題關(guān)鍵是分類討論,準確計算.5.D解析:D【分析】根據(jù)相反數(shù)、絕對值、數(shù)軸表示數(shù)以及有理數(shù)的乘法運算等知識綜合進行判斷即可.【詳解】解:符號相反,但絕對值不等的兩個數(shù)就不是相反數(shù),例如5和-3,因此①不正確;a≠0,即a>0或a<0,也就是a是正數(shù)或負數(shù),因此|a|>0,所以②正確;例如-1>-3,而(-1)2<(-3)2,因此③不正確;例如-5表示的點到原點的距離比1表示的點到原點的距離遠,但-5<1,因此④不正確;數(shù)軸上的點與實數(shù)一一對應,而實數(shù)包括有理數(shù)和無理數(shù),因此⑤正確;綜上所述,錯誤的結(jié)論有:①③④,故選:D.【點睛】本題考查相反數(shù)、絕對值、數(shù)軸表示數(shù),對每個選項進行判斷是得出正確答案的前提.6.C解析:C【分析】可以用取特殊值的方法,因為a>1,所以可設(shè)a=2,然后分別計算|a|,-a,,再比較即可求得它們的關(guān)系.【詳解】解:設(shè)a=2,則|a|=2,-a=-2,,∵2>>-2,∴|a|>>-a;故選:C.【點睛】此類問題運用取特殊值的方法做比較簡單.7.C解析:C【分析】根據(jù)實數(shù)的定義,實數(shù)與數(shù)軸上的點一一對應,平方根的定義可得答案.【詳解】①數(shù)軸上有無數(shù)多個表示無理數(shù)的點是正確的;②帶根號的數(shù)不一定是無理數(shù)是正確的,如:;③平方根等于它本身的數(shù)只有0,故本小題是錯誤的;④沒有最大的正整數(shù),但有最小的正整數(shù),是正確的.綜上,正確的個數(shù)有3個,故選:C.【點睛】本題主要考查了實數(shù)的有關(guān)概念,正確把握相關(guān)定義是解題關(guān)鍵.8.B解析:B【分析】根據(jù)n+p=0可以得到n和p互為相反數(shù),原點在線段PN的中點處,從而可以得到絕對值最大的數(shù).【詳解】解:∵n+p=0,∴n和p互為相反數(shù),∴原點在線段PN的中點處,∴絕對值最大的一個是Q點對應的q.故選B.【點睛】本題考查了實數(shù)與數(shù)軸及絕對值.解題的關(guān)鍵是明確數(shù)軸的特點.9.A解析:A【分析】根據(jù)平方根的定義對①②進行判斷;根據(jù)立方根的定義對③④進行判斷;根據(jù)命題的定義對⑤進行判斷.【詳解】解:81的平方根是±9,所以①錯誤;的平方根是±2,所以②正確;-0.003有立方根,所以③錯誤;?64的立方根為-4,所以④錯誤;不符合命題定義,所以⑤正錯誤.故選:A.【點睛】本題考查了立方根和平方根的應用,主要考查學生的辨析能力,題目比較典型,但是一道比較容易出錯的題目.10.D解析:D【分析】首先得出<<,進而求出的取值范圍,即可得出n的值.【詳解】解:∵<<,∴8<<9,∵n<<n+1,∴n=8,故選;D.【點睛】此題主要考查了估算無理數(shù),得出<<是解題關(guān)鍵.二、填空題11.【分析】根據(jù)數(shù)的排列方法可知,第一排:1個數(shù),第二排2個數(shù).第三排3個數(shù),第四排4個數(shù),…第m-1排有(m-1)個數(shù),從第一排到(m-1)排共有:1+2+3+4+…+(m-1)個數(shù),根據(jù)數(shù)的排列解析:【分析】根據(jù)數(shù)的排列方法可知,第一排:1個數(shù),第二排2個數(shù).第三排3個數(shù),第四排4個數(shù),…第m-1排有(m-1)個數(shù),從第一排到(m-1)排共有:1+2+3+4+…+(m-1)個數(shù),根據(jù)數(shù)的排列方法,每四個數(shù)一個輪回,根據(jù)題目意思找出第m排第n個數(shù)到底是哪個數(shù)后再計算.【詳解】(20,9)表示第20排從左向右第9個數(shù)是從頭開始的第1+2+3+4+…+19+9=199個數(shù),∵,即1,,,中第三個數(shù):,∴的相反數(shù)為故答案為.【點睛】此題主要考查了數(shù)字的變化規(guī)律,這類題型在中考中經(jīng)常出現(xiàn).對于找規(guī)律的題目找準變化是關(guān)鍵.12..【分析】設(shè)S=,等號兩邊都乘以5可解決.【詳解】解:設(shè)S=①則5S=②②-①得4S=,所以S=.故答案是:.【點睛】本題考查了有理數(shù)運算中的規(guī)律性問題,此題參照例子,采用類比的解析:.【分析】設(shè)S=,等號兩邊都乘以5可解決.【詳解】解:設(shè)S=①則5S=②②-①得4S=,所以S=.故答案是:.【點睛】本題考查了有理數(shù)運算中的規(guī)律性問題,此題參照例子,采用類比的方法就可以解決.13.﹣2b【詳解】由題意得:b<a<0,然后可知a-b>0,a+b<0,因此可得|a﹣b|+=a﹣b+[﹣(a+b)]=a﹣b﹣a﹣b=﹣2b.故答案為﹣2b.點睛:本題主要考查了二次根式和絕對解析:﹣2b【詳解】由題意得:b<a<0,然后可知a-b>0,a+b<0,因此可得|a﹣b|+=a﹣b+[﹣(a+b)]=a﹣b﹣a﹣b=﹣2b.故答案為﹣2b.點睛:本題主要考查了二次根式和絕對值的性質(zhì)與化簡.特別因為a.b都是數(shù)軸上的實數(shù),注意符號的變換.14.;【詳解】觀察這一列數(shù),各項的符號規(guī)律是奇數(shù)項為負,偶數(shù)項為正,故有,又因為,,,,,所以第n個數(shù)的絕對值是,所以第個數(shù)是,第n個數(shù)是,故答案為-82,.點睛:本題主要考查了有理數(shù)的混合運解析:;【詳解】觀察這一列數(shù),各項的符號規(guī)律是奇數(shù)項為負,偶數(shù)項為正,故有,又因為,,,,,所以第n個數(shù)的絕對值是,所以第個數(shù)是,第n個數(shù)是,故答案為-82,.點睛:本題主要考查了有理數(shù)的混合運算,規(guī)律探索問題通常是按照一定的順序給出一系列量,要求我們根據(jù)這些已知的量找出一般規(guī)律,揭示的式子的變化規(guī)律,常常把變量和序列號放在一起加以比較,就比較容易發(fā)現(xiàn)其中的規(guī)律.15.4【解析】根據(jù)題意可得(﹣2)※x=﹣2+2x,進而可得方程﹣2+2x=2+x,解得:x=4.故答案為:4.點睛:此題是一個閱讀理解型的新運算法則題,解題關(guān)鍵是明確新運算法則的特點,然后直接根解析:4【解析】根據(jù)題意可得(﹣2)※x=﹣2+2x,進而可得方程﹣2+2x=2+x,解得:x=4.故答案為:4.點睛:此題是一個閱讀理解型的新運算法則題,解題關(guān)鍵是明確新運算法則的特點,然后直接根據(jù)新定義的代數(shù)式計算即可.16.【分析】觀察數(shù)陣中每個平方根下數(shù)字的規(guī)律特征,依據(jù)規(guī)律推斷所求數(shù)字.【詳解】觀察可知,整個數(shù)陣從每一行左起第一個數(shù)開始,從左到右,從上到下,是連續(xù)的正整數(shù)的平方根,而每一行的個數(shù)依次為2、4解析:【分析】觀察數(shù)陣中每個平方根下數(shù)字的規(guī)律特征,依據(jù)規(guī)律推斷所求數(shù)字.【詳解】觀察可知,整個數(shù)陣從每一行左起第一個數(shù)開始,從左到右,從上到下,是連續(xù)的正整數(shù)的平方根,而每一行的個數(shù)依次為2、4、6、8、10…則歸納可知,第7行最后一個數(shù)是,則第7行倒數(shù)第二個數(shù)是.【點睛】本題考查觀察與歸納,要善于發(fā)現(xiàn)數(shù)列的規(guī)律性特征.17.4728【分析】先求出,,,,尋找規(guī)律后即可解決問題.【詳解】由題意,,,,,,,,從開始,出現(xiàn)循環(huán):4,2,1,,,,故答案為4728.【點睛】本題考查了規(guī)律型——數(shù)字的變解析:4728【分析】先求出,,,,尋找規(guī)律后即可解決問題.【詳解】由題意,,,,,,,,從開始,出現(xiàn)循環(huán):4,2,1,,,,故答案為4728.【點睛】本題考查了規(guī)律型——數(shù)字的變化類問題,解題的關(guān)鍵是從一般到特殊,尋找規(guī)律,利用規(guī)律解決問題.18.6,7,8【解析】【分析】根據(jù)已知可得,解不等式組,并求整數(shù)解可得.【詳解】因為,,所以,依題意得,所以,,解得,所以,x的正數(shù)值為6,7,8.故答案為:6,7,8.【點睛】此題解析:6,7,8【解析】【分析】根據(jù)已知可得,解不等式組,并求整數(shù)解可得.【詳解】因為,,所以,依題意得,所以,,解得,所以,x的正數(shù)值為6,7,8.故答案為:6,7,8.【點睛】此題屬于特殊定義運算題,解題關(guān)鍵在于正確理解題意,列出不等式組,求出解集,并確定整數(shù)解.19.【分析】將,轉(zhuǎn)化為2ax=x來解答.【詳解】解:∵可轉(zhuǎn)化為:2ax=x,即,∵不論x取何值,都成立,∴,解得:,故答案為:.【點睛】本題考查實數(shù)的運算,正確理解題目中的新運算是解析:【分析】將,轉(zhuǎn)化為2ax=x來解答.【詳解】解:∵可轉(zhuǎn)化為:2ax=x,即,∵不論x取何值,都成立,∴,解得:,故答案為:.【點睛】本題考查實數(shù)的運算,正確理解題目中的新運算是解題的關(guān)鍵.20.±3【分析】先通過估算確定M、N的值,再求M+N的平方根.【詳解】解:∵,∴,∵,∴,∵,∴,∴a的整數(shù)值為:-1,0,1,2,M=-1+0+1+2=2,∵,∴,N=7解析:±3【分析】先通過估算確定M、N的值,再求M+N的平方根.【詳解】解:∵,∴,∵,∴,∵,∴,∴a的整數(shù)值為:-1,0,1,2,M=-1+0+1+2=2,∵,∴,N=7,M+N=9,9的平方根是±3;故答案為:±3.【點睛】本題考查了算術(shù)平方根的估算,用“夾逼法”估算算術(shù)平方根是解題關(guān)鍵.三、解答題21.(1)-3006,990;(2)見解析;(3)P(t)的最大值是P(2262)=36.【分析】(1)根據(jù)“前介數(shù)”t與它的“中介數(shù)”的差為P(t)的定義求解即可;(2)設(shè)“前介數(shù)”為且a、b、c均不為0的整數(shù),即1a、b、c,根據(jù)定義得到P(t)=,則P(t)一定能被9整除;(3)設(shè)“前介數(shù)”為,根據(jù)題意得到能被3整除,且b只能取2,4,6,8中的其中一個數(shù);對應的“中介數(shù)”是,得到a只能取2,4,6,8中的其中一個數(shù),計算P(t),推出要求P(t)的最大值,即要盡量的大,要盡量的小,再分類討論即可求解.【詳解】(1)解:2215是“前介數(shù)”,其對應的“中介數(shù)”是5221,∴P(2215)=2215-5221=-3006;6655是“前介數(shù)”,其對應的“中介數(shù)”是5665,∴P(6655)=6655-5665=990;故答案為:-3006,990;(2)證明:設(shè)“前介數(shù)”為且a、b、c均為不為0的整數(shù),即1a、b、c,∴,又對應的“中介數(shù)”是,∴P(t)=,∵a、b、c均不為0的整數(shù),∴為整數(shù),∴P(t)一定能被9整除;(3)證明:設(shè)“前介數(shù)”為且即1a、b,a、b均為不為0的整數(shù),∴,∵能被6整除,∴能被2整除,也能被3整除,∴為偶數(shù),且能被3整除,又1,∴b只能取2,4,6,8中的其中一個數(shù),又對應的“中介數(shù)”是,且該“中介數(shù)”能被2整除,∴為偶數(shù),又1,∴a只能取2,4,6,8中的其中一個數(shù),∴P(t)=,要求P(t)的最大值,即要盡量的大,要盡量的小,①的最大值為8,的最小值為2,但此時,且14不能被3整除,不符合題意,舍去;②的最大值為6,的最小值仍為2,但此時,能被3整除,且P(t)=2262-2226=36;③的最大值仍為8,的最小值為4,但此時,且16不能被3整除,不符合題意,舍去;其他情況,減少,增大,則P(t)減少,∴滿足條件的P(t)的最大值是P(2262)=36.【點睛】本題考查用新定義解題,根據(jù)新定義,表示出“前介數(shù)”,與其對應的“中介數(shù)”是求解本題的關(guān)鍵.本題中運用到的分類討論思想是重要一種數(shù)學解題思想方法.22.(1),,;(2);(3)【分析】(1)÷1即可求出q,根據(jù)已知數(shù)的特點求出a18和an即可;(2)根據(jù)已知先求出3S,再相減,即可得出答案;(3)根據(jù)(1)(2)的結(jié)果得出規(guī)律即可.【詳解】解:(1)÷1=,a18=1×()17=,an=1×()n﹣1=,故答案為:,,;(2)設(shè)S=3+32+33+…+323,則3S=32+33+…+323+324,∴2S=324﹣3,∴S=(3)an=a1?qn﹣1,a1+a2+a3+…+an=.【點睛】本題考查了整式的混合運算的應用,主要考查學生的理解能力和閱讀能力,題目是一道比較好的題目,有一定的難度.23.①1,3;②0.6020;0.6990;③f(1.5),f(12);f(1.5)=3a-b+c-1,f(12)=2-b-2c.【分析】①根據(jù)定義可得:f(10b)=b,即可求得結(jié)論;②根據(jù)運算性質(zhì):f(mn)=f(m)+f(n),f()=f(n)-f(m)進行計算;③通過9=32,27=33,可以判斷f(3)是否正確,同樣依據(jù)5=,假設(shè)f(5)正確,可以求得f(2)的值,即可通過f(8),f(12)作出判斷.【詳解】解:①根據(jù)定義知:f(10b)=b,∴f(10)=1,f(103)=3.故答案為:1,3.②根據(jù)運算性質(zhì),得:f(4)=f(2×2)=f(2)+f(2)=2f(2)=0.3010×2=0.6020,f(5)=f()=f(10)-f(2)=1-0.3010=0.6990.故答案為:0.6020;0.6990.③若f(3)≠2a-b,則f(9)=2f(3)≠4a-2b,f(27)=3f(3)≠6a-3b,從而表中有三個對應的f(x)是錯誤的,與題設(shè)矛盾,∴f(3)=2a-b;若f(5)≠a+c,則f(2)=1-f(5)≠1-a-c,∴f(8)=3f(2)≠3-3a-3c,f(6)=f(3)+f(2)≠1+a-b-c,表中也有三個對應的f(x)是錯誤的,與題設(shè)矛盾,∴f(5)=a+c,∴表中只有f(1.5)和f(12)的對應值是錯誤的,應改正為:f(1.5)=f()=f(3)-f(2)=(2a-b)-(1-a-c)=3a-b+c-1,f(12)=f()=2f(6)-f(3)=2(1+a-b-c)-(2a-b)=2-b-2c.∵9=32,27=33,∴f(9)=2f(3)=2(2a-b)=4a-2b,f(27)=3f(3)=3(2a-b)=6a-3b.【點睛】本題考查了冪的應用,新定義運算等,解題的關(guān)鍵是深刻理解所給出的定義或規(guī)則,將它們轉(zhuǎn)化為我們所熟悉的運算.24.(1)①,②,;(2);(3)【分析】(1)①由“奇異數(shù)”的定義可得;②根據(jù)定義計算可得;(2)由f(10m+n)=m+n,可求k的值,即可求b;(3)根據(jù)題意可列出等式,可求出x、y的值,即可求的值.【詳解】解:(1)①∵對任意一個兩位數(shù)a,如果a滿足個位數(shù)字與十位數(shù)字互不相同,且都不為零,那么稱這個兩位數(shù)為“奇異數(shù)”.∴“奇異數(shù)”為21;②f(15)=(15+51)÷11=6,f(10m+n)=(10m+n+10n+m)÷11=m+n;(2)∵f(10m+n)=m+n,且f(b)=8∴k+2k-1=8∴k=3∴b=10×3+2×3-1=35;(3)根據(jù)題意有∵∴∴∵x、y為正數(shù),且x≠y∴x=6,y=5∴a=6×10+5=65故答案為:(1)①,②,;(2);(3)【點睛】本題考查了新定義下的實數(shù)運算,能理解“奇異數(shù)”定義是本題的關(guān)鍵.25.(1),-2;(2)()4,(﹣2)8;(3);(4).【分析】(1)分別按公式進行計算即可;(2)把除法化為乘法,第一個數(shù)不變,從第二個數(shù)開始依次變?yōu)榈箶?shù),由此分別得出結(jié)果;(3)結(jié)果前兩個數(shù)相除為1,第三個數(shù)及后面的數(shù)變?yōu)?,則a?=a×()n-1;(4)將第二問的規(guī)律代入計算,注意運算順序.【詳解】解:(1)2③=2÷2÷2=,(﹣)③=﹣÷(﹣)÷(﹣)=﹣2;(2)5⑥=5×××××=()4,同理得;(﹣)⑩=(﹣2)8;(3)a?=a×××…×;(4)(-3)8×(-3)⑨-(﹣)9×(﹣)⑧=(-3)8×()7-(﹣)9×(-2)6=-3-(-)3=-3+=.【點睛】本題是有理數(shù)的混合運算,也是一個新定義的理解與運用;一方面考查了有理數(shù)的乘除法及乘方運算,另一方面也考查了學生的閱讀理解能力;注意:負數(shù)的奇數(shù)次方為負數(shù),負數(shù)的偶數(shù)次方為正數(shù),同時也要注意分數(shù)的乘方要加括號,對新定義,其實就是多個數(shù)的除法運算,要注意運算順序.26.(1)1011,1101;(2)①12,65,97,見解析,②38【分析】(1)根據(jù)“模二數(shù)”的定義計算即可;(2)①根據(jù)“模二數(shù)”和模二相加不變”的定義,分別計算和12+23,65+23,97+23的值,即可得出答案②設(shè)兩位數(shù)的十位數(shù)字為a,個位數(shù)字為b,根據(jù)a、b的奇偶性和“模二數(shù)”和模二相加不變”的定義進行討論,從而得出與“模二相加不變”的兩位數(shù)的個數(shù)【詳解】解:(1),故答案為:①,,與滿足
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
- 6. 下載文件中如有侵權(quán)或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 山東高速集團有限公司2025年下半年校園招聘(管培生和戰(zhàn)略產(chǎn)業(yè)人才招聘)(60人) 參考題庫附答案
- 招130人!海北州公安局2025年度面向社會公開招聘警務輔助人員(第二批)考試備考題庫附答案
- 武勝縣嘉陵水利集團有限公司關(guān)于公開招聘3名工作人員的參考題庫附答案
- 自然資源部所屬單位2026年度公開招聘工作人員【634人】備考題庫附答案
- 2026湖北省定向同濟大學選調(diào)生招錄參考題庫附答案
- 養(yǎng)老知識培訓
- 艾滋病防治知識培訓課件
- 2025天津日越興辰人力資源管理有限公司公開招聘1人筆試歷年參考題庫附帶答案詳解
- 2025華潤燃氣集團招聘筆試歷年參考題庫附帶答案詳解
- 2025云南玉溪高新區(qū)融建集團投資有限公司市場化選聘高級管理人員2人筆試參考題庫附帶答案詳解(3卷)
- 大學任課老師教學工作總結(jié)(3篇)
- 《功能性食品學》第七章-輔助改善記憶的功能性食品
- 幕墻工程竣工驗收報告2-2
- 1、工程竣工決算財務審計服務項目投標技術(shù)方案
- 改進維持性血液透析患者貧血狀況PDCA
- 阿司匹林在心血管疾病級預防中的應用
- 化工設(shè)備培訓
- D500-D505 2016年合訂本防雷與接地圖集
- 國家開放大學電大??啤毒W(wǎng)絡信息編輯》期末試題標準題庫及答案(試卷號:2489)
- GB/T 20914.1-2007沖模氮氣彈簧第1部分:通用規(guī)格
- FZ/T 90086-1995紡織機械與附件下羅拉軸承和有關(guān)尺寸
評論
0/150
提交評論