版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領
文檔簡介
北京市朝陽區(qū)日壇中學7年級數學下冊第五章生活中的軸對稱單元測試考試時間:90分鐘;命題人:教研組考生注意:1、本卷分第I卷(選擇題)和第Ⅱ卷(非選擇題)兩部分,滿分100分,考試時間90分鐘2、答卷前,考生務必用0.5毫米黑色簽字筆將自己的姓名、班級填寫在試卷規(guī)定位置上3、答案必須寫在試卷各個題目指定區(qū)域內相應的位置,如需改動,先劃掉原來的答案,然后再寫上新的答案;不準使用涂改液、膠帶紙、修正帶,不按以上要求作答的答案無效。第I卷(選擇題20分)一、單選題(10小題,每小題2分,共計20分)1、如圖,點D是∠FAB內的定點且AD=2,若點C、E分別是射線AF、AB上異于點A的動點,且△CDE周長的最小值是2時,∠FAB的度數是()A.30° B.45° C.60° D.90°2、在下列四個標志中,是軸對稱圖形的是()A. B. C. D.3、在一些美術字中,有的漢字是軸對稱圖形.下面4個漢字中,可以看作是軸對稱圖形的是()A.吉 B.祥 C.如 D.意4、下列在線學習平臺的圖標中,是軸對稱圖形的是()A. B. C. D.5、北京2022年冬奧會會徽“冬夢”正式發(fā)布.以下是參選的會徽設計的一部分圖形,其中是軸對稱圖形的是()A. B. C. D.6、在平面直角坐標系中,點P(﹣2,3)關于x軸對稱的點是()A.(﹣2,﹣3) B.(2,3) C.(﹣3,﹣2) D.(2,﹣3)7、下列圖案中,屬于軸對稱圖形的是()A. B. C. D.8、如圖,△ABC與△A′B′C′關于直線MN對稱,BB′交MN于點O,則下列結論不一定正確的是()A.AC=A′C′ B.BO=B′O C.AA′⊥MN D.ABB′C′9、下列圖形中,是軸對稱圖形的是()A. B. C. D.10、下列學習用具中,不是軸對稱圖形的是()A. B.C. D.第Ⅱ卷(非選擇題80分)二、填空題(10小題,每小題2分,共計20分)1、如圖,在中,AF是中線,AE是角平分線,AD是高,,,,,則根據圖形填空:(1)_________,_________;(2)_________,_________.2、如圖,方格紙中的每個小方格的邊長為1,△ABC是格點三角形(即頂點恰好是小方格的頂點).若格點△ACP與△ABC全等(不與△ABC重合),則所有滿足條件的點P有_____個.3、如圖,AC平分∠DCB,CB=CD,DA的延長線交BC于點E,若∠DAC=125°,則∠BAE的度數為______.4、如圖,∠AOB內一點P,P1、P2分別是點P關于OA、OB的對稱點,P1P2交OA于M,交OB于N,若P1P2=5cm,則△PMN的周長是_____.5、如圖,△ABC中,點D在邊BC上,將點D分別以AB、AC為對稱軸,畫出對稱點E、F,連接AE、AF.根據圖中標示的角度,可知∠EAF=___°.6、如圖,長方形沿折疊,使點落在邊上的點處,如果,則_______度.7、如圖,在△ABC中,點D,E分別在邊AB,BC上,點A與點E關于直線CD對稱.若AB=8cm,AC=10cm,BC=14cm,則△DBE的周長為___.8、如圖,直角三角形紙片的兩直角邊分別為6和8,現將△ABC折疊,使點A與點B重合,折痕為DE,則△CBE的周長是___.9、如圖,若AD是的角平分線,則________________或________________.10、如果一個圖形沿一條直線________,直線兩旁的部分能夠________,這個圖形就叫做____;這條直線就是它的________.三、解答題(6小題,每小題10分,共計60分)1、如圖,已知四邊形ABCD與四邊形EFGH關于直線MN對稱,∠D=130°,∠A+∠B=155°,AD=4cm,EF=5cm.(1)求出AB,EH的長度以及∠G的度數;(2)連接AE,DH,AE與DH平行嗎?為什么?2、(1)在圖中畫出與△ABC關于直線l成軸對稱的△A1B1C1;(2)△ABC的面積為;(3)在直線l上找一點P(在答題紙的圖中標出點P),使PB+PC的長最短.3、已知在紙面上畫有一數軸,如圖所示.(1)折疊紙面,使表示1的點與表示-1的點重合,則表示-3的點與表示的點重合;(直接寫出答案)(2)折疊紙面,使表示-1的點與表示3的點重合,則表示100的點與表示數的點重合;(直接寫出答案)(3)已知在數軸上點A表示的數是a,將點A移動10個單位得到點B,此時點B表示的數和a是互為相反數,求a的值.4、已知,如圖,等腰直角△ABC中,∠ACB=90°,CA=CB,過點C的直線CH和AC的夾角∠ACH=α,請按要求完成下列各題:(1)請按要求作圖:作出點A關于直線CH的軸對稱點D,連接AD、BD、CD,其中BD交直線CH于點E,連接AE;(2)請問∠ADB的大小是否會隨著α的改變而改變?如果改變,請用含α的式子表示∠ADB;如果不變,請求出∠ADB的大?。?)請證明△ACE的面積和△BCE的面積滿足:.5、圖1,圖2都是3×3的正方形網格,每個小正方形的頂點稱為格點.A,B,C三點均在格點上,在給定的網格中,按下列要求畫圖:(1)在圖1中,畫一條不與AB重合的線段MN,使MN與AB關于某條直線對稱,且M,N均為格點;(2)在圖2中,畫一個△A1B1C1,使△A1B1C1與△ABC關于某條直線對稱,且A1,B1,C1均為格點.6、如圖,在10×10的正方形網格中,每個小正方形的邊長都為1,網格中有一個格點三角形ABC(三角形的頂點都在網格格點上).(1)在圖中畫出△ABC關于直線l對稱的△A′B′C′(要求:點A與點A′、點B與點B′、點C與點C′相對應);(2)在(1)的結果下,設AB交直線l于點D,連接AB′,求四邊形AB′CD的面積.-參考答案-一、單選題1、A【分析】作D點分別關于AF、AB的對稱點G、H,連接GH分別交AF、AB于C′、E′,利用軸對稱的性質得AG=AD=AH=2,利用兩點之間線段最短判斷此時△CDE周長最小為DC′+DE′+C′E′=GH=2,可得△AGH是等邊三角形,進而可得∠FAB的度數.【詳解】解:如圖,作D點分別關于AF、AB的對稱點G、H,連接GH分別交AF、AB于C′、E′,連接DC′,DE′,此時△CDE周長最小為DC′+DE′+C′E′=GH=2,根據軸對稱的性質,得AG=AD=AH=2,∠DAF=∠GAF,∠DAB=∠HAB,∴AG=AH=GH=2,∴△AGH是等邊三角形,∴∠GAH=60°,∴∠FAB=∠GAH=30°,故選:A.【點睛】本題考查了軸對稱-最短路線問題:熟練掌握軸對稱的性質,會利用兩點之間線段最短解決路徑最短問題.2、B【分析】軸對稱圖形的定義:如果一個平面圖形沿著一條直線折疊后,直線兩旁的部分能夠互相重合,那么這個圖形叫做軸對稱圖形,據此逐項判斷即可.【詳解】解:A中圖形不是軸對稱圖形,不符合題意;B中圖形是軸對稱圖形,符合題意;C中圖形不是軸對稱圖形,不符合題意;D中圖形不是軸對稱圖形,不符合題意,故選:B.【點睛】本題考查軸對稱的定義,理解定義,找準對稱軸是解答的關鍵.3、A【分析】根據軸對稱的定義去判斷即可.【詳解】∵吉是軸對稱圖形,∴A符合題意;∵祥不是軸對稱圖形,∴B不符合題意;∵如不是軸對稱圖形,∴C不符合題意;∵意不是軸對稱圖形,∴D不符合題意;故選A.【點睛】本題考查了軸對稱圖形,熟練掌握軸對稱圖形的定義即一個圖形沿著某條直線折疊,直線兩旁的圖形能完全重合,是解題的關鍵.4、B【分析】根據軸對稱圖形定義進行分析即可.如果一個圖形沿一條直線折疊,直線兩旁的部分能夠互相重合,這個圖形叫做軸對稱圖形.【詳解】解:選項A,C,D都不能找到這樣的一條直線,使這些圖形沿一條直線折疊,直線兩旁的部分能夠互相重合,所以不是軸對稱圖形;選項B能找到這樣的一條直線,使這個圖形沿一條直線折疊,直線兩旁的部分能夠互相重合,所以是軸對稱圖形.故選:B.【點睛】此題主要考查了軸對稱圖形,判斷軸對稱圖形的關鍵是尋找對稱軸,圖形兩部分折疊后可重合.5、A【分析】利用軸對稱圖形的概念進行解答即可.【詳解】解:A.是軸對稱圖形,故此選項符合題意;B.不是軸對稱圖形,故此選項不合題意;C.不是軸對稱圖形,故此選項不合題意;D.不是軸對稱圖形,故此選項不合題意;故選:A.【點睛】本題主要是考查了軸對稱圖形的概念,判別軸對稱圖形的關鍵是找對稱軸.6、A【分析】根據關于x軸對稱的兩點坐標關系:橫坐標相等,縱坐標互為相反數,即可得出結論.【詳解】解:點P(﹣2,3)關于x軸對稱的點的坐標為(﹣2,﹣3)故選A.【點睛】本題考查的是求一個點關于x軸對稱點的坐標,掌握關于x軸對稱的兩點坐標關系是解題的關鍵.7、B【詳解】解:A、不是軸對稱圖形,故本選項不符合題意;B、是軸對稱圖形,故本選項符合題意;C、不是軸對稱圖形,故本選項不符合題意;D、不是軸對稱圖形,故本選項不符合題意;故選:B【點睛】本題主要考查了軸對稱圖形的定義,熟練掌握若一個圖形沿著一條直線折疊后兩部分能完全重合,這樣的圖形就叫做軸對稱圖形,這條直線叫做對稱軸是解題的關鍵.8、D【分析】根據軸對稱的性質解答.【詳解】解:∵△ABC與△A′B′C′關于直線MN對稱,BB′交MN于點O,∴AC=A′C′,BO=B′O,AA′⊥MN,但ABB′C′不正確,故選:D.【點睛】此題考查了軸對稱的性質:軸對稱兩個圖形的對應邊相等,對應角相等,熟記性質是解題的關鍵.9、D【分析】如果一個圖形沿一條直線折疊,直線兩旁的部分能夠互相重合,這個圖形叫做軸對稱圖形,這條直線叫做對稱軸.【詳解】解:選項A、B、C均不能找到這樣的一條直線,使圖形沿一條直線折疊,直線兩旁的部分能夠互相重合,所以不是軸對稱圖形;選項D能找到這樣的一條直線,使圖形沿一條直線折疊,直線兩旁的部分能夠互相重合,所以是軸對稱圖形;故選:D.【點睛】本題主要考查了軸對稱圖形的概念.軸對稱圖形的關鍵是尋找對稱軸,圖形兩部分折疊后可重合.10、B【分析】把一個圖形沿某條直線對折,直線兩旁的部分能夠完全重合,則這個圖形是軸對稱圖形,根據定義逐一分析即可.【詳解】解:選項A中的圖形是軸對稱圖形,故A不符合題意;選項B中的圖形不是軸對稱圖形,故B符合題意;選項C中的圖形是軸對稱圖形,故C不符合題意;選項D中的圖形是軸對稱圖形,故D不符合題意;故選B【點睛】本題考查的是軸對稱圖形的識別,掌握軸對稱圖形的定義是解題的關鍵.二、填空題1、6.54545【分析】(1)根據三角形高和中線的定義進行求解即可得到答案;(2)根據三角形角平分線的定義進行求解即可【詳解】解:(1)在中,AF是中線,∴,∵,,,,AD是高,∴,∴;(2)∵,AE是角平分線,∴,故答案為:6.5,;45,45.【點睛】本題主要考查了三角形高,角平分線和中線的定義,解題的關鍵在于能夠熟練掌握相關知識進行求解.2、3【分析】如圖,把沿直線對折可得:把沿直線對折,從而可得答案.【詳解】解:如圖,把沿直線對折可得:把沿直線對折可得:所以符合條件的點有3個,故答案為:3【點睛】本題考查的軸對稱的性質,全等三角形的概念,掌握“利用軸對稱的性質確定全等三角形”是解本題的關鍵.3、70°【分析】先根據角平分線的定義得到∠DCA=∠BCA,即可利用SAS證明△DCA≌△BCA得到∠BAC=∠DAC=125°,由∠CAE=180°-∠DAC=55°,則∠BAE=∠BAC-∠CAE=70°.【詳解】解:∵AC平分∠DCB,∴∠DCA=∠BCA,又∵CB=CD,CA=CA,∴△DCA≌△BCA(SAS),∴∠BAC=∠DAC=125°,∵∠CAE=180°-∠DAC=55°,∴∠BAE=∠BAC-∠CAE=70°,故答案為:70°.【點睛】本題主要考查了全等三角形的性質與判定,角平分線的定義,解題的關鍵在于能夠熟練掌握全等三角形的性質與判定條件.4、5cm【分析】根據軸對稱的性質得到PM=MP1,PN=NP2,然后等量代換可得△PMN的周長為P1P2.【詳解】解:∵∠AOB內一點P,P1、P2分別是點P關于OA、OB的對稱點,P1P2交OA于M,交OB于N,∴OA、OB分別是P與P1和P與P2的對稱軸∴PM=MP1,PN=NP2;∴P1M+MN+NP2=PM+MN+PN=P1P2=5cm,∴△PMN的周長為5cm.故填5cm.【點睛】本題考查軸對稱的性質,對應點的連線與對稱軸的位置關系是互相垂直,對應點所連的線段被對稱軸垂直平分,對稱軸上的任何一點到兩個對應點之間的距離相等.5、106【分析】連接AD,根據軸對稱的性質求出,,再根據三角形的內角和定理求出,最后應用等價代換思想即可求解.【詳解】解:如下圖所示,連接AD.∵點E和點F是點D分別以AB、AC為對稱軸畫出的對稱點,∴,.∵,,∴.∴.故答案為:106.【點睛】本題考查軸對稱的性質,熟練掌握該知識點是解題關鍵.6、20【分析】先由折疊的性質可知,故,推出,再由即可解答.【詳解】如圖所示,連接,是沿直線折疊而成,,,,,,.故答案為:20.【點睛】此題考查翻折變換(折疊問題),解題關鍵在于利用折疊的性質進行解答.7、【分析】根據對稱的性質可得,,進而可得的長,根據三角形的周長公式計算即可求得△DBE的周長【詳解】解:∵點A與點E關于直線CD對稱,∴,BC=14△DBE的周長為故答案為:【點睛】本題考查了軸對稱的性質,理解對稱的性質是解題的關鍵.8、14【分析】根據圖形翻折變換的性質得出AE=BE,進而可得出△CBE的周長=AC+BC.【詳解】解:∵△BDE是△ADE翻折而成,∴AE=BE,∴△CBE的周長=BC+BE+CE=BC+AE+CE=BC+AC,∵角三角形紙片的兩直角邊長分別為6和8,∴△CBE的周長是14.故答案為:14.【點睛】本題考查的是圖形翻折變換的性質,熟知“折疊是一種對稱變換,它屬于軸對稱,折疊前后圖形的形狀和大小不變,位置變化,對應邊和對應角相等”的知識是解答此題的關鍵.9、=∠BAD∠CAD【分析】根據角平分線的定義進行求解即可.【詳解】解:∵AD是的角平分線,∴,或,故答案為:=,∠BAC,∠BAD,∠CAD.【點睛】本題主要考查了角平分線的定義,解題的關鍵在于能夠熟記角平分線的定義.10、折疊互相重合軸對稱圖形對稱軸【分析】根據軸對稱圖形的概念直接填空即可.【詳解】解:如果一個圖形沿一條直線折疊,直線兩旁的部分能夠互相重合,這個圖形就叫做軸對稱圖形,這條直線就是它的對稱軸.故答案為:折疊,互相重合,軸對稱圖形,對稱軸.【點睛】本題考查了軸對稱圖形的概念,如果一個圖形沿一條直線折疊,直線兩旁的部分能夠互相重合,這個圖形就叫做軸對稱圖形,這條直線就是它的對稱軸,解題關鍵是熟記定義.三、解答題1、(1);(2),理由見解析【分析】(1)先根據四邊形的內角和為360°和已知條件求得的度數,進而根據軸對稱的性質求得AB,EH的長度以及∠G的度數;(2)根據對稱的性質可知,對稱軸垂直平分對應的兩點連成的線段,則,進而根據垂直于同一直線的兩直線平行即可進行判斷.【詳解】解:(1)四邊形ABCD中,∠D=130°,∠A+∠B=155°,∵四邊形ABCD與四邊形EFGH關于直線MN對稱,AD=4cm,EF=5cm.,,(2)連接AE,DH,則已知四邊形ABCD與四邊形EFGH關于直線MN對稱,的對稱點分別為,則.【點睛】本題考查了軸對稱的性質,四邊形內角和,掌握軸對稱的性質是解題的關鍵.2、(1)作圖見解析;(2);(3)作圖見解析【分析】(1)分別確定關于的對稱點再順次連接即可;(2)利用長方形的面積減去周圍三個三角形的面積即可得到答案;(3)由關于對稱,連接交于點從而可得答案.【詳解】解:(1)如圖,是所求作的三角形,(2)故答案為:(3)如圖,點即為所求作的點,【點睛】本題考查的是軸對稱的作圖,利用軸對稱確定兩條線段的和最小,利用割補法求解圖形的面積,掌握“軸對稱的性質”是解題的關鍵.3、(1)3;(2)-98;(3)的值為5或-5【分析】(1)根據對稱的知識,若1表示的點與-1表示的點重合,則對稱中心是原點,從而找到-3的對稱點;(2)由表示?1的點與表示3的點重合,可確定對稱中心是表示1的點,則表示100的點與對稱中心距離為99,與左側與對稱中心距離為99的點重合;(3)分兩種情況分析,①若A往左移10個單位得,②若A往右移10個單位得.【詳解】(1)根據題意,得對稱中心是原點,則?3表示的點與數3表示的點重合,故答案為:3;(2)∵表示-1的點與表示3的點重合,∴表示100的點與表示數-98的點重合;(3)①若A往左移10個單位得,根據題意得.解得:.②若A往右移10個單位得,根據題意得:,解得:.答:的值為5或-5.【點睛】此題考查數軸上的點和數之間的對應關系,結合數軸,找到對稱中心是解決問題的關鍵.4、(1)見解析;(2)大小不變,為定值
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經權益所有人同意不得將文件中的內容挪作商業(yè)或盈利用途。
- 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
- 6. 下載文件中如有侵權或不適當內容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 絞車操作工崗前創(chuàng)新實踐考核試卷含答案
- 采煤支護工沖突解決考核試卷含答案
- 半導體芯片制造工道德考核試卷含答案
- 物業(yè)管理師發(fā)展趨勢測試考核試卷含答案
- 道路客運站務員崗前基礎晉升考核試卷含答案
- 汽車維修工安全綜合知識考核試卷含答案
- 礦壓觀測工崗前基礎實戰(zhàn)考核試卷含答案
- 板帶箔材精整工崗前安全意識強化考核試卷含答案
- 司泵工崗前安全檢查考核試卷含答案
- 2024年饒平縣事業(yè)單位聯(lián)考招聘考試真題匯編附答案
- 2025年敖漢旗就業(yè)服務中心招聘第一批公益性崗位人員的112人模擬試卷含答案詳解
- 婚姻家庭繼承實務講座
- 湖南省長沙市中學雅培粹中學2026屆中考一模語文試題含解析
- 新內瘺穿刺護理
- 鉗工個人實習總結
- 大健康養(yǎng)肝護肝針專題課件
- 道路高程測量成果記錄表-自動計算
- 關于醫(yī)院“十五五”發(fā)展規(guī)劃(2026-2030)
- DB31-T 1587-2025 城市軌道交通智能化運營技術規(guī)范
- 醫(yī)療護理操作評分細則
- 自考-經濟思想史知識點大全
評論
0/150
提交評論