版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)
文檔簡介
滬科版9年級下冊期末測試卷考試時間:90分鐘;命題人:教研組考生注意:1、本卷分第I卷(選擇題)和第Ⅱ卷(非選擇題)兩部分,滿分100分,考試時間90分鐘2、答卷前,考生務必用0.5毫米黑色簽字筆將自己的姓名、班級填寫在試卷規(guī)定位置上3、答案必須寫在試卷各個題目指定區(qū)域內(nèi)相應的位置,如需改動,先劃掉原來的答案,然后再寫上新的答案;不準使用涂改液、膠帶紙、修正帶,不按以上要求作答的答案無效。第I卷(選擇題16分)一、單選題(8小題,每小題2分,共計16分)1、下列圖形中,既是軸對稱圖形,又是中心對稱圖形的是()A. B. C. D.2、如圖,在Rt△ABC中,,,點D、E分別是AB、AC的中點.將△ADE繞點A順時針旋轉(zhuǎn)60°,射線BD與射線CE交于點P,在這個旋轉(zhuǎn)過程中有下列結(jié)論:①△AEC≌△ADB;②CP存在最大值為;③BP存在最小值為;④點P運動的路徑長為.其中,正確的()A.①②③ B.①②④ C.①③④ D.②③④3、下列圖形中,可以看作是中心對稱圖形的是()A. B. C. D.4、把6張大小、厚度、顏色相同的卡片上分別畫上線段、等邊三角形、正方形、長方形、圓、拋物線.在看不見圖形的條件下任意摸出1張,這張卡片上的圖形是中心對稱圖形的概率是()A. B. C. D.5、如圖,是△ABC的外接圓,已知,則的大小為()A.55° B.60° C.65° D.75°6、如圖,△ABC外接于⊙O,∠A=30°,BC=3,則⊙O的半徑長為()A.3 B. C. D.7、如圖,,,,都是上的點,,垂足為,若,則的度數(shù)為()A. B. C. D.8、下列圖形中,既是中心對稱圖形又是抽對稱圖形的是()A. B. C. D.第Ⅱ卷(非選擇題84分)二、填空題(7小題,每小題2分,共計14分)1、圓錐的底面直徑是80cm,母線長90cm.它的側(cè)面展開圖的圓心角和圓錐的全面積依次是______.2、到點的距離等于8厘米的點的軌跡是__.3、有五張正面分別標有數(shù)字,,0,1,2的不透明卡片,它們除數(shù)字不同外其余全部相同.現(xiàn)將它們背面朝上,洗勻后從中任取一張,將該卡片上的數(shù)字記為,將該卡片放回洗勻后從中再任取一張,將該卡片上的數(shù)字記為,則為非負數(shù)的概率為________.4、如圖,是由繞點O順時針旋轉(zhuǎn)30°后得到的圖形,若點D恰好落在AB上,且的度數(shù)為100°,則的度數(shù)是______.5、如圖,在⊙O中,A,B,C是⊙O上三點,如果∠AOB=70o,那么∠C的度數(shù)為_______.6、如圖,PA是⊙O的切線,A是切點.若∠APO=25°,則∠AOP=___________°.7、如圖,AB是半圓O的直徑,AB=4,點C,D在半圓上,OC⊥AB,,點P是OC上的一個動點,則BP+DP的最小值為______.三、解答題(7小題,每小題0分,共計0分)1、電影《長津湖》以抗美援朝戰(zhàn)爭第二次戰(zhàn)役中的長津湖戰(zhàn)役為背景,講述71年前,中國人民志愿軍赴朝作戰(zhàn),在極寒嚴酷環(huán)境下,東線作戰(zhàn)部隊憑著鋼鐵意志和英勇無畏的戰(zhàn)斗精神一路追擊,奮勇殺敵的真實歷史.為紀念歷史,緬懷先烈,我校團委將電影中的四位歷史英雄人物頭像制成編號為A、B、C、D的四張卡片(除編號和頭像外其余完全相同),活動時學生根據(jù)所抽取的卡片來講述他們在影片中波瀾壯闊、可歌可泣的歷史事跡.規(guī)則如下:先將四張卡片背面朝上,洗勻放好,小強從中隨機抽取一張,然后放回并洗勻,小葉再從中隨機抽取一張.請用列表或畫樹狀圖的方法求小強和小葉抽到的兩張卡片恰好是同一英雄人物的概率.2、在平面直角坐標系xOy中,對于點P,O,Q給出如下定義:若OQ<PO<PQ且PO≤2,我們稱點P是線段OQ的“潛力點”已知點O(0,0),Q(1,0)(1)在P1(0,-1),P2(,),P3(-1,1)中是線段OQ的“潛力點”是_____________;(2)若點P在直線y=x上,且為線段OQ的“潛力點”,求點P橫坐標的取值范圍;(3)直線y=2x+b與x軸交于點M,與y軸交于點N,當線段MN上存在線段OQ的“潛力點”時,直接寫出b的取值范圍3、為了引導青少年學黨史,某中學舉行了“獻禮建黨百年”黨史知識競賽活動,將成績劃分為四個等級:A(優(yōu)秀)、B(優(yōu)良)、C(合格)、D(不合格).小李隨機調(diào)查了部分同學的競賽成績,繪制成了如下統(tǒng)計圖(部分信息未給出):(1)小李共抽取了名學生的成績進行統(tǒng)計分析,扇形統(tǒng)計圖中“優(yōu)秀”等級對應的扇形圓心角度數(shù)為,請補全條形統(tǒng)計圖;(2)該校共有2000名學生,請你估計該校競賽成績“優(yōu)秀”的學生人數(shù);(3)已知調(diào)查對象中只有兩位女生競賽成績不合格,小李準備隨機回訪兩位競賽成績不合格的同學,請用樹狀圖或列表法求出恰好回訪到一男一女的概率.4、某省高考采用“3+1+2”模式:“3”是指語文、數(shù)學、英語3科為必選科目,“1”是指在物理、歷史2科中任選1科,“2”是指在思想政治、化學、生物、地理4科中任選2科.(1)假定在“1”中選擇歷史,在“2”中已選擇地理,則選擇生物的概率是________;(2)求同時選擇物理、化學、生物的概率.5、隨著課后服務的全面展開,某校組織了豐富多彩的社團活動.炯炯和露露分別打算從以下四個社團:A.快樂足球,B.數(shù)學歷史,C.文學欣賞,D.棋藝鑒賞中,選擇一個社團參加.(1)炯炯選擇數(shù)學歷史的概率為______.(2)用畫樹狀圖或列表的方法求炯炯和露露選擇同一個社團的概率.6、如圖,在Rt△ABC中,∠B=90°,∠BAC的平分線AD交BC于點D,點E在AC上,以AE為直徑的⊙O經(jīng)過點D.(1)求證:①BC是⊙O的切線;②;(2)若點F是劣弧AD的中點,且CE=3,試求陰影部分的面積.7、如圖,已知AB是的直徑,點D為弦BC中點,過點C作切線,交OD延長線于點E,連結(jié)BE,OC.(1)求證:.(2)求證:BE是的切線.-參考答案-一、單選題1、C【詳解】解:選項A是軸對稱圖形,不是中心對稱圖形,故A不符合題意;選項B不是軸對稱圖形,是中心對稱圖形,故B不符合題意;選項C既是軸對稱圖形,也是中心對稱圖形,故C符合題意;選項D是軸對稱圖形,不是中心對稱圖形,故D不符合題意;故選C【點睛】本題考查的是軸對稱圖形的識別,中心對稱圖形的識別,掌握“軸對稱圖形與中心對稱圖形的定義”是解本題的關(guān)鍵,軸對稱圖形:把一個圖形沿某條直線對折,直線兩旁的部分能夠完全重合;中心對稱圖形:把一個圖形繞某點旋轉(zhuǎn)后能與自身重合.2、B【分析】根據(jù),,點D、E分別是AB、AC的中點.得出∠DAE=90°,AD=AE=,可證∠DAB=∠EAC,再證△DAB≌△EAC(SAS),可判斷①△AEC≌△ADB正確;作以點A為圓心,AE為半徑的圓,當CP為⊙A的切線時,CP最大,根據(jù)△AEC≌△ADB,得出∠DBA=∠ECA,可證∠P=∠BAC=90°,CP為⊙A的切線,證明四邊形DAEP為正方形,得出PE=AE=3,在Rt△AEC中,CE=,可判斷②CP存在最大值為正確;△AEC≌△ADB,得出BD=CE=,在Rt△BPC中,BP最小=可判斷③BP存在最小值為不正確;取BC中點為O,連結(jié)AO,OP,AB=AC=6,∠BAC=90°,BP=CO=AO=,當AE⊥CP時,CP與以點A為圓心,AE為半徑的圓相切,此時sin∠ACE=,可求∠ACE=30°,根據(jù)圓周角定理得出∠AOP=2∠ACE=60°,當AD⊥BP′時,BP′與以點A為圓心,AE為半徑的圓相切,此時sin∠ABD=,可得∠ABD=30°根據(jù)圓周角定理得出∠AOP′=2∠ABD=60°,點P在以點O為圓心,OA長為半徑,的圓上運動軌跡為,L可判斷④點P運動的路徑長為正確即可.【詳解】解:∵,,點D、E分別是AB、AC的中點.∴∠DAE=90°,AD=AE=,∴∠DAB+∠BAE=90°,∠BAE+∠EAC=90°,∴∠DAB=∠EAC,在△DAB和△EAC中,,∴△DAB≌△EAC(SAS),故①△AEC≌△ADB正確;作以點A為圓心,AE為半徑的圓,當CP為⊙A的切線時,CP最大,∵△AEC≌△ADB,∴∠DBA=∠ECA,∴∠PBA+∠P=∠ECP+∠BAC,∴∠P=∠BAC=90°,∵CP為⊙A的切線,∴AE⊥CP,∴∠DPE=∠PEA=∠DAE=90°,∴四邊形DAEP為矩形,∵AD=AE,∴四邊形DAEP為正方形,∴PE=AE=3,在Rt△AEC中,CE=,∴CP最大=PE+EC=3+,故②CP存在最大值為正確;∵△AEC≌△ADB,∴BD=CE=,在Rt△BPC中,BP最小=,BP最短=BD-PD=-3,故③BP存在最小值為不正確;取BC中點為O,連結(jié)AO,OP,∵AB=AC=6,∠BAC=90°,∴BP=CO=AO=,當AE⊥CP時,CP與以點A為圓心,AE為半徑的圓相切,此時sin∠ACE=,∴∠ACE=30°,∴∠AOP=2∠ACE=60°,當AD⊥BP′時,BP′與以點A為圓心,AE為半徑的圓相切,此時sin∠ABD=,∴∠ABD=30°,∴∠AOP′=2∠ABD=60°,∴點P在以點O為圓心,OA長為半徑,的圓上運動軌跡為,∵∠POP=∠POA+∠AOP′=60°+60°=120°,∴L.故④點P運動的路徑長為正確;正確的是①②④.故選B.【點睛】本題考查圖形旋轉(zhuǎn)性質(zhì),線段中點定義,三角形全等判定與性質(zhì),圓的切線,正方形判定與性質(zhì),勾股定理,銳角三角函數(shù),弧長公式,本題難度大,利用輔助線最長準確圖形是解題關(guān)鍵.3、B【分析】把一個圖形繞某一點旋轉(zhuǎn)180°,如果旋轉(zhuǎn)后的圖形能夠與原來的圖形重合,那么這個圖形就叫做中心對稱圖形,根據(jù)中心對稱圖形的概念求解.【詳解】A.不是中心對稱圖形,故本選項不符合題意;B.是中心對稱圖形,故本選項符合題意;C.不是中心對稱圖形,故本選項不符合題意;D.不是中心對稱圖形,故本選項不符合題意.故選:B.【點睛】本題考查了中心對稱圖形的概念,中心對稱圖形是要尋找對稱中心,旋轉(zhuǎn)180度后與原圖重合.4、D【分析】根據(jù)題意,判斷出中心對稱圖形的個數(shù),進而即可求得答案【詳解】解:∵線段、等邊三角形、正方形、長方形、圓、拋物線中,中心對稱圖形有:線段、正方形、長方形、圓,共4種,總數(shù)為6種∴在看不見圖形的條件下任意摸出1張,這張卡片上的圖形是中心對稱圖形的概率是故選D【點睛】本題考查了概率公式求概率,中心對稱圖形,掌握線段、等邊三角形、正方形、長方形、圓、拋物線的性質(zhì)是解題的關(guān)鍵.5、C【分析】由OA=OB,,求出∠AOB=130°,根據(jù)圓周角定理求出的度數(shù).【詳解】解:∵OA=OB,,∴∠BAO=.∴∠AOB=130°.∴=∠AOB=65°.故選:C.【點睛】此題考查了同圓中半徑相等的性質(zhì),圓周角定理:同弧所對的圓周角等于圓心角的一半.6、A【分析】分析:連接OA、OB,根據(jù)圓周角定理,易知∠AOB=60°;因此△ABO是等邊三角形,即可求出⊙O的半徑.【詳解】解:連接BO,并延長交⊙O于D,連結(jié)DC,∵∠A=30°,∴∠D=∠A=30°,∵BD為直徑,∴∠BCD=90°,在Rt△BCD中,BC=3,∠D=30°,∴BD=2BC=6,∴OB=3.故選A.【點睛】本題考查了圓周角性質(zhì),利用同弧所對圓周角性質(zhì)與直徑所對圓周角性質(zhì),30°角所對直角三角形性質(zhì),掌握圓周角性質(zhì),利用同弧所對圓周角性質(zhì)與直徑所對圓周角性質(zhì),30°角所對直角三角形性質(zhì)是解題的關(guān)鍵.7、B【分析】連接OC.根據(jù)確定,,進而計算出,根據(jù)圓心角的性質(zhì)求出,最后根據(jù)圓周角的性質(zhì)即可求出.【詳解】解:如下圖所示,連接OC.∵,∴,.∴.∵.∴.∴∵和分別是所對的圓周角和圓心角,∴.故選:B.【點睛】本題考查垂徑定理,圓心角的性質(zhì),圓周角的性質(zhì),綜合應用這些知識點是解題關(guān)鍵.8、B【詳解】解:.是軸對稱圖形,不是中心對稱圖形,故此選項不符合題意;.既是軸對稱圖形,也是中心對稱圖形,故此選項符合題意;.是軸對稱圖形,不是中心對稱圖形,故此選項不符合題意;.不是軸對稱圖形,是中心對稱圖形,故此選項不符合題意;故選:B.【點睛】本題主要考查了中心對稱圖形和軸對稱圖形的概念,解題的關(guān)鍵是判斷軸對稱圖形的關(guān)鍵是尋找對稱軸,圖形兩部分折疊后可重合;判斷中心對稱圖形是要尋找對稱中心,旋轉(zhuǎn)180度后與原圖重合.二、填空題1、160°,5200【分析】由題意知,圓錐的展開圖扇形的r半徑為90cm,弧長l為.代入扇形弧長公式求解圓心角;代入扇形面積公式求出圓錐側(cè)面積,然后加上底面面積即可求出全面積.【詳解】解:圓錐的展開圖扇形的r半徑為90cm,弧長l為∵∴解得∵∴故答案為:160°,.【點睛】本題考查了扇形的圓心角與面積.解題的關(guān)鍵在于運用扇形的弧長與面積公式進行求解.難點在于求出公式中的未知量.2、以點為圓心,8厘米長為半徑的圓【分析】由題意直接根據(jù)圓的定義進行分析即可解答.【詳解】到點的距離等于8厘米的點的軌跡是:以點為圓心,2厘米長為半徑的圓.故答案為:以點為圓心,8厘米長為半徑的圓.【點睛】本題主要考查了圓的定義,正確理解定義是關(guān)鍵,注意掌握圓的定義是在同一平面內(nèi)到定點的距離等于定長的點的集合.3、【分析】求出為負數(shù)的事件個數(shù),進而得出為非負數(shù)的事件個數(shù),然后求解即可.【詳解】解:兩次取卡片共有種可能的事件;兩次取得卡片數(shù)字乘積為負數(shù)的事件為等8種可能的事件∴為非負數(shù)共有種∴為非負數(shù)的概率為故答案為:.【點睛】本題考查了列舉法求隨機事件的概率.解題的關(guān)鍵在于求出事件的個數(shù).4、35°【分析】根據(jù)旋轉(zhuǎn)的性質(zhì)可得∠AOD=∠BOC=30°,AO=DO,再求出∠BOD,∠ADO,然后利用三角形的一個外角等于與它不相鄰的兩個內(nèi)角的和列式計算即可得解.【詳解】解:∵△COD是△AOB繞點O順時針旋轉(zhuǎn)30°后得到的圖形,∴∠AOD=∠BOC=30°,AO=DO,∵∠AOC=100°,∴∠BOD=100°?30°×2=40°,∠ADO=∠A=(180°?∠AOD)=(180°?30°)=75°,由三角形的外角性質(zhì)得,∠B=∠ADO?∠BOD=75°?40°=35°.故答案為:35°.【點睛】本題考查了旋轉(zhuǎn)的性質(zhì),等腰三角形的性質(zhì),三角形的一個外角等于與它不相鄰的兩個內(nèi)角的和的性質(zhì),熟記各性質(zhì)并準確識圖是解題的關(guān)鍵.5、35°【分析】利用圓周角定理求出所求角度數(shù)即可.【詳解】解:與都對,且,,故答案為:.【點睛】本題考查了圓周角定理,解題的關(guān)鍵是熟練掌握圓周角定理.6、65【分析】根據(jù)切線的性質(zhì)得到OA⊥AP,根據(jù)直角三角形的兩銳角互余計算,得到答案.【詳解】解:∵PA是⊙O的切線,∴OA⊥AP,∴,∵∠APO=25°,∴,故答案為:65.【點睛】本題考查的是切線的性質(zhì)、直角三角形的性質(zhì),掌握圓的切線垂直于經(jīng)過切點的半徑是解題的關(guān)鍵.7、【分析】如圖,連接AD,PA,PD,OD.首先證明PA=PB,再根據(jù)PD+PB=PD+PA≥AD,求出AD即可解決問題.【詳解】解:如圖,連接AD,PA,PD,OD.∵OC⊥AB,OA=OB,∴PA=PB,∠COB=90°,∵,∴∠DOB=×90°=60°,∵OD=OB,∴△OBD是等邊三角形,∴∠ABD=60°∵AB是直徑,∴∠ADB=90°,∴AD=AB?sin∠ABD=2,∵PB+PD=PA+PD≥AD,∴PD+PB≥2,∴PD+PB的最小值為2,故答案為:2.【點睛】本題考查圓周角定理,垂徑定理,圓心角,弧,弦之間的關(guān)系等知識,解題的關(guān)鍵是學會用轉(zhuǎn)化的思想思考問題.三、解答題1、【分析】根據(jù)題意列出樹狀圖,根據(jù)概率公式即可求解.【詳解】由題意做樹狀圖如下:故小強和小葉抽到的兩張卡片恰好是同一英雄人物的概率為.【點睛】此題考查了用列表法或樹狀圖法求概率,解題時要注意此題是放回試驗還是不放回試驗,用到的知識點為:概率=所求情況數(shù)與總情況數(shù)之比.2、(1);(2);(3)或【分析】(1)分別計算出OQ、PO和PQ的長度,比較即可得出答案;(2)先判斷點P在以O(shè)為圓心,1為半徑的圓外且點P在線段OQ垂直平分線的左側(cè),結(jié)合PO≤2,點P在以O(shè)為圓心,2為半徑的圓上或圓內(nèi),可得點P在如圖所示的線段AB上(不包含點B),過作軸,過作軸,垂足分別為再根據(jù)圖形的性質(zhì)求解從而可得答案;(3)由(2)得:點P在以O(shè)為圓心,1為半徑的圓外且點P在以O(shè)為圓心,2為半徑的圓上或圓內(nèi),而PO<PQ,點P在線段OQ垂直平分線的左側(cè),再分兩種情況討論:當時,當時,分別畫出兩種情況下的臨界直線再根據(jù)臨界直線經(jīng)過的特殊點求解的值,再確定范圍即可.【詳解】解:(1)O(0,0),Q(1,0),P1(0,-1),P2(,),P3(-1,1)不滿足OQ<PO<PQ且PO≤2,所以不是線段OQ的“潛力點”,同理:所以不滿足OQ<PO<PQ且PO≤2,所以不是線段OQ的“潛力點”,同理:所以滿足:OQ<PO<PQ且PO≤2,所以是線段OQ的“潛力點”,故答案為:P3(2)∵點P為線段OQ的“潛力點”,∴OQ<PO<PQ且PO≤2,∵OQ<PO,∴點P在以O(shè)為圓心,1為半徑的圓外∵PO<PQ,∴點P在線段OQ垂直平分線的左側(cè),而的垂直平分線為:∵PO≤2,∴點P在以O(shè)為圓心,2為半徑的圓上或圓內(nèi)又∵點P在直線y=x上,∴點P在如圖所示的線段AB上(不包含點B)過作軸,過作軸,垂足分別為由題意可知△BOC和△AOD是等腰三角形,∴∴-≤xp<-(3)由(2)得:點P在以O(shè)為圓心,1為半徑的圓外且點P在以O(shè)為圓心,2為半徑的圓上或圓內(nèi),而PO<PQ,點P在線段OQ垂直平分線的左側(cè)當時,過時,即函數(shù)解析式為:此時則當與半徑為2的圓相切于時,則由而當時,如圖,同理可得:點P在以O(shè)為圓心,1為半徑的圓外且點P在以O(shè)為圓心,2為半徑的圓上或圓內(nèi),而PO<PQ,點P在線段OQ垂直平分線的左側(cè),同理:當過則直線為在直線上,此時當過時,則所以此時:綜上:的范圍為:1<b≤或<b<-1【點睛】本題考查的是新定義情境下的知識運用,圓的基本性質(zhì),圓的切線的性質(zhì),一次函數(shù)的綜合應用,銳角三角函數(shù)的應用,勾股定理的應用,數(shù)形結(jié)合是解本題的關(guān)鍵.3、(1)100,126°,條形統(tǒng)計圖見解析;(2)700;(3)【分析】(1)根據(jù)C等級的人數(shù)和所占比可求出抽取的總?cè)藬?shù),用A等級的人數(shù)除以抽取的總?cè)藬?shù)乘以360°可得A等級對應扇形圓心角的度數(shù),用抽取的總?cè)藬?shù)乘以B等級所占的百分比得B等級的人數(shù),用抽取的總?cè)藬?shù)減去A、B、C等級的人數(shù)得出D等級人數(shù),即可補全條形統(tǒng)計圖;(2)用2000乘以A等級所占的百分比即可估計出成績“優(yōu)秀”的學生人數(shù);(3)由(1)得不合格有5人,故由3男2女,用列表法即可求回訪到一男一女的概率.【詳解】(1)C等級的人數(shù)和所占比可得抽取的總?cè)藬?shù)為:(名),∴“優(yōu)秀”等級對應的扇形圓心角度數(shù)為:,B等級的人數(shù)為:(名),D等級的人數(shù)為:(名),∴補全條形統(tǒng)計圖如下所示:(2)(名),∴該校競賽成績“優(yōu)秀”的學生人數(shù)為700名;(3)∵抽取不及格的人數(shù)有5名,其中有2名女生,∴有3名男生,設(shè)3名男生分別為,,,2名女生分別為,,列表格如下所示:∴總的結(jié)果有20種,一男一女的有12種,∴回訪到一男一女的概率為.【點睛】本題考查統(tǒng)計與概率,其中涉及到條形統(tǒng)計圖與扇形統(tǒng)計圖相關(guān)聯(lián)問題,用樣本估計總體以及用列舉法求概率,讀懂條形統(tǒng)計圖和扇形統(tǒng)計圖所給出的條件是解題的關(guān)鍵.4、(1)(2)【分析】(1)直接根據(jù)概率公式即可得出答案;(2)根據(jù)題意畫出樹狀圖得出所有等可能的情況數(shù),找出符合條件的情況數(shù),然后根據(jù)概率公式即可得出答案.(1)解:在“2”中已選擇了地理,從剩下的化學、生物,思想品德三科中選一科,因此選擇生物的概率為.故答案為:;(2)解:用樹狀圖表示所有可能出現(xiàn)的結(jié)果如下:共有12種等可能的結(jié)果數(shù),其中選中“化學”“生物”的有2種,則.在“1”中選擇物理的概率,同時選擇物理、化學、生物的概率.故答案為:.【點睛】本題考查的是用列表法或樹狀圖法求概率,解題的關(guān)鍵是掌握列表法可以不重復不遺漏的列出所有可能的結(jié)果,適合于兩步完成的事件;樹狀圖法適合兩步或兩步以上完成的事件.用到的知識點為:概率所求情況數(shù)與總情況數(shù)之比.5、(1)(2)炯炯和露露選擇同一個社團的概率為【分析】(1)直接由概率公式求解即可;(2)畫樹狀圖,共有16種等可能的結(jié)果,其中炯炯和露露選同一個社團的有4種結(jié)果,再由概率公式求解即可.(1)∵共有A.快樂足球,B.數(shù)學歷史,C.文學欣賞,D.棋藝鑒賞四個社團,數(shù)學歷史是其中一個社團,∴炯炯選擇數(shù)學歷史的概率為,故答案為:;(2)
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
- 6. 下載文件中如有侵權(quán)或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 常州武進市三河口高級中學高三物理周周練99
- 6-甲基-4-對硝基苯基-5-乙氧羰基-3,4-二氫嘧啶-2-硫酮的合成研究
- 2025年中職精神病護理(精神科基礎(chǔ)護理)試題及答案
- 2026年逆向思維(逆向訓練)考題及答案
- 2025年高職(建筑工程技術(shù))鋼結(jié)構(gòu)工程綜合測試題及答案
- 2025年中職(應用化工技術(shù))化工原料識別試題及解析
- 2025年大學大三(寶石及材料工藝學)珠寶首飾設(shè)計基礎(chǔ)測試題及答案
- 2025-2026年初一歷史(宋元史)下學期期中測試卷
- 2025年本科心理學(普通心理學)試題及答案
- 2025-2026年八年級語文(基礎(chǔ)鞏固)下學期試題及答案
- 牧場物語-礦石鎮(zhèn)的伙伴們-完全攻略
- 六層住宅樓框架結(jié)構(gòu)施工方案
- 地理主題10-1 影響工業(yè)區(qū)位的因素
- QCT1067.5-2023汽車電線束和電器設(shè)備用連接器第5部分:設(shè)備連接器(插座)的型式和尺寸
- 酒店餐飲開業(yè)籌備計劃方案
- SYT 0319-2021 鋼質(zhì)儲罐防腐層技術(shù)規(guī)范-PDF解密
- 長護險評估培訓課件
- 乳腺鉬靶報告書寫
- 乘用車空氣懸架用空氣彈簧技術(shù)規(guī)范
- 廣東省航道事務中心所屬事業(yè)單位招聘工作人員考試題庫2023
- 供貨及運輸、安全保障措施
評論
0/150
提交評論