綜合解析北師大版9年級數(shù)學(xué)上冊期中試卷【歷年真題】附答案詳解_第1頁
綜合解析北師大版9年級數(shù)學(xué)上冊期中試卷【歷年真題】附答案詳解_第2頁
綜合解析北師大版9年級數(shù)學(xué)上冊期中試卷【歷年真題】附答案詳解_第3頁
綜合解析北師大版9年級數(shù)學(xué)上冊期中試卷【歷年真題】附答案詳解_第4頁
綜合解析北師大版9年級數(shù)學(xué)上冊期中試卷【歷年真題】附答案詳解_第5頁
已閱讀5頁,還剩30頁未讀 繼續(xù)免費閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)

文檔簡介

北師大版9年級數(shù)學(xué)上冊期中試卷考試時間:90分鐘;命題人:教研組考生注意:1、本卷分第I卷(選擇題)和第Ⅱ卷(非選擇題)兩部分,滿分100分,考試時間90分鐘2、答卷前,考生務(wù)必用0.5毫米黑色簽字筆將自己的姓名、班級填寫在試卷規(guī)定位置上3、答案必須寫在試卷各個題目指定區(qū)域內(nèi)相應(yīng)的位置,如需改動,先劃掉原來的答案,然后再寫上新的答案;不準使用涂改液、膠帶紙、修正帶,不按以上要求作答的答案無效。第I卷(選擇題20分)一、單選題(7小題,每小題2分,共計14分)1、圖,在△ABC中,AB=AC,四邊形ADEF為菱形,O為AE,DF的交點,S△ABC=8,則S菱形ADEF=()A.4 B.4 C.4 D.42、已知實數(shù)滿足,則代數(shù)式的值是(

)A.7 B.-1 C.7或-1 D.-5或33、若對于任意實數(shù)a,b,c,d,定義

=ad-bc,按照定義,若=0,則x的值為(

)A. B. C.3 D.4、-元二次方程2x2-2x-1=0的根的情況為(

)A.有兩個相等的實數(shù)根 B.有兩個不相等的實數(shù)根C.只有一個實數(shù)根 D.沒有實數(shù)根5、將一元二次方程化成(a,b為常數(shù))的形式,則a,b的值分別是(

)A.,21 B.,11 C.4,21 D.,696、平行四邊形、矩形、菱形、正方形共有的性質(zhì)是(

).A.對角線互相平分 B.對角線相等 C.對角線互相垂直 D.對角形互相垂直平分7、把方程x2+2x=5(x﹣2)化成ax2+bx+c=0的形式,則a,b,c的值分別為()A.1,﹣3,2 B.1,7,﹣10 C.1,﹣5,12 D.1,﹣3,10二、多選題(3小題,每小題2分,共計6分)1、兩個關(guān)于的一元二次方程和,其中,,是常數(shù),且.如果是方程的一個根,那么下列各數(shù)中,一定是方程的根的是()A. B. C.2 D.-22、如圖,在正方形中,,點在邊上,且.將沿對折至,點落在正方形內(nèi)部點處,延長交邊于點,連接,.下列結(jié)論正確的是(

)A. B.C. D.3、(多選)如圖,正方形ABCD的對角線AC,BD相交于D于點O,點P為線段AC上一點,連接BP,過點P作交AD于點E,連接BE,若,,下列說法正確的有(

)A. B. C. D.第Ⅱ卷(非選擇題80分)三、填空題(10小題,每小題2分,共計20分)1、社團課上,同學(xué)們進行了“摸球游戲”:在一個不透明的盒子里裝有幾十個除顏色不同外其余均相同的黑、白兩種球,將盒子里面的球攪勻后從中隨機摸出一個球記下顏色,再把它放回盒子中,不斷重復(fù)上述過程.整理數(shù)據(jù)后,制作了“摸出黑球的頻率”與“摸球的總次數(shù)”的關(guān)系圖象如圖所示,經(jīng)分析可以推斷盒子里個數(shù)比較多的是___________(填“黑球”或“白球”).2、袋中有五顆球,除顏色外全部相同,其中紅色球三顆,標號分別為1,2,3,綠色球兩顆,標號分別為1,2,若從五顆球中任取兩顆,則兩顆球的標號之和不小于4的概率為__.3、如圖,在矩形中,AD=6,將矩形折疊,使點B與點D重合,落在處,若,則折痕的長為__________.4、對于任意實數(shù)a、b,定義一種運算:,若,則x的值為________.5、如圖,中,交于,交于,是的角平分線,那么四邊形的形狀是________形;在前面的條件下,若再滿足一個條件________,則四邊形是正方形.6、關(guān)于的方程有兩個不相等的實數(shù)根,則的取值范圍是________.7、如圖,點E是菱形ABCD邊AB的中點,點F為邊AD上一動點,連接EF,將△AEF沿直線EF折疊得到△A'EF,連接A'D,A'C.已知BC=4,∠B=120°,當(dāng)△A'CD為直角三角形時,線段AF的長為______.8、將正方形OEFG放在平面直角坐標系中,O是坐標原點,若點E的坐標為,則點G的坐標為_____.9、設(shè)分別為一元二次方程的兩個實數(shù)根,則____.10、一個不透明的口袋中有三個完全相同的小球,小球上分別寫有數(shù)字4、5、6,隨機摸取1個小球然后放回,再隨機摸取一個小球(1)用畫樹狀圖或列表的方法表示出可能出現(xiàn)的所有結(jié)果;(1)求兩次抽出數(shù)字之和為奇數(shù)的概率.四、解答題(6小題,每小題10分,共計60分)1、已知x1,x2是關(guān)于x的一元二次方程x2-4mx+4m2-9=0的兩實數(shù)根.(1)若這個方程有一個根為-1,求m的值;(2)若這個方程的一個根大于-1,另一個根小于-1,求m的取值范圍;(3)已知Rt△ABC的一邊長為7,x1,x2恰好是此三角形的另外兩邊的邊長,求m的值.2、如圖,在平面直角坐標系中,點是坐標原點,四邊形是菱形,點的坐標為,點在軸的正半軸上,直線交軸于點,邊交軸于點,連接.(1)填空:菱形的邊長_________;(2)求直線的解析式;(3)動點從點出發(fā),沿折線方向以3個單位/秒的速度向終點勻速運動,設(shè)的面積為,點的運動時間為秒,①當(dāng)時,求與之間的函數(shù)關(guān)系式;②在點運動過程中,當(dāng),請直接寫出的值.3、如圖,在矩形ABCD中,點M在DC上,AM=AB,且BN⊥AM,垂足為N.(1)求證:△ABN≌△MAD;(2)若AD=2,AN=4,求四邊形BCMN的面積.4、用指定方法解下列方程:(1)2x2-5x+1=0(公式法);(2)x2-8x+1=0(配方法).5、如圖,在四邊形ABCD中,AD∥BC,對角線BD的垂直平分線與邊AD,BC分別相交于點M,N.(1)求證:四邊形BNDM是菱形;(2)若BD=24,MN=10,求菱形BNDM的周長.6、小軍和小剛兩位同學(xué)在學(xué)習(xí)”概率“時,做投擲骰子(質(zhì)地均勻的正方體)實驗,他們共做了60次試驗,實驗的結(jié)果如下:向上點數(shù)123456出現(xiàn)次數(shù)79682010(1)計算“2點朝上”的頻率和“5點朝上”的頻率.(2)小軍說:“根據(jù)實驗,一次實驗中出現(xiàn)3點朝上的概率是”;小軍的這一說法正確嗎?為什么?(3)小剛說:“如果擲600次,那么出現(xiàn)6點朝上的次數(shù)正好是100次.”小剛的這一說法正確嗎?為什么?-參考答案-一、單選題1、C【解析】【分析】根據(jù)菱形的性質(zhì),結(jié)合AB=AC,得出DF為△ABC的中位線,DF∥BC,,從而得出AE為△ABC的高,得出,再根據(jù)菱形的面積公式,即可得出菱形的面積.【詳解】解:∵四邊形ADEF為菱形,∴EF∥AB,DE∥AC,AF=EF=DE=AD,AE⊥DF,∴,,,,,∴CF=EF,DE=DB,,,∴DF∥BC,,,,,,,即,,故C正確.故選:C.【考點】本題主要考查了菱形的性質(zhì),中位線的性質(zhì),等腰三角形的性質(zhì)和判斷,平行線的性質(zhì),菱形的面積,三角形面積的計算,根據(jù)菱形的性質(zhì)和等腰三角形的性質(zhì)得出DF為△ABC的中位線,是解題的關(guān)鍵.2、A【解析】【分析】將x2-x看作一個整體,然后利用因式分解法解方程求出x2-x的值,再整體代入進行求解即可.【詳解】∵(x2﹣x)2﹣4(x2﹣x)﹣12=0,∴(x2﹣x+2)(x2﹣x﹣6)=0,∴x2﹣x+2=0或x2﹣x﹣6=0,∴x2﹣x=﹣2或x2﹣x=6;當(dāng)x2﹣x=﹣2時,x2﹣x+2=0,∵b2﹣4ac=1﹣4×1×2=﹣7<0,∴此方程無實數(shù)解;當(dāng)x2﹣x=6時,x2﹣x+1=7,故選A.【考點】本題考查了用因式分解法解一元二次方程,解本題的關(guān)鍵是把x2-x看成一個整體.3、D【解析】【分析】根據(jù)新定義可得方程(x+1)(2x-3)=x(x-1),然后再整理可得x2=3,再利用直接開平方法解方程即可.【詳解】解:由題意得:(x+1)(2x-3)=x(x-1),整理得:x2=3,兩邊直接開平方得:x=±,故選:D.【考點】此題主要考查了新定義,一元二次方程的解法--直接開平方法,關(guān)鍵是正確理解題意,列出方程.4、B【解析】【分析】根據(jù)方程的系數(shù)結(jié)合根的判別式,即可得出△=12>0,進而即可得出方程2x2-2x-1=0有兩個不相等的實數(shù)根.【詳解】∵a=2,b=-2,c=-1,∴△=b2-4ac=(-2)2-4×2×(-1)=12>0,∴方程有兩個不相等的實數(shù)根.故選B.【考點】本題考查了根的判別式,牢記“當(dāng)Δ>0時,方程有兩個不相等的實數(shù)根”是解題的關(guān)鍵.5、A【解析】【分析】根據(jù)配方法步驟解題即可.【詳解】解:移項得,配方得,即,∴a=-4,b=21.故選:A【考點】本題考查了配方法解一元二次方程,解題關(guān)鍵是配方:在二次項系數(shù)為1時,方程兩邊同時加上一次項系數(shù)一半的平方.6、A【解析】【分析】根據(jù)平行四邊形、矩形、菱形、正方形的性質(zhì),對各個選項逐個分析,即可得到答案.【詳解】∵平行四邊形、矩形、菱形、正方形的對角線互相平分∴選項A正確;∵菱形的對角線不相等∴選項B錯誤;∵矩形的對角線不相互垂直∴選項C和D錯誤;故選:A.【考點】本題考查了平行四邊形、矩形、菱形、正方形的知識;解題的關(guān)鍵是熟練掌握平行四邊形、矩形、菱形、正方形的性質(zhì),從而完成求解.7、D【解析】【分析】先把x2+2x=5(x﹣2)化簡,然后根據(jù)一元二次方程的一般形式即可得到a、b、c的值.【詳解】解:x2+2x=5(x﹣2),x2+2x=5x﹣10,x2+2x﹣5x+10=0,x2﹣3x+10=0,則a=1,b=﹣3,c=10,故選:D.【考點】此題主要考查了一元二次方程化為一般形式,熟練掌握一元二次方程的一般形式是解題的關(guān)鍵.二、多選題1、AD【解析】【分析】利用方程根的定義去驗證判斷即可.【詳解】∵,,∴,∴,,∴,,∵是方程的一個根,∴是方程的一個根,∴是方程的一個根,即時方程的一個根.∵是方程的一個根,∴,當(dāng)x=時,,∴是方程的根.故選:A,D.【考點】本題考查了一元二次方程根的定義即使得方程兩邊相等的未知數(shù)的值,正確理解定義是解題的關(guān)鍵.2、ABC【解析】【分析】根據(jù)正方形的性質(zhì)得出AB=AD=DC=6,∠B=D=90°,求出DE=2,AF=AB,根據(jù)HL推出Rt△ABG≌Rt△AFG,推出BG=FG,∠AGB=∠AGF,設(shè)BG=x,則CG=BC﹣BG=6﹣x,GE=GF+EF=BG+DE=x+2,在Rt△ECG中,由勾股定理得出(6﹣x)2+42=(x+2)2,求出x=3,得出BG=GF=CG,求出∠AGB=∠FCG,再根據(jù)等角的余角相等即可證得∠BAG=∠FCE,根據(jù)GF=3,EF=2可得GF=GE,進而S△FGC=S△GCE=,由此即可求得答案.【詳解】解:∵四邊形ABCD是正方形,∴AB=AD=DC=6,∠B=D=90°.∵CD=3DE,∴DE=2,CE=4.∵△ADE沿AE折疊得到△AFE,∴DE=EF=2,AD=AF,∠D=∠AFE=∠AFG=90°,∴AF=AB.∵在Rt△ABG和Rt△AFG中,,∴Rt△ABG≌Rt△AFG(HL),故A選項正確;∴BG=FG,∠AGB=∠AGF,設(shè)BG=x,則CG=BC﹣BG=6﹣x,GE=GF+EF=BG+DE=x+2.在Rt△ECG中,由勾股定理得:CG2+CE2=EG2.∵CG=6﹣x,CE=4,EG=x+2,∴(6﹣x)2+42=(x+2)2,解得:x=3,∴BG=GF=CG=3,故B選項正確;∵CG=GF,∴∠CFG=∠FCG,∵∠BGF=∠CFG+∠FCG,又∵∠BGF=∠AGB+∠AGF,∴∠CFG+∠FCG=∠AGB+∠AGF,∵∠AGB=∠AGF,∠CFG=∠FCG,∴∠AGB=∠FCG,∵∠B=∠BCD=90°,∴∠BAG+∠AGB=∠FCE+∠FCG=90°,∴∠BAG=∠FCE,故C選項正確;∵GF=3,EF=2,∴GF=GE,∴S△FGC=S△GCE=×CG·CE=××3×4=,故D選項錯誤,故選:ABC.【考點】本題考查了翻折變換,正方形性質(zhì),全等三角形的性質(zhì)和判定,等腰三角形的性質(zhì)和判定,勾股定理等知識點的運用,依據(jù)翻折的性質(zhì)找出其中對應(yīng)相等的線段和對應(yīng)相等的角是解題的關(guān)鍵.3、ABC【解析】【分析】由∠DBP+∠BPO=90°,∠APE+∠BPO=90°,可判斷結(jié)論A正確;過P作PK⊥AD于K,PT⊥AB于T,證明△PKE≌△PTB(ASA),可判定結(jié)論B正確;延長KP交BC于M,可得△CPM是等腰直角三角形,CP=PM=CP=1,即可得AE=AD-DK-KE=4,判斷結(jié)論C正確;在Rt△BPM中,BP=,可得S△PBE=BP?PE=13,可判斷結(jié)論D錯誤.【詳解】解:∵四邊形ABCD是正方形,∴∠BOP=90°,∴∠DBP+∠BPO=90°,∵PE⊥PB,∴∠APE+∠BPO=90°,∴∠APE=∠DBP,故結(jié)論A正確;過P作PK⊥AD于K,PT⊥AB于T,如圖:∵四邊形ABCD是正方形,∴∠DAC=∠BAC,又PK⊥AD,PT⊥AB∴PK=PT,∵∠KPT=90°=∠EPB,∴∠KPE=∠BPT,∵∠PKE=90°=∠PTB,∴△PKE≌△PTB(ASA),∴PE=PB,故結(jié)論B正確;延長KP交BC于M,如圖:∵四邊形ABCD是正方形,∴AD∥BC,∠ACB=45°,∴PM⊥BC,∴△CPM是等腰直角三角形,∴CP=PM=CP=1,∴DK=CM=1,KE=PM=1,∴AE=AD-DK-KE=4,故結(jié)論C正確;∵BC=6,CM=1,∴BM=5,在Rt△BPM中,BP==,∴PE=BP=,∴S△PBE=BP?PE=13,故結(jié)論D錯誤,故選:ABC.【考點】本題考查正方形的性質(zhì)及應(yīng)用,涉及全等三角形的判定與性質(zhì),等腰直角三角形的性質(zhì)及應(yīng)用等知識,解題的關(guān)鍵是作輔助線,證明△PKE≌△PTB.三、填空題1、白球【解析】【分析】利用頻率估計概率的知識,確定摸出黑球的概率,由此得到答案.【詳解】解:由圖可知:摸出黑球的頻率是0.2,根據(jù)頻率估計概率的知識可得,摸一次摸到黑球的概率為0.2,∴可以推斷盒子里個數(shù)比較多的是白球,故答案為:白球.【考點】此題考查利用頻率估計概率,正確理解圖象的意義是解題的關(guān)鍵.2、##0.5【解析】【分析】畫樹狀圖,共有20個等可能的結(jié)果,兩顆球的標號之和不小于4的結(jié)果有10個,再由概率公式求解即可.【詳解】畫樹狀圖如圖:共有20個等可能的結(jié)果,兩顆球的標號之和不小于4的結(jié)果有10個,兩顆球的標號之和不小于4的概率為,故答案為:.【考點】本題考查了列表法與樹狀圖法以及概率公式,正確畫出樹狀圖是解題的關(guān)鍵.3、4【解析】【分析】由,,可求,,由折疊可知,得出,為的直角三角形;由可知,,,由折疊的性質(zhì)得,等量代換后判斷為等邊三角形,即可得出答案.【詳解】解:在中,∵∴,,∵,∴,由折疊的性質(zhì)得,∴,∴為等邊三角形,由折疊可知:BE=DE,∵,∴,∵AD=6,∴DE=BE=4,故.故答案為:4.【考點】本題考查圖形的翻折變換,解題過程中應(yīng)注意折疊是一種對稱變換,它屬于軸對稱,根據(jù)軸對稱的性質(zhì),折疊前后圖形的形狀和大小不變,如本題中折疊前后角相等.4、或2【解析】【分析】根據(jù)新定義的運算得到,整理并求解一元二次方程即可.【詳解】解:根據(jù)新定義內(nèi)容可得:,整理可得,解得,,故答案為:或2.【考點】本題考查新定義運算、解一元二次方程,根據(jù)題意理解新定義運算是解題的關(guān)鍵.5、

【解析】【分析】由角平分線的性質(zhì)與平行線的性質(zhì),可得∠EAD=∠DAF=∠ADE,進而可得AE=DE,由菱形的判定方法即可得答案,由前面的條件下和正方形的判定方法:有一個角是直角的菱形是正方形即可得問題答案.【詳解】根據(jù)題意,,,則四邊形AEDF是平行四邊形,又∵AD是△ABC的角平分線,∴∠EAD=∠DAF=∠ADE,則AE=DE,即四邊形AEDF是菱形;∵四邊形AEDF是菱形;∴當(dāng)時,四邊形AEDF是正方形,故答案為菱,.【考點】本題主要考查菱形的判定與性質(zhì),正方形的判定,解此題的關(guān)鍵在于熟練掌握其知識點.6、且【解析】【分析】若一元二次方程有兩個不相等的實數(shù)根,則△=b2-4ac>0,建立關(guān)于k的不等式,求得k的取值范圍,還要使二次項系數(shù)不為0.【詳解】∵方程有兩個不相等的實數(shù)根,∴解得:,又二次項系數(shù)故答案為且【考點】考查一元二次方程根的判別式,當(dāng)時,方程有兩個不相等的實數(shù)根.當(dāng)時,方程有兩個相等的實數(shù)根.當(dāng)時,方程沒有實數(shù)根.7、2或【解析】【分析】分當(dāng)時和當(dāng)時兩種情況討論求解即可.【詳解】解:如圖1所示,當(dāng)時,取CD中點H,連接,∴,∵四邊形ABCD是菱形,E為AB中點,∴,∠A=180°-∠B=60°,,由折疊的性質(zhì)可知,,∴,連接EH,∵,∴四邊形AEHD是平行四邊形,∴,,∵由三角形三邊的關(guān)系可知,當(dāng)點不在線段EH上時,必有,這與矛盾,∴E、、H三點共線,∴,∴△AEF為等邊三角形,∴;如圖2所示,當(dāng)時,連接BD,ED,過點F作FG⊥AB于G,∵∠ABC=120°,四邊形ABCD是菱形,∴AB=AD,∠A=60°,∴△ABD是等邊三角形,∵E是AB中點,∴DE⊥AB,∴∠ADE=30°,∴∠EDC=90°,∴此時三點共線,由翻折的性質(zhì)可得,∵FG⊥AE,∠A=60°,∠AEF=45°,∴∠AFG=30°,∠GFE=45°,∴AF=2AG,EG=FG,∴,∵,∴,∴,故答案為:2或.【考點】本題主要考查了菱形的性質(zhì),等邊三角形的性質(zhì)與判定,折疊的性質(zhì),三角形三邊的關(guān)系,含30度角的直角三角形的性質(zhì),平行四邊形的性質(zhì)與判定,直角三角形斜邊上的中線等等,利用分類討論的思想求解是解題的關(guān)鍵.8、或【解析】【分析】先利用正方形的性質(zhì),利用旋轉(zhuǎn)畫出正方形OEFG,從而得到G點的坐標.【詳解】把EO繞E點順時針(或逆時針)旋轉(zhuǎn)90°得到對應(yīng)點為G(或G′),如圖,則G點的坐標為(2,-3)或G′的坐標為(﹣2,3),【考點】本題考查坐標與圖形的變換,涉及旋轉(zhuǎn)、正方形的性質(zhì)等知識,是重要考點,難度較易,掌握相關(guān)知識是解題關(guān)鍵.9、2020【解析】【分析】根據(jù)一元二次方程的解結(jié)合根與系數(shù)的關(guān)系即可得出m2+2m=2022,m+n=?2,將其代入m2+3m+n=m2+2m+(m+n)中即可求出結(jié)論.【詳解】解:∵m,n分別為一元二次方程x2+2x?2022=0的兩個實數(shù)根,∴m2+2m=2022,m+n=?2,∴m2+3m+n=m2+2m+(m+n)=2022+(?2)=2020.故答案為:2020.【考點】本題考查了根與系數(shù)的關(guān)系以及一元二次方程的解,根據(jù)一元二次方程的解結(jié)合根與系數(shù)的關(guān)系得出m2+2m=2022,m+n=?2是解題的關(guān)鍵.10、【解析】【分析】(1)此題需要兩步完成,所以采用樹狀圖法或者采用列表法都比較簡單;使用樹狀圖分析時,一定要做到不重不漏.(2)根據(jù)概率的求法,找準兩點:第一點,全部情況的總數(shù);第二點,符合條件的情況數(shù)目;二者的比值就是其發(fā)生的概率.【詳解】(1)根據(jù)題意,畫樹狀圖如下:數(shù)字之和為

8,9,10,9,10,11,10,11,12由樹狀圖可知,共有9種可能的結(jié)果.(2)共有9種可能的結(jié)果,其中兩次抽出數(shù)字之和為奇數(shù)(記為事件A)的情況有4種,P(A)=故答案為:【考點】此題考查用列表法或樹狀圖法求概率,概率的求法:如果一個事件有n種可能,而且這些事件的可能性相同,其中事件A出現(xiàn)m種結(jié)果那么事件A的概率P(A)=四、解答題1、(1)m的值為1或-2(2)-2<m<1(3)m=或m=【解析】【分析】(1)把x=-1代入方程,列出m的一元二次方程,求出m的值;(2)首先用m表示出方程的兩根,然后列出m的不等式組,求出m的取值范圍;(3)首先用m表示出方程的兩根,分直角△ABC的斜邊長為7或2m+3,根據(jù)勾股定理求出m的值.(1)解:∵x1,x2是一元二次方程x2-4mx+4m2-9=0的兩實數(shù)根,這個方程有一個根為-1,∴將x=-1代入方程x2-4mx+4m2-9=0,得1+4m+4m2-9=0.解得m=1或m=-2.∴m的值為1或-2.(2)解:∵x2-4mx+4m2=9,∴(x-2m)2=9,即x-2m=±3.∴x1=2m+3,x2=2m-3.∵2m+3>2m-3,∴解得-2<m<1.∴m的取值范圍是-2<m<1.(3)解:由(2)可知方程x2-4mx+4m2-9=0的兩根分別為2m+3,2m-3.若Rt△ABC的斜邊長為7,則有49=(2m+3)2+(2m-3)2.解得m=±.∵邊長必須是正數(shù),∴m=.2、(1)5(2)(3)①;②或【解析】【分析】(1)在Rt△AOH中利用勾股定理即可求得菱形的邊長;(2)根據(jù)(1)即可求的OC的長,則C的坐標即可求得,利用待定系數(shù)法即可求得直線AC的解析式;(3)①根據(jù)S△ABC=S△AMB+SBMC求得M到直線BC的距離為h,然后分成P在AB上和在BC上兩種情況討論,利用三角形的面積公式求解.②將S=2代入①中的函數(shù)解析式求得相應(yīng)的t的值.(1)解:點的坐標為,在Rt△AOH中,故答案為:5;(2)∵四邊形ABCO是菱形,∴OC=OA=AB=5,即C(5,0).設(shè)直線AC的解析式y(tǒng)=kx+b,函數(shù)圖像過點A、C,得,解得,直線AC的解析式為,(3)由,令,,則,則,①當(dāng)0<t<時,BP=BA-AP=5-3t,HM=OH-OM=,,,②設(shè)M到直線BC的距離為h,S△ABC=S△AMB+SBMC,,解得,當(dāng)時,,,,當(dāng)時,代入,解得,代入,解得,綜上所述或.【考點】本題考查一次函數(shù)綜合題、待定系數(shù)法、勾股定理、三角形的面積、一元一次方程等知識,解題的關(guān)鍵是熟練掌握待定系數(shù)法確定函數(shù)解析式,學(xué)會用分類討論的思想思考問題,學(xué)會構(gòu)建方程解決問題.3、(1)見解析(2)S四邊形BCMN=4-8【解析】【分析】(1)利用矩形的對邊平行和四個角都是直角的性質(zhì)得到兩對相等的角,利用AAS證得兩三角形全等即可;(2)利用全等三角形的性質(zhì)求得AD=BN=2,AN=4,從而利用勾股定理求得AB的長,利用S四邊形BCMN=S矩形ABCD-S△ABN-S△MAD求得答案即可.(1)證明:在矩形ABCD中,∠D=90°,DC∥AB,∴∠BAN=∠AMD.∵BN⊥AM,∴∠BNA=90°,在△ABN與△MAD中,,∴△ABN≌△MAD(AAS).(2)解:∵△ABN≌△MAD,∴BN=AD.∵AD=2,∴BN=2.又∵AN=4,∴在Rt△ABN中,由勾股定理,得AB=2.∴S矩形ABCD=2×2=4.又∵S△ABN=S△MAD=×2×4=4.∴S四邊形BCMN=S矩形ABCD-S△ABN-S△MAD=4-8.【考點】本題考查了矩形的性質(zhì)及全等三角形的判定,了解矩形的對邊平行且相等,四個角都是直角,對角線相等且互相平分是解答本題的關(guān)鍵,難度不大.4、(1)x1=,x2=(2)x1=4+,x2=4-【解析】【分析】(1

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

最新文檔

評論

0/150

提交評論