版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報或認(rèn)領(lǐng)
文檔簡介
人教版8年級數(shù)學(xué)下冊《平行四邊形》同步訓(xùn)練考試時間:90分鐘;命題人:教研組考生注意:1、本卷分第I卷(選擇題)和第Ⅱ卷(非選擇題)兩部分,滿分100分,考試時間90分鐘2、答卷前,考生務(wù)必用0.5毫米黑色簽字筆將自己的姓名、班級填寫在試卷規(guī)定位置上3、答案必須寫在試卷各個題目指定區(qū)域內(nèi)相應(yīng)的位置,如需改動,先劃掉原來的答案,然后再寫上新的答案;不準(zhǔn)使用涂改液、膠帶紙、修正帶,不按以上要求作答的答案無效。第I卷(選擇題20分)一、單選題(5小題,每小題4分,共計20分)1、已知,四邊形ABCD的對角線AC和BD相交于點O.設(shè)有以下條件:①AB=AD;②AC=BD;③AO=CO,BO=DO;④四邊形ABCD是矩形;⑤四邊形ABCD是菱形;⑥四邊形ABCD是正方形.那么,下列推理不成立的是()A.①④?⑥ B.①③?⑤ C.①②?⑥ D.②③?④2、如圖,四邊形ABCD為平行四邊形,延長AD到E,使DE=AD,連接EB,EC,DB,添加一個條件,不能使四邊形DBCE成為矩形的是()A.AB=BE B.DE⊥DC C.∠ADB=90° D.CE⊥DE3、如圖,的對角線交于點O,E是CD的中點,若,則的值為()A.2 B.4 C.8 D.164、如圖,在△ABC中,∠ABC=90°,AC=18,BC=14,D,E分別是AB,AC的中點,連接DE,BE,點M在CB的延長線上,連接DM,若∠MDB=∠A,則四邊形DMBE的周長為()A.16 B.24 C.32 D.405、如圖,在?ABCD中,AD=2AB,F(xiàn)是AD的中點,作CE⊥AB于E,在線段AB上,連接EF、CF.則下列結(jié)論:①∠BCD=2∠DCF;②∠ECF=∠CEF;③S△BEC=2S△CEF;④∠DFE=3∠AEF,其中一定正確的是(
)A.②④ B.①②④
C.①②③④
D.②③④第Ⅱ卷(非選擇題80分)二、填空題(5小題,每小題6分,共計30分)1、能使平行四邊形ABCD為正方形的條件是___________(填上一個符合題目要求的條件即可).2、如圖,點E,F(xiàn)在正方形ABCD的對角線AC上,AC=10,AE=CF=3,則四邊形BFDE的面積為_____.3、如圖,M,N分別是矩形ABCD的邊AD,AB上的點,將矩形ABCD沿MN折疊,使點A恰好落在邊BC上的點E處,連接MC,若AB=8,AD=16,BE=4,則MC的長為________.4、如圖所示,正方形ABCD的面積為6,△CDE是等邊三角形,點E在正方形ABCD內(nèi),在對角線BD上有一動點K,則KA+KE的最小值為_____________.5、如圖,在邊長為1的菱形ABCD中,∠ABC=60°,將△ABD沿射線BD的方向平移得到△A'B'D',分別連接A'C,A'D,B'C,則A'C+B'C的最小值為_____.三、解答題(5小題,每小題10分,共計50分)1、已知:在中,點、點、點分別是、、的中點,連接、.(1)如圖1,若,求證:四邊形為菱形;(2)如圖2,過作交延長線于點,連接,,在不添加任何輔助線的情況下,請直接寫出圖中所有與面積相等的平行四邊形.
2、已知:如圖,在四邊形中,,.求證:(1)BECD;(2)四邊形是矩形.3、如圖,∠ACB=90°,CD⊥AB于點D,AF平分∠CAB交CD于點E,交BC于點F,作EG∥AB交CB于點G.(1)求證:△CEF是等腰三角形;(2)求證:CF=BG;(3)若F是CG的中點,EF=1,求AB的長.4、如圖,在Rt△ABC中,∠ACB=90°.
(1)作AB的垂直平分線l,交AB于點D,連接CD,分別作∠ADC,∠BDC的平分線,交AC,BC于點E,F(xiàn)(尺規(guī)作圖,不寫作法,保作圖痕跡);(2)求證:四邊形CEDF是矩形.5、如圖,已知△ACB中,∠ACB=90°,E是AB的中點,連接EC,過點A作AD∥EC,過點C作CD∥EA,AD與CD交于點D.(1)求證:四邊形ADCE是菱形;(2)若AB=8,∠DAE=60°,則△ACB的面積為(直接填空).-參考答案-一、單選題1、C【解析】【分析】根據(jù)已知條件以及正方形、菱形、矩形、平行四邊形的判定條件,對選項進(jìn)行分析判斷即可.【詳解】解:A、①④可以說明,一組鄰邊相等的矩形是正方形,故A正確.B、③可以說明四邊形是平行四邊形,再由①,一組臨邊相等的平行四邊形是菱形,故B正確.C、①②,只能說明兩組鄰邊分別相等,可能是菱形,但菱形不一定是正方形,故C錯誤.D、③可以說明四邊形是平行四邊形,再由②可得:對角線相等的平行四邊形為矩形,故D正確.故選:C.【點睛】本題主要是考查了特殊四邊形的判定,熟練掌握各類四邊形的判定條件,是解決本題的關(guān)鍵.2、B【解析】【分析】先證明四邊形BCED為平行四邊形,再根據(jù)矩形的判定進(jìn)行解答.【詳解】解:∵四邊形ABCD為平行四邊形,∴AD∥BC,且AD=BC,又∵AD=DE,∴DE∥BC,且DE=BC,∴四邊形BCED為平行四邊形,A、∵AB=BE,DE=AD,∴BD⊥AE,∴□DBCE為矩形,故本選項不符合題意;B、∵DE⊥DC,∴∠EDB=90°+∠CDB>90°,∴四邊形DBCE不能為矩形,故本選項符合題意;C、∵∠ADB=90°,∴∠EDB=90°,∴□DBCE為矩形,故本選項不符合題意;D、∵CE⊥DE,∴∠CED=90°,∴□DBCE為矩形,故本選項不符合題意.故選:B.【點睛】本題考查了平行四邊形的判定和性質(zhì)、矩形的判定等知識,判定四邊形BCED為平行四邊形是解題的關(guān)鍵.3、B【解析】【分析】根據(jù)平行四邊形的性質(zhì)可得,S△BOC=S△AOD=S△COD=S△AOB=8,再根據(jù)三角形的中線平分三角形的面積可得根據(jù)三角形的中線平分三角形的面積可得S△DOE=4,進(jìn)而可得答案.【詳解】解:∵四邊形ABCD是平行四邊形,,∴S△BOC=S△AOD=S△COD=S△AOB=8,∵點E是CD的中點,∴S△DOE=S△COD=4,故選:B.【點睛】此題主要考查了平行四邊形的性質(zhì),以及三角形中線的性質(zhì),掌握平行四邊形的性質(zhì),三角形的中線平分三角形的面積是解答本題的關(guān)鍵.4、C【解析】【分析】由中點的定義可得AE=CE,AD=BD,根據(jù)三角形中位線的性質(zhì)可得DE//BC,DE=BC,根據(jù)平行線的性質(zhì)可得∠ADE=∠ABC=90°,利用ASA可證明△MBD≌△EDA,可得MD=AE,DE=MB,即可證明四邊形DMBE是平行四邊形,可得MD=BE,進(jìn)而可得四邊形DMBE的周長為2DE+2MD=BC+AC,即可得答案.【詳解】∵D,E分別是AB,AC的中點,∴AE=CE,AD=BD,DE為△ABC的中位線,∴DE//BC,DE=BC,∵∠ABC=90°,∴∠ADE=∠ABC=90°,在△MBD和△EDA中,,∴△MBD≌△EDA,∴MD=AE,DE=MB,∵DE//MB,∴四邊形DMBE是平行四邊形,∴MD=BE,∵AC=18,BC=14,∴四邊形DMBE的周長=2DE+2MD=BC+AC=18+14=32.故選:C.【點睛】本題考查全等三角形的判定與性質(zhì)、三角形中位線的性質(zhì)及平行四邊形的判定與性質(zhì),三角形中位線平行于第三邊且等于第三邊的一半;有一組對邊平行且相等的四邊形是平行四邊形;熟練掌握相關(guān)性質(zhì)及判定定理是解題關(guān)鍵.5、B【解析】【分析】根據(jù)易得DF=CD,由平行四邊形的性質(zhì)AD∥BC即可對①作出判斷;延長EF,交CD延長線于M,可證明△AEF≌△DMF,可得EF=FM,由直角三角形斜邊上中線的性質(zhì)即可對②作出判斷;由△AEF≌△DMF可得這兩個三角形的面積相等,再由MC>BE易得S△BEC<2S△EFC,從而③是錯誤的;設(shè)∠FEC=x,由已知及三角形內(nèi)角和可分別計算出∠DFE及∠AEF,從而可判斷④正確與否.【詳解】①∵F是AD的中點,∴AF=FD,∵在?ABCD中,AD=2AB,∴AF=FD=CD,∴∠DFC=∠DCF,∵AD∥BC,∴∠DFC=∠FCB,∴∠DCF=∠BCF,∴∠BCD=2∠DCF,故①正確;②延長EF,交CD延長線于M,∵四邊形ABCD是平行四邊形,∴AB∥CD,∴∠A=∠MDF,∵F為AD中點,∴AF=FD,在△AEF和△DFM中,,∴△AEF≌△DMF(ASA),∴FE=MF,∠AEF=∠M,∵CE⊥AB,∴∠AEC=90°,∴∠AEC=∠ECD=90°,∵FM=EF,∴FC=FE,∴∠ECF=∠CEF,故②正確;③∵EF=FM,∴S△EFC=S△CFM,∵M(jìn)C>BE,,∴S△BEC<2S△EFC,故S△BEC=2S△CEF,故③錯誤;④設(shè)∠FEC=x,則∠FCE=x,∴∠DCF=∠DFC=90°﹣x,∴∠EFC=180°﹣2x,∴∠EFD=90°﹣x+180°﹣2x=270°﹣3x,∵∠AEF=90°﹣x,∴∠DFE=3∠AEF,故④正確,故選:B.【點睛】本題考查了平行四邊形的性質(zhì),全等三角形的判定與性質(zhì),直角三角形斜邊上中線的性質(zhì),三角形的面積等知識,構(gòu)造輔助線證明三角形全等是本題的關(guān)鍵和難點.二、填空題1、AC=BD且AC⊥BD(答案不唯一)【解析】【分析】根據(jù)正方形的判定定理,即可求解.【詳解】解:當(dāng)AC=BD時,平行四邊形ABCD為菱形,又由AC⊥BD,可得菱形ABCD為正方形,所以當(dāng)AC=BD且AC⊥BD時,平行四邊形ABCD為正方形.故答案為:AC=BD且AC⊥BD(答案不唯一)【點睛】本題主要考查了正方形的判定,熟練掌握正方形的判定定理是解題的關(guān)鍵.2、20【解析】【分析】連接BD,交AC于O,根據(jù)題意和正方形的性質(zhì)可求得EF=4,AC⊥BD,由即可求解.【詳解】解:如圖,連接BD,交AC于O,∵四邊形ABCD是正方形,AC=10,∴AC=BD=10,AC⊥BD,OA=OC=OB=OD=5,∵AE=CF=3,∴EO=FO=2,∴EF=EO+FO=4,∴故答案為:20.【點睛】本題主要考查了正方形的性質(zhì),熟練掌握正方形的對角線相等且互相垂直平分是解題的關(guān)鍵.3、10【解析】【分析】過E作EF⊥AD于F,根據(jù)矩形ABCD沿MN折疊,使點A恰好落在邊BC上的點E處,得出△ANM≌△ENM,可得AM=EM,根據(jù)矩形ABCD,得出∠B=∠A=∠D=90°,再證四邊形ABEF為矩形,得出AF=BE=4,F(xiàn)E=AB=8,設(shè)AM=EM=m,F(xiàn)M=m-4,根據(jù)勾股定理,即,解方程m=10即可.【詳解】解:過E作EF⊥AD于F,∵矩形ABCD沿MN折疊,使點A恰好落在邊BC上的點E處,∴△ANM≌△ENM,∴AM=EM,∵矩形ABCD,∴∠B=∠A=∠D=90°,∵FE⊥AD,∴∠AFE=∠B=∠A=90°,∴四邊形ABEF為矩形,∴AF=BE=4,F(xiàn)E=AB=8,設(shè)AM=EM=m,F(xiàn)M=m-4在Rt△FEM中,根據(jù)勾股定理,即,解得m=10,∴MD=AD-AM=16-10=6,在Rt△MDC中,∴MC=.故答案為10.【點睛】本題考查折疊軸對稱性質(zhì),矩形判定與性質(zhì),勾股定理,掌握折疊軸對稱性質(zhì),矩形判定與性質(zhì),勾股定理是解題關(guān)鍵.4、【解析】【分析】根據(jù)正方形的性質(zhì)可知C、A關(guān)于BD對稱,推出CK=AK,推出EK+AK≥CE,根據(jù)等邊三角形性質(zhì)推出CE=CD,根據(jù)正方形面積公式求出CD即可.【詳解】解:∵四邊形ABCD是正方形,∴C、A關(guān)于BD對稱,即C關(guān)于BD的對稱點是A,如圖,連接CK,則CK=AK,∴EK+CK≥CE,∵△CDE是等邊三角形,∴CE=CD,∵正方形ABCD的面積為6,∴CD=,∴KA+KE的最小值為,故答案為:.【點睛】本題考查了正方形的性質(zhì),軸對稱-最短路徑問題,等邊三角形的性質(zhì)等知識點的應(yīng)用,解此題的關(guān)鍵是確定K的位置和求出KA+KE的最小值是CE.5、【解析】【分析】根據(jù)菱形的性質(zhì)得到AB=1,∠ABD=30°,根據(jù)平移的性質(zhì)得到A′B′=AB=1,A′B′∥AB,推出四邊形A′B′CD是平行四邊形,得到A′D=B′C,于是得到A'C+B'C的最小值=A′C+A′D的最小值,根據(jù)平移的性質(zhì)得到點A′在過點A且平行于BD的定直線上,作點D關(guān)于定直線的對稱點E,連接CE交定直線于A′,則CE的長度即為A'C+B'C的最小值,求得DE=CD,得到∠E=∠DCE=30°,于是得到結(jié)論.【詳解】解:∵在邊長為1的菱形ABCD中,∠ABC=60°,∴AB=CD=1,∠ABD=30°,∵將△ABD沿射線BD的方向平移得到△A'B'D',∴A′B′=AB=1,A′B′∥AB,∵四邊形ABCD是菱形,∴AB=CD,AB∥CD,∴∠BAD=120°,∴A′B′=CD,A′B′∥CD,∴四邊形A′B′CD是平行四邊形,∴A′D=B′C,∴A'C+B'C的最小值=A′C+A′D的最小值,∵點A′在過點A且平行于BD的定直線上,∴作點D關(guān)于定直線的對稱點E,連接CE交定直線于A′,則CE的長度即為A'C+B'C的最小值,∵∠A′AD=∠ADB=30°,AD=1,∴∠ADE=60°,DH=EH=AD=,∴DE=1,∴DE=CD,∵∠CDE=∠EDB′+∠CDB=90°+30°=120°,∴∠E=∠DCE=30°,如圖,過點D作DH⊥EC于H,∴,,∴,∴CE=2CH=,故答案為:.【點睛】本題考查了軸對稱-最短路線問題,菱形的性質(zhì),平行四邊形的判定和性質(zhì),含30度角的直角三角形的性質(zhì),平移的性質(zhì),正確地理解題意是解題的關(guān)鍵.三、解答題1、(1)證明見詳解;(2)與面積相等的平行四邊形有、、、.【分析】(1)根據(jù)三角形中位線定理可得:,,,,依據(jù)平行四邊形的判定定理可得四邊形DECF為平行四邊形,再由,可得,依據(jù)菱形的判定定理即可證明;(2)根據(jù)三角形中位線定理及平行四邊形的判定定理可得四邊形DEFB、DECF、ADFE是平行四邊形,根據(jù)平行四邊形的性質(zhì)得出與各平行四邊形面積之間的關(guān)系,再根據(jù)平行四邊形的判定得出四邊形EGCF是平行四邊形,根據(jù)其性質(zhì)得到,根據(jù)等底同高可得,據(jù)此即可得出與面積相等的平行四邊形.【詳解】解:(1)∵D、E、F分別是AB、AC、BC的中點,∴,,,,∴四邊形DECF為平行四邊形,∵,,∴四邊形DECF為菱形;(2)∵D、E、F分別是AB、AC、BC的中點,∴,,,,,,且,,,∴四邊形DEFB、DECF、ADFE是平行四邊形,∴,∵,,∴四邊形EGCF是平行四邊形,∴,∴,∴∴與面積相等的平行四邊形有、、、.【點睛】題目主要考查菱形及平行四邊形的判定定理和性質(zhì),中位線的性質(zhì)等,熟練掌握平行四邊形及菱形的判定定理及性質(zhì)是解題關(guān)鍵.2、(1)見詳解;(2)見詳解【分析】(1)根據(jù)平行四邊形的判定定理得四邊形是平行四邊形,進(jìn)而即可得到結(jié)論;(2)先推出∠EBC=∠DCB,進(jìn)而可得∠EBC=∠DCB=90°,然后得到結(jié)論.【詳解】(1)證明:∵,∴BE=CD,∵,∴四邊形是平行四邊形,∴BECD;(2)∵,∴AB=AC,∠ABE=∠ACD,∴∠ABC=∠ACB,∴∠ABE+∠ABC=∠ACD+∠ACB,即:∠EBC=∠DCB,∵BE∥CD,∴∠EBC+∠DCB=180°,∴∠EBC=∠DCB=90°,∴四邊形是矩形.【點睛】本題主要考查平行四邊形的判定和性質(zhì),矩形的判定定理,全等三角形的性質(zhì),熟練掌握矩形的判定定理是關(guān)鍵.3、(1)見解析;(2)見解析;(3)【分析】(1)由余角的性質(zhì)可得∠3=∠7=∠4,可得CE=CF,可得△CEF為等腰三角形;
(2)過E作EM∥BC交AB于M,得出平行四邊形EMBG,推出BG=EM,由“AAS”可證△CAE≌△MAE,推出CE=EM,由三角形的面積關(guān)系可求GB的長;
(3)證明△CEF是等邊三角形,求出BC,可得結(jié)論.【詳解】(1)證明:過E作EM∥BC交AB于M,∵EG∥AB,∴四邊形EMBG是平行四邊形,∴BG=EM,∠B=∠EMD,∵CD⊥AB,∴∠ADC=∠ACB=90°,∴∠1+∠7=90°,∠2+∠3=90°,∵AE平分∠CAB,∴∠1=∠2,∵∠3=∠4,∴∠4=∠7,∴CE=CF,∴△CEF是等腰三角形;(2)證明:過E作EM∥BC交AB于M,則四邊形EMBG是平行四邊形,∴BG=EM,∵∠ADC=∠ACB=90°,∴∠CAD+∠B=90°,∠CAD+∠ACD=90°,∴∠ACD=∠B=∠EMD,∵在△CAE和△MAE中,∴△CAE≌△MAE(AAS),∴CE=EM,∵CE=CF,EM=BG,∴CF=BG.(3)∵CD⊥AB,EG∥AB,∴EG⊥CD,∴∠CEG=90°,∵CF=FG,∴EF=CF=FG,∵CE=CF,∴CE=CF=EF=1,∴△CEF是等邊三角形,∴∠ECF=60°,∴BC=3,∠B=30°,∴∴Rt△ABC中∴解得.【點睛】本題考查了平行四邊形的性質(zhì)和判定,三角形的內(nèi)角和定理,全等三角形的性質(zhì)和判定,等腰三角形的性質(zhì)和判定等知識點,主要考查學(xué)生綜合
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 2026年投資項目管理師之投資建設(shè)項目實施考試題庫200道附參考答案(完整版)
- 2026年設(shè)備監(jiān)理師之設(shè)備工程監(jiān)理基礎(chǔ)及相關(guān)知識考試題庫200道附答案(完整版)
- 手術(shù)治療過程管理持續(xù)改進(jìn)方案
- 幼兒園食品衛(wèi)生安全監(jiān)管報告
- 醫(yī)院感染控制規(guī)范及風(fēng)險管理方案
- 2026年企業(yè)人力資源管理師考試備考題庫及答案【全優(yōu)】
- 建筑施工材料采購合同模板
- 2026年網(wǎng)絡(luò)預(yù)約出租汽車駕駛員從業(yè)資格考試題庫及完整答案(考點梳理)
- 吉林省吉林市磐石市2024-2025學(xué)年七年級下學(xué)期期中考試歷史題目及答案
- 蒙藥材種植員安全培訓(xùn)效果評優(yōu)考核試卷含答案
- 疾控中心崗位管理辦法
- PLC控制技術(shù)(三菱FX3U)試題庫及答案
- 英文版合同委托付款協(xié)議
- 維保項目投標(biāo)文件終版
- 重慶長壽縣2025年上半年公開招聘城市協(xié)管員試題含答案分析
- 軍隊被裝管理辦法
- 文獻(xiàn)檢索課件教學(xué)文案
- 2025臨時設(shè)施搭建工程承包合同范本
- 2025年的離婚協(xié)議書模板
- 《PLC虛擬仿真實驗室(FACTORY IO)教程》課件 第四章-西門子S7-1200編程基礎(chǔ) 3-18
- 2025年綜合類-衛(wèi)生系統(tǒng)招聘考試-護(hù)士招聘考試歷年真題摘選帶答案(5卷單選題100題)
評論
0/150
提交評論