版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報或認(rèn)領(lǐng)
文檔簡介
京改版數(shù)學(xué)9年級上冊期末試卷考試時間:90分鐘;命題人:教研組考生注意:1、本卷分第I卷(選擇題)和第Ⅱ卷(非選擇題)兩部分,滿分100分,考試時間90分鐘2、答卷前,考生務(wù)必用0.5毫米黑色簽字筆將自己的姓名、班級填寫在試卷規(guī)定位置上3、答案必須寫在試卷各個題目指定區(qū)域內(nèi)相應(yīng)的位置,如需改動,先劃掉原來的答案,然后再寫上新的答案;不準(zhǔn)使用涂改液、膠帶紙、修正帶,不按以上要求作答的答案無效。第I卷(選擇題26分)一、單選題(6小題,每小題2分,共計12分)1、如圖,PAB為⊙O的割線,且PA=AB=3,PO交⊙O于點C,若PC=2,則⊙O的半徑的長為()A. B. C. D.72、已知二次函數(shù)y=ax2+bx+c(a≠0)的圖象如圖所示,則下列結(jié)論:①4a+2b+c>0
;②y隨x的增大而增大;③方程ax2+bx+c=0兩根之和小于零;④一次函數(shù)y=ax+bc的圖象一定不過第二象限,其中正確的個數(shù)是(
)A.4個 B.3個 C.2個 D.1個3、如圖,小明在一條東西走向公路的O處,測得圖書館A在他的北偏東方向,且與他相距,則圖書館A到公路的距離為(
)A. B. C. D.4、在平面直角坐標(biāo)系中,將二次函數(shù)的圖像向左平移2個單位長度,再向上平移1個單位長度,所得拋物線對應(yīng)的函數(shù)表達(dá)式為(
)A. B. C. D.5、如圖,在△ABC中,∠ABC=90°,tan∠BAC=,AD=2,BD=4,連接CD,則CD長的最大值是(
)A. B. C. D.2+26、如果?ABC的各邊長都擴(kuò)大為原來的3倍,那么銳角A的正弦、余弦值是(
)A.都擴(kuò)大為原來的3倍 B.都縮小為原來的C.沒有變化 D.不能確定二、多選題(7小題,每小題2分,共計14分)1、下列命題不正確的是(
)A.三角形的內(nèi)心到三角形三個頂點的距離相等B.三角形的內(nèi)心不一定在三角形的內(nèi)部C.等邊三角形的內(nèi)心,外心重合D.一個圓一定有唯一一個外切三角形2、已知:如圖,AB為⊙O的直徑,CD、CB為⊙O的切線,D、B為切點,OC交⊙O于點E,AE的延長線交BC于點F,連接AD、BD.以下結(jié)論中正確的有()A.AD∥OC B.點E為△CDB的內(nèi)心 C.FC=FE D.CE?FB=AB?CF3、如圖,的頂點位于正方形網(wǎng)格的格點上,若,則滿足條件的是(
)A. B.C. D.4、如圖,,下列線段比值等于的是(
)A. B. C. D.5、下表時二次函數(shù)y=ax2+bx+c的x,y的部分對應(yīng)值:…………則對于該函數(shù)的性質(zhì)的判斷中正確的是()A.該二次函數(shù)有最大值B.不等式y(tǒng)>﹣1的解集是x<0或x>2C.方程y=ax2+bx+c的兩個實數(shù)根分別位于﹣<x<0和2<x<之間D.當(dāng)x>0時,函數(shù)值y隨x的增大而增大6、已知四條線段a,b,c,d是成比例線段,即,下列說法正確的是(
)A.a(chǎn)d=bc B. C. D.7、如圖是二次函數(shù)圖象的一部分,過點,,對稱軸為直線.則錯誤的有(
)A. B. C. D.第Ⅱ卷(非選擇題74分)三、填空題(7小題,每小題2分,共計14分)1、如圖,有長為24米的籬笆,一面利用墻(墻的最大可用長度為10米),圍成中間隔有一道籬笆的長方形花圃.設(shè)花圃的寬AB為x米,面積為S平方米.則S與x的函數(shù)關(guān)系式是____________,自變量x的取值范圍是____________.2、已知關(guān)于的一元二次方程,有下列結(jié)論:①當(dāng)時,方程有兩個不相等的實根;②當(dāng)時,方程不可能有兩個異號的實根;③當(dāng)時,方程的兩個實根不可能都小于1;④當(dāng)時,方程的兩個實根一個大于3,另一個小于3.以上4個結(jié)論中,正確的個數(shù)為_________.3、一個橫斷面是拋物線的渡槽如圖所示,根據(jù)圖中所給的數(shù)據(jù)求出水面的寬度是____cm.4、二次函數(shù)的最小值為______.5、如圖,直線MN∥PQ,直線AB分別與MN,PQ相交于點A,B.小宇同學(xué)利用以下步驟作圖:①以點A為圓心,適當(dāng)長為半徑作弧交射線AN于點C,交線段AB于點D;②以點C為圓心,適當(dāng)長為半徑畫??;然后再以點D為圓心,同樣長為半徑畫?。昂髢苫≡凇螻AB內(nèi)交于點E;③作射線AE,交PQ于點F;若AF=2,∠FAN=30°,則線段BF的長為_____.6、如圖,AB是⊙O的直徑,AC是⊙O的切線,切點為A,BC交⊙O于點D,直線DE是⊙O的切線,切點為D,交AC于E,若⊙O半徑為1,BC=4,則圖中陰影部分的面積為_____.7、兩個任意大小的正方形,都可以適當(dāng)剪開,拼成一個較大的正方形,如用兩個邊長分別為,的正方形拼成一個大正方形.圖中的斜邊的長等于________(用,的代數(shù)式表示).四、解答題(6小題,每小題10分,共計60分)1、拋物線y=x2+bx+c與x軸交于A、B兩點,與y軸交于點C,點A的坐標(biāo)為(﹣1,0),點C的坐標(biāo)為(0,﹣3).點P為拋物線y=x2+bx+c上的一個動點.過點P作PD⊥x軸于點D,交直線BC于點E.(1)求b、c的值;(2)設(shè)點F在拋物線y=x2+bx+c的對稱軸上,當(dāng)△ACF的周長最小時,直接寫出點F的坐標(biāo);(3)在第一象限,是否存在點P,使點P到直線BC的距離是點D到直線BC的距離的5倍?若存在,求出點P所有的坐標(biāo);若不存在,請說明理由.2、據(jù)說,在距今2500多年前,古希臘數(shù)學(xué)家就已經(jīng)較準(zhǔn)確地測出了埃及金字塔的高度,操作過程大致如下:如圖所示,設(shè)AB是金字塔的高,在某一時刻,陽光照射下的金字塔在底面上投下了一個清晰的陰影,塔頂A的影子落在地面上的點C處,金字塔底部可看作方正形FGHI,測得正方形邊長FG長為160米,點B在正方形的中心,BC與金字塔底部一邊垂直于點K,與此同時,直立地面上的一根標(biāo)桿DO留下的影子是OE,射向地面的太陽光線可看作平行線(AC∥DE),此時測得標(biāo)桿DO長為1.2米,影子OE長為2.7米,KC長為250米,求金字塔的高度AB及斜坡AK的坡度(結(jié)果均保留四個有效數(shù)字)3、某賓館共有80間客房.賓館負(fù)責(zé)人根據(jù)經(jīng)驗作出預(yù)測:今年5月份,每天的房間空閑數(shù)y(間)與定價x(元/間)之間滿足y=x﹣42(x≥168).若賓館每天的日常運營成本為4000元,有客人入住的房間,賓館每天每間另外還需支出36元的各種費用,賓館想要獲得最大利潤,同時也想讓客人得到實惠.(1)求入住房間z(間)與定價x(元/間)之間關(guān)系式;(2)應(yīng)將房間定價確定為多少元時,獲得利潤最大?求出最大利潤?4、如圖,在平面直角坐標(biāo)系中,點為坐標(biāo)原點.拋物線交軸于、兩點,交軸于點,直線經(jīng)過、兩點.(1)求拋物線的解析式;(2)過點作直線軸交拋物線于另一點,過點作軸于點,連接,求的值.5、為了測量大樓頂上(居中)避雷針BC的長度,在地面上點A處測得避雷針底部B和頂部C的仰角分別為55°58′和57°,已知點A與樓底中間部位D的距離約為80米,求避雷針BC的長度.(參考數(shù)據(jù):sin55°58′≈0.83,cos55°58′≈0.56,tan55°58′≈1.48,sin57°≈0.84,tan57°≈1.54)6、五一期間,小明跟父母去烏鎮(zhèn)旅游,欣賞烏鎮(zhèn)水鄉(xiāng)的美景.如圖,當(dāng)小明走到烏鎮(zhèn)古橋的C處時,發(fā)現(xiàn)遠(yuǎn)處有一瞍船勻速行駛過來,當(dāng)船行駛到A處時,小明測得船頭的俯角為30°,同時小明開始計時,船在航行過小明所在的橋之后,繼續(xù)向前航行到達(dá)B處,此時測得船尾的俯角為45°;從小明開始計時到船行駛至B處,共用時15min;已知小明所在位置距離水面6m,船長3m,船到水面的距離忽略不計,請你幫助小明計算一下船的航行速度(結(jié)果保留根號)-參考答案-一、單選題1、A【解析】【分析】延長PO到E,延長線與圓O交于點E,連接EB,AC,根據(jù)四邊形ACEB為圓O的內(nèi)接四邊形,利用圓內(nèi)接四邊形的外角等于它的內(nèi)對角得到一對角相等,再由公共角相等,利用兩對對應(yīng)角相等的兩三角形相似,可得出三角形ACP與三角形EBP相似,由相似得比例,進(jìn)而可求得答案.【詳解】延長PO到E,延長線與圓O交于點E,連接EB,AC,∵四邊形ACEB為圓O的內(nèi)接四邊形,∴∠ACP=∠E,又∠P=∠P,∴△ACP∽△EBP,∴PA:PE=PC:PB,∴PA?PB=PC?PE,∵PA=AB=3,∴PB=6,又PC=2,∴3×6=2PE,∴PE=9,∴CE=9-2=7,∴半徑=3.5.【考點】此題考查了圓內(nèi)接四邊形的性質(zhì),相似三角形的判定與性質(zhì),利用了轉(zhuǎn)化思想,其中作出如圖所示的輔助線是解本題的關(guān)鍵.2、D【解析】【分析】根據(jù)函數(shù)的圖象可知x=2時,函數(shù)值的正負(fù)性;并且可知與x軸有兩個交點,即對應(yīng)方程有兩個實數(shù)根;函數(shù)的增減性需要找到其對稱軸才知具體情況;由函數(shù)的圖象還可知b、c的正負(fù)性,一次函數(shù)y=ax+bc所經(jīng)過的象限進(jìn)而可知正確選項.【詳解】∵當(dāng)x=2時,y=4a+2b+c,對應(yīng)的y值為正,即4a+2b+c>0,故①正確;∵因為拋物線開口向上,在對稱軸左側(cè),y隨x的增大而減??;在對稱軸右側(cè),y隨x的增大而增大,故②錯誤;∵由二次函數(shù)y=ax2+bx+c(a≠0)的圖象可知:函數(shù)圖象與x軸有兩個不同的交點,即對應(yīng)方程有兩個不相等的實數(shù)根,且正根的絕對值較大,∴方程ax2+bx+c=0兩根之和大于零,故③錯誤;∵由圖象開口向上,知a>0,與y軸交于負(fù)半軸,知c<0,由對稱軸,知b<0,∴bc>0,∴一次函數(shù)y=ax+bc的圖象一定經(jīng)過第二象限,故④錯誤;綜上,正確的個數(shù)為1個,故選:D.【考點】本題考查了二次函數(shù)的圖象與系數(shù)的關(guān)系以及一次函數(shù)的圖象,利用了數(shù)形結(jié)合的思想,此類題涉及的知識面比較廣,能正確觀察圖象是解本題的關(guān)鍵.3、A【解析】【分析】根據(jù)題意可得△OAB為直角三角形,∠AOB=30°,OA=200m,根據(jù)三角函數(shù)定義即可求得AB的長.【詳解】解:由已知得,∠AOB=90°60°=30°,OA=200m.則AB=OA=100m.故選:A.【考點】本題主要考查了解直角三角形的應(yīng)用——方向角問題,正確記憶三角函數(shù)的定義是解決本題的關(guān)鍵.4、B【解析】【分析】先求出平移后拋物線的頂點坐標(biāo),進(jìn)而即可得到答案.【詳解】解:∵的頂點坐標(biāo)為(0,0)∴將二次函數(shù)的圖像向左平移2個單位長度,再向上平移1個單位長度,所得拋物線的頂點坐標(biāo)為(-2,1),∴所得拋物線對應(yīng)的函數(shù)表達(dá)式為,故選B【考點】本題主要考查二次函數(shù)的平移規(guī)律,找出平移后二次函數(shù)圖像的頂點坐標(biāo)或掌握“左加右減,上加下減”,是解題的關(guān)鍵.5、B【解析】【分析】過點A作∠DAP=∠BAC,過點D作AD⊥DP交AP于點P,分別求出PD,PC,在△PDC中,利用三角形的三邊關(guān)系即可求出CD長的最大值.【詳解】解:如圖,過點A作∠DAP=∠BAC,過點D作AD⊥DP交AP于點P,∵∠ABC=90°,,∴,∴,∵AD=2,∴DP=1,∵∠DAP=∠BAC,∠ADP=∠ABC,∴△ADP∽△ABC,∴,∵∠DAB=∠DAP+∠PAB,∠PAC=∠PAB+∠BAC,∠DAP=∠BAC,∴∠DAB=∠PAC,,∴△ADB∽△APC,∴,∵,∴,∴,,在△PDC中,∵PD+PC>DC,PC?PD<DC,∴,當(dāng)D,P,C三點共線時,DC最大,最大值為,故選:B.【考點】本題考查了銳角三角函數(shù)的定義,相似三角形的判定和性質(zhì),勾股定理,三角形的三邊關(guān)系,構(gòu)造相似三角形是解題的關(guān)鍵.6、C【解析】【分析】根據(jù)相似三角形的判定定理、正弦、余弦的概念解答.【詳解】三角形各邊長度都擴(kuò)大為原來的3倍,∴得到的三角形與原三角形相似,∴銳角A的大小不變,∴銳角A的正弦、余弦值不變,故選:C.【考點】三角形的形狀沒有改變,邊的比值沒有發(fā)生變化.二、多選題1、ABD【解析】【分析】根據(jù)三角形內(nèi)心的定義和圓的外切三角形的定義判斷即可.【詳解】解:A、三角形的內(nèi)心是三個內(nèi)角平分線的交點,內(nèi)心到三角形三邊的距離相等,錯誤,該選項符合題意;B、三角形的內(nèi)心是三個內(nèi)角平分線的交點,三角形的內(nèi)心一定在三角形的內(nèi)部,錯誤,該選項符合題意;C、等邊三角形的內(nèi)心,外心重合,正確,該選項不符合題意;D、經(jīng)過圓上的三點作圓的切線,三條切線相交,即可得到圓的一個外切三角形,所以一個圓有無數(shù)個外切三角形,錯誤,該選項符合題意;故選:ABD.【考點】本題主要考查了內(nèi)心和外心以及命題的真假判斷,正確的命題叫真命題,錯誤的命題叫做假命題.判斷命題的真假關(guān)鍵是要熟悉課本中的定義與定理.2、ABD【解析】【分析】連接OD,由CD、CB為⊙O的切線,可得DC=BC,由OD=OB,可得OC為BD的垂直平分線,可證OC⊥BD,再證AD⊥BD,可判斷選項A正確;連接DE、BE,CD、CB為⊙O的切線,可得∠ODE+∠CDE=90°,∠OBE+∠CBE=90°,推得∠CDE=∠DOE,∠CBE=∠BOE,由,可得∠EDB=∠EBD=∠CDE=∠CBE,可判斷選項B正確;用反證法假設(shè)FC=FE,可得∠FCE=∠FEC,可證△CDB為等邊三角形,與已知△CDB為等腰三角形矛盾,可判斷選項C不正確;先證△ABE∽△BFE,可得,再證△CEF∽△CBE,可得,推出,可判斷選項D正確.【詳解】解:連接OD,∵CD、CB為⊙O的切線,∴DC=BC,∵OD=OB,∴OC為BD的垂直平分線,∴OC⊥BD,∵AB為直徑,∴∠ADB=90°,∴AD⊥BD,∴AD∥OC,故選項A正確;連接DE、BE,∵CD、CB為⊙O的切線,∴OD⊥DC,OB⊥BC,∴∠ODE+∠CDE=90°,∠OBE+∠CBE=90°,∵2∠ODE+∠DOE=180°,2∠OBE+∠BOE=180°,∴∠ODE+∠DOE=90°,∠OBE+∠BOE=90°,∴∠CDE=∠DOE,∠CBE=∠BOE,∵,∴∠DAE=∠DBE=∠EDB=∠EBD=∠DOE=∠BOE,∴∠EDB=∠EBD=∠CDE=∠CBE,∴點E為△CDB各內(nèi)角平分線的交點,故選項B正確;假設(shè)FC=FE,∴∠FCE=∠FEC,∵∠CEF=∠AEO=∠EAB=∠EDB=∠EBD,∴2∠EDB=2∠EBD=2∠BCE即∠DCB=∠CDB=∠CBD,∴△CDB為等邊三角形,與已知△CDB為等腰三角形矛盾,故假設(shè)不正確,故選項C不正確;∵AB為直徑,∴∠AEB=90°又∵BC為切線,AB為直徑,∴∠ABF=90°,∴∠FBE+∠EBA=90°,∠EAB+∠EBA=90°,∴∠EAB=∠EBF,∠AEB=∠BEF=90°,∴△ABE∽△BFE,∴,∵∠CBE=∠CEF,∠ECF=∠BCE,∴△CEF∽△CBE,∴,∴,∴CE?FB=AB?CF,故選項D正確;結(jié)論中正確的有ABD.故選擇ABD.【考點】本題考查圓的切線性質(zhì),線段垂直平分線判定與性質(zhì),圓周角定理,證明三角形內(nèi)心,反證法,三角形相似判定與性質(zhì),掌握圓的切線性質(zhì),線段垂直平分線判定與性質(zhì),圓周角定理,證明三角形內(nèi)心,反證法,三角形相似判定與性質(zhì)是解題關(guān)鍵.3、AD【解析】【分析】根據(jù)在直角三角形中一個角的正切值等于其所對的邊與斜邊的比值進(jìn)行構(gòu)造直角三角形求解判斷即可.【詳解】解:A、如圖所示,,∴,故此選項符合題意;B、如圖所示,,∴,故此選項不符合題意;C、如圖所示,,∴,故此選項不符合題意;D、如圖所示,,,BD⊥AC,∴,∴,∴∴,故此選項符合題意;故選AD.【考點】本題主要考查了求正切值和勾股定理,解題的關(guān)鍵在于能夠構(gòu)造直角三角形進(jìn)行求解.4、CD【解析】【分析】根據(jù)余弦等于鄰邊比斜邊,可得答案.【詳解】在中,在中,故選:C、D.【考點】本題考查了解直角三角形,掌握直角三角形的邊角之間的關(guān)系是解題的關(guān)鍵.5、BC【解析】【分析】由圖表可得二次函數(shù)y=ax2+bx+c的對稱軸為直線x=1,a>0,即可判斷A,D不正確,由圖表可直接判斷B,C正確.【詳解】解:∵當(dāng)x=0時,y=-1;當(dāng)x=2時,y=-1;當(dāng)x=,y=;當(dāng)x=,y=;∴二次函數(shù)y=ax2+bx+c的對稱軸為直線x=1,x>1時,y隨x的增大而增大,x<1時,y隨x的增大而減?。郺>0即二次函數(shù)有最小值則A,D錯誤由圖表可得:不等式y(tǒng)>-1的解集是x<0或x>2;由圖表可得:方程ax2+bx+c=0的兩個實數(shù)根分別位于-<x<0和2<x<之間;所以選項B,C正確,故選:BC.【考點】本題考查了拋物線與x軸的交點,二次函數(shù)的性質(zhì),二次函數(shù)的最值,理解圖表中信息是本題的關(guān)鍵.6、ABD【解析】【分析】根據(jù)比例的性質(zhì)將原式變形,分別進(jìn)行判斷即可,進(jìn)而得出答案.【詳解】解:∵四條線段a,b,c,d是成比例線段,即,∴A.利用內(nèi)項之積等于外項之積,ad=bc,故選項正確,B.利用內(nèi)項之積等于外項之積,a(b+d)=b(a+c),ab+ad=ab+bc,即ad=bc,故選項正確,C.∵,∴,故選項錯誤,D.∵∴,故選項正確,故選:ABD.【考點】此題主要考查了比例的性質(zhì),將比例式靈活正確變形得出是解題關(guān)鍵.7、BD【解析】【分析】由拋物線的開口方向判斷a的符號,由拋物線與y軸的交點判斷c的符號,然后根據(jù)對稱軸x=?1可得2a+b的符號;再由根的判別式可得,根據(jù)二次函數(shù)的對稱性進(jìn)而對所得結(jié)論進(jìn)行判斷.【詳解】解:A、由拋物線的開口向下知a<0,與y軸的交點在y軸的正半軸上,知c>0,∵對稱軸為直線,得2a=b,∴a、b同號,即b<0,∴abc>0;故本選項正確,不符合題意;B、∵對稱軸為,得2a=b,∴2a+b=4a,且a≠0,∴2a+b≠0;故本選項錯誤,符合題意;C、從圖象知,該函數(shù)與x軸有兩個不同的交點,所以根的判別式,即;故本選項正確,不符合題意;D、∵?3<x1<?2,∴根據(jù)二次函數(shù)圖象的對稱性,知當(dāng)x=1時,y<0;又由A知,2a=b,∴a+b+c<0;∴b+b+c<0,即3b+2c<0;故本選項錯誤,符合題意.故選:BD.【考點】本題主要考查了二次函數(shù)圖象與系數(shù)之間的關(guān)系,熟練運用對稱軸的范圍求2a與b的關(guān)系,二次函數(shù)與方程及不等式之間的關(guān)系是解決本題的關(guān)鍵.三、填空題1、
S=-3x2+24x
≤x<8【解析】【詳解】可先用籬笆的長表示出BC的長,然后根據(jù)矩形的面積=長×寬,得出S與x的函數(shù)關(guān)系式,并根據(jù)墻的最大可用長度為10米,列不等式組即可得出自變量的取值范圍.解:由題可知,花圃的寬AB為x米,則BC為(24?3x)米.∴S=x(24?3x)=?3x2+24x.∵0<24?3x≤10,解得≤x<8,故答案為S=-3x2+24x,≤x<8.2、①③④【解析】【分析】由根的判別式,根與系數(shù)的關(guān)系進(jìn)行判斷,即可得到答案.【詳解】解:根據(jù)題意,∵一元二次方程,∴;∴當(dāng),即時,方程有兩個不相等的實根;故①正確;當(dāng),解得:,方程有兩個同號的實數(shù)根,則當(dāng)時,方程可能有兩個異號的實根;故②錯誤;拋物線的對稱軸為:,則當(dāng)時,方程的兩個實根不可能都小于1;故③正確;由,則,解得:或;故④正確;∴正確的結(jié)論有①③④;故答案為:①③④.【考點】本題考查了二次函數(shù)的性質(zhì),一元二次方程根的判別式,根與系數(shù)的關(guān)系,解題的關(guān)鍵是掌握所學(xué)的知識進(jìn)行解題.3、2【解析】【分析】首先建立平面直角坐標(biāo)系,然后根據(jù)圖中數(shù)據(jù)確定點A和點B的坐標(biāo),從而利用待定系數(shù)法確定二次函數(shù)的解析式,然后求得C、D兩點的坐標(biāo),從而求得水面的寬度.【詳解】如圖建立直角坐標(biāo)系.則點A的坐標(biāo)為(-2,8),點B的坐標(biāo)為(2,8),設(shè)拋物線的解析式為y=ax2,代入點A的坐標(biāo)得8=4a,解得:a=2,所以拋物線的解析式為y=2x2,令y=6得:6=2x2,解得:x=±,所以CD=-(-)=2(cm).故答案為:2.【考點】本題考查了二次函數(shù)的應(yīng)用,解題的關(guān)鍵是從實際問題中整理出二次函數(shù)模型,并建立正確的平面直角坐標(biāo)系.4、【解析】【分析】先將函數(shù)解析式化為頂點式,再根據(jù)函數(shù)的性質(zhì)解答.【詳解】解:,∵a=1>0,∴當(dāng)x=-2時,二次函數(shù)有最小值-4,故答案為:-4.【考點】此題考查將二次函數(shù)一般式化為頂點式,函數(shù)的性質(zhì),熟練轉(zhuǎn)化函數(shù)解析式的形式及掌握確定最值的方法是解題的關(guān)鍵.5、2【解析】【分析】過B作BG⊥AF于G,依據(jù)AB=BF,運用等腰三角形的性質(zhì),即可得出GF的長,進(jìn)而得到BF的長.【詳解】解:如圖,過B作BG⊥AF于G,∵M(jìn)N∥PQ,∴∠FAN=∠3=30°,由題意得:AF平分∠NAB,∴∠1=∠2=30°,∴∠1=∠3=30°,∴AB=BF,又∵BG⊥AF,∴AG=GF=AF=,∴Rt△BFG中,BF=,故答案為:2.【考點】本題考查了平行線的性質(zhì)、角平分線的基本作圖、直角三角形30度角的性質(zhì),熟練掌握平行線和角平分線的基本作圖是關(guān)鍵.6、【解析】【分析】連接OD、OE、AD,AD交OE于F,如圖,根據(jù)切線的性質(zhì)得到∠BAC=90°,利用余弦的定義可計算出∠B=60°,則根據(jù)圓周角定理得到∠ADB=90°,∠AOD=120°,于是可計算出BD=1,AD=,接著證明△ADE為等邊三角形,求出OF=,根據(jù)扇形的面積公式,利用S陰影部分=S四邊形OAED﹣S扇形AOD=S△ADE+S△AOD﹣S扇形AOD進(jìn)行計算.【詳解】解:連接OD、OE、AD,AD交OE于F,如圖,∵AC是⊙O的切線,切點為A,∴AB⊥AC,∴∠BAC=90°,在Rt△ABC中,cosB===,∴∠B=60°,∴∠AOD=2∠B=120°,∵AB為直徑,∴∠ADB=90°,∴∠BAD=90°-∠B=90°-60°=30°,在Rt△ADB中,BD=AB=1,∴AD=BDtan60°=BD=,∵直線DE、EA都是⊙O的切線,∴EA=ED,∠DAE=90°-∠BAD=90°-30°=60°,∴△ADE為等邊三角形,而OA=OD,∴OE垂直平分AD,∴∠AFO=90°,在Rt△AOF中,∠OAF=30°,∴OF=OA=,∴S陰影部分=S四邊形OAED﹣S扇形AOD,=S△ADE+S△AOD﹣S扇形AOD,=×()2+××﹣,=.故答案為.【考點】本題考查圓的切線,圓周角定理,扇形面積公式,銳角三角函數(shù)求角,30°角直角三角形的性質(zhì),掌握和運用圓的切線,圓周角定理,扇形面積公式,銳角三角函數(shù)求角,30°角直角三角形的性質(zhì)是解題關(guān)鍵.7、【解析】【分析】根據(jù)題意及勾股定理可得BC2=;又因Rt△ABC的邊BC在斜邊AB上的射影為a,根據(jù)射影定理可得BC2=a?AB,由此即可解答.【詳解】根據(jù)題意及勾股定理可得:BC2=;由題意可得:Rt△ABC的邊BC在斜邊AB上的射影為a,∴BC2=a?AB,即可得AB=.故答案為.【考點】本題考查射影定理的知識,注意掌握每一條直角邊是這條直角邊在斜邊上的射影和斜邊的比例中項.四、解答題1、(1)(2)(3)存在,P的坐標(biāo)為【解析】【分析】(1)把A、C點的坐標(biāo)代入拋物線的解析式列出b、c的方程組,解得b、c便可.(2)連接BC與對稱軸交于點F,此時ΔACF的周長最小,求得BC的解析式,再求得BC與對稱軸的交點坐標(biāo)便可.(3)設(shè)P(m,m2-2m-3)(m>3),根據(jù)相似三角形的比例式列出m的方程解答便可.(1)解:把A、C點的坐標(biāo)代入拋物線的解析式得,解得(2)解:直線BC與拋物線的對稱軸交于點F,連接AF,如圖1,此時,AF+CF=BF+CF=BC的值最小,∵AC為定值,∴此時ΔAFC的周長最小,由(1)知,∴拋物線的解析式為:∴對稱軸為直線令,得解得或設(shè)直線BC的解析式為得解得∴直線BC的解析式為:∴當(dāng)時,(3)解:設(shè)P(m,m2-2m-3)(m>3),過P作PH⊥BC于H,過D作DG⊥BC于G,如圖2,則PH=5DG,E(m,m-3),∴PE=m2-3m,DE=m-3,解得m=3或m=5,經(jīng)檢驗,,即故m=5∴點P的坐標(biāo)為P(5,12).故存在點P,使點P到直線BC的距離是點D到直線BC的距離的5倍,其P點坐標(biāo)為【考點】本題是二次函數(shù)的綜合題,主要考查了待定系數(shù)法,二次函數(shù)的圖象與性質(zhì),相似三角形的性質(zhì)與判定,軸對稱的性質(zhì)應(yīng)用求線段的最值,第(2)題關(guān)鍵是確定F的位置,第(3)題關(guān)鍵在于構(gòu)建相似三角形.2、金字塔的高度AB為米,斜坡AK的坡度為1.833.【解析】【分析】根據(jù)同一時刻物高與影長成正比例列式計算即可.【詳解】解:∵FGHI是正方形,點B在正方形的中心,BC⊥HG,∴BK∥FG,BK==×160=80,∵根據(jù)同一時刻物高與影長成正比例,∴,即,解得:AB=米,連接AK,=1.833.∴金字塔的高度AB為米,斜坡AK的坡度為1.833.【考點】本題考查了相似三角形的應(yīng)用,只要是把實際問題抽象到相似三角形中,利用相似三角形的相似比,列出方程,通過解方程求解,解此題的關(guān)鍵是找到各部分以及與其對應(yīng)的影長.3、(1)z=﹣x+122(x≥168);(2)應(yīng)將房間定價確定為260元時,獲得利潤最大,最大利潤為8767元【
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- GB/T 25396.2-2025農(nóng)業(yè)機(jī)械拋出物試驗和驗收規(guī)范第2部分:甩刀式割草機(jī)
- GB/T 45830-2025聲學(xué)開放式辦公空間的聲學(xué)質(zhì)量
- GB/T 45906.6-2025變電站二次系統(tǒng)第6部分:站內(nèi)監(jiān)控系統(tǒng)
- 母親之軀試題及答案
- 機(jī)械制造基礎(chǔ)部分課后習(xí)題答案
- 支氣管擴(kuò)張癥試題及答案
- 信豐縣輔警考試公安基礎(chǔ)知識考試真題庫及參考答案
- 加氫工藝危化品作業(yè)證理論試題及答案
- 醫(yī)院管理知識試題附答案
- 醫(yī)院污水(醫(yī)療廢水)處理培訓(xùn)試題及答案
- 糖尿病基礎(chǔ)知識培訓(xùn)2
- DL∕T 448-2016 電能計量裝置技術(shù)管理規(guī)程
- 2023年人教版六年級上冊語文期末考試卷(A4打印版)
- JTG-D40-2002公路水泥混凝土路面設(shè)計規(guī)范-PDF解密
- 《雅思閱讀精講》
- 產(chǎn)前檢查的操作評分標(biāo)準(zhǔn)
- GB/T 22176-2023二甲戊靈乳油
- 50年同學(xué)聚會邀請函(十二篇)
- GB/T 28046.4-2011道路車輛電氣及電子設(shè)備的環(huán)境條件和試驗第4部分:氣候負(fù)荷
- 臨時用水施工方案
- LOTO上鎖掛牌安全培訓(xùn)課件
評論
0/150
提交評論