綜合解析人教版8年級數(shù)學(xué)上冊《全等三角形》達標(biāo)測試試卷_第1頁
綜合解析人教版8年級數(shù)學(xué)上冊《全等三角形》達標(biāo)測試試卷_第2頁
綜合解析人教版8年級數(shù)學(xué)上冊《全等三角形》達標(biāo)測試試卷_第3頁
綜合解析人教版8年級數(shù)學(xué)上冊《全等三角形》達標(biāo)測試試卷_第4頁
綜合解析人教版8年級數(shù)學(xué)上冊《全等三角形》達標(biāo)測試試卷_第5頁
已閱讀5頁,還剩19頁未讀 繼續(xù)免費閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)

文檔簡介

人教版8年級數(shù)學(xué)上冊《全等三角形》達標(biāo)測試考試時間:90分鐘;命題人:教研組考生注意:1、本卷分第I卷(選擇題)和第Ⅱ卷(非選擇題)兩部分,滿分100分,考試時間90分鐘2、答卷前,考生務(wù)必用0.5毫米黑色簽字筆將自己的姓名、班級填寫在試卷規(guī)定位置上3、答案必須寫在試卷各個題目指定區(qū)域內(nèi)相應(yīng)的位置,如需改動,先劃掉原來的答案,然后再寫上新的答案;不準(zhǔn)使用涂改液、膠帶紙、修正帶,不按以上要求作答的答案無效。第I卷(選擇題20分)一、單選題(5小題,每小題4分,共計20分)1、如圖,AD是的角平分線,,垂足為F,,和的面積分別為60和35,則的面積為A.25 B. C. D.2、已知,則為(

)A.銳角三角形 B.鈍角三角形 C.直角三角形 D.以上都有可能3、已知,如圖,在△ABC中,D為BC邊上的一點,延長AD到點E,連接BE、CE,∠ABD+∠3=90°,∠1=∠2=∠3,下列結(jié)論:①△ABD為等腰三角形;②AE=AC;③BE=CE=CD;④CB平分∠ACE.其中正確的結(jié)論個數(shù)有(

)A.1個 B.2個 C.3個 D.4個4、如圖,在△ABC和△DEF中,已知AB=DE,BC=EF,根據(jù)(SAS)判定△ABC≌△DEF,還需的條件是()A.∠A=∠D B.∠B=∠E C.∠C=∠F D.以上三個均可以5、如圖,已知.能直接判斷的方法是(

)A. B. C. D.第Ⅱ卷(非選擇題80分)二、填空題(5小題,每小題6分,共計30分)1、如圖,將一張直角三角形紙片對折,使點B、C重合,折痕為DE,連接DC,若AC=6cm,∠ACB=90°,∠B=30°,則△ADC的周長是_____cm.2、如圖,△ABC中,∠ACB=90°,AC=12,BC=16.點P從A點出發(fā)沿A—C—B路徑向終點運動,終點為B點;點Q從B點出發(fā)沿B—C—A路徑向終點運動,終點為A點.點P和Q分別以2和6的運動速度同時開始運動,兩點都要到相應(yīng)的終點時才能停止運動,在某時刻,分別過P和Q作PE⊥l于E,QF⊥l于F.若要△PEC與△QFC全等,則點P的運動時間為_______.3、如圖,AB=DC,BF=CE,需要補充一個條件,就能使△ABE≌△DCF,下面幾個答案:①AE=DF,②AE∥DF;③AB∥DC,④∠A=∠D.其中正確的是_____.4、如圖,在中,、的平分線相交于點I,且,若,則的度數(shù)為______度.5、如圖,在△ABC中,∠ACB=90°,AC=BC,BE⊥CE,AD⊥CE于D,AD=2,BE=1.則DE=________.三、解答題(5小題,每小題10分,共計50分)1、如圖,AD是△ABC的角平分線,DE、DF分別是△ABD和△ACD的高.(1)求證:AD垂直平分EF;(2)若AB+AC=10,S△ABC=15,求DE的長.2、【閱讀理解】課外興趣小組活動時,老師提出了如下問題:如圖,△ABC中,若AB=8,AC=6,求BC邊上的中線AD的取值范圍.小明在組內(nèi)經(jīng)過合作交流,得到了如下的解決方法:如圖,延長AD到點E,使DE=AD,連結(jié)BE.請根據(jù)小明的方法思考:(1)由已知和作圖能得到的理由是(

).A.SSS

B.SAS

C.AAS

D.ASA(2)AD的取值范圍是(

).A.

B.

C.

D.(3)【感悟】解題時,條件中若出現(xiàn)“中點”、“中線”字樣,可以考慮延長中線構(gòu)造全等三角形,把分散的已知條件和所求證的結(jié)論轉(zhuǎn)化到同一個三角形中.【問題解決】如圖,AD是△ABC的中線,BE交AC于點E,交AD于F,且AE=EF.求證:AC=BF.3、如圖,在中,.(1)如圖①所示,直線過點,于點,于點,且.求證:.(2)如圖②所示,直線過點,交于點,交于點,且,則是否成立?請說明理由.4、如圖,在四邊形ABCD中,AB=AD,AC平分∠BCD,AE⊥BC于E,AF⊥CD交CD的延長線于F.(1)求證:△ABE≌△ADF;(2)若BC=8cm,DF=3cm,求CD的長.5、小明和小亮在學(xué)習(xí)探索三角形全等時,碰到如下一題:如圖1,若AC=AD,BC=BD,則△ACB與△ADB有怎樣的關(guān)系?(1)請你幫他們解答,并說明理由.(2)細心的小明在解答的過程中,發(fā)現(xiàn)如果在AB上任取一點E,連接CE、DE,則有CE=DE,你知道為什么嗎?(如圖2)(3)小亮在小明說出理由后,提出如果在AB的延長線上任取一點P,也有第2題類似的結(jié)論.請你幫他畫出圖形,并證明結(jié)論.-參考答案-一、單選題1、D【解析】【分析】過點D作DH⊥AC于H,根據(jù)角平分線上的點到角的兩邊距離相等可得DF=DH,再利用“HL”證明Rt△ADF和Rt△ADH全等,Rt△DEF和Rt△DGH全等,然后根據(jù)全等三角形的面積相等列方程求解即可.【詳解】如圖,過點D作于H,是的角平分線,,,在和中,,≌,,在和中,≌,,和的面積分別為60和35,,=12.5,故選D.【考點】本題考查了角平分線上的點到角的兩邊距離相等的性質(zhì),全等三角形的判定與性質(zhì),熟記掌握相關(guān)性質(zhì)、正確添加輔助線構(gòu)造出全等三角形是解題的關(guān)鍵.2、C【解析】【分析】根據(jù)∠A和∠B的度數(shù)可得與互余,從而得出為直角三角形.【詳解】解:,即與互余,則為直角三角形,故選C.【考點】此題考查的是直角三角形的判定,掌握有兩個內(nèi)角互余的三角形是直角三角形是解決此題的關(guān)鍵.3、C【解析】【分析】作AF平分∠BAD.可根據(jù)證△ABF≌△ADF,推出AB=AD,得出△ABD為等腰三角形;可根據(jù)同弦所對的圓周角相等知點A、B、C、E共圓,可判出BE=CE=CD,根據(jù)三角形內(nèi)角和等于180°,可判出AE=AC;求出∠7=90°﹣∠2,根據(jù)∠1=∠4=∠2推出∠4≠∠7,即可得出BC不是∠ACE的平分線.【詳解】解:作AF平分∠BAD,∵∠BAD=∠3,∠ABD+∠3=90°,∴∠BAF=∠3=∠DAF,∴∠ABF+∠BAF=90°∴∠AFB=∠AFD=90°,在△BAF和△DAF中∴△ABF≌△ADF(ASA),∴AB=AD,故①正確;∵AE=AC,∴∠6=∠4+∠7==90°?,∵∠5=∠ADB=∠ABD==90°?,∠1=∠2,∴∠5=∠6=90°?∴CE=CD,∠4=180°?∠5?∠6=180°?2(90°?)=∠1,∵∠1=∠3,∴∠4=∠3,∴BE=CE,∴BE=CE=CD,∴③正確;∵∠6+∠2+∠ACE=180°,∠6=∠5=∠ADB=∠ABD=90°﹣∠2.∴∠ACE=180°﹣∠6﹣∠2=90°﹣∠2,∴∠ACE=∠6,∴AE=CE,故②正確∵∠5=∠2+∠7=90°﹣∠2,∴∠7=90°﹣∠2,∵∠BAD=∠4=∠2,∴∠4≠∠7,故④錯誤;故選C.【考點】本題主要考查了全等三角形的判定和性質(zhì)、同弦所對的圓周角相等、三角形內(nèi)角和的相關(guān)知識,靈活運用所學(xué)知識是解題的關(guān)鍵.4、B【解析】【分析】根據(jù)三角形全等的判定中的SAS,即兩邊夾角.已知兩條邊相等,只需要它們的夾角相等即可.【詳解】要使兩三角形全等,已知AB=DE,BC=EF,要用SAS判斷,還差夾角,即∠B=∠E.故選:B.【考點】本題考查了三角形全等的判定方法.三角形全等的判定是中考的熱點,一般以考查三角形全等的方法為主.5、A【解析】【分析】根據(jù)三角形全等的判定定理解答.【詳解】在△ABC和△DCB中,,∴(SAS),故選:A.【考點】此題考查全等三角形的判定定理:SSS、SAS、ASA、AAS、HL,根據(jù)已知條件找到全等所需的對應(yīng)相等的邊或角是解題的關(guān)鍵.二、填空題1、18【解析】【分析】【詳解】解:根據(jù)折疊前后角相等可知,∠B=∠DCB=30°,∠ADC=∠ACD=60°,∴AC=AD=DC=6,∴ADC的周長是18cm.故答案為8.2、1或3.5或12【解析】【分析】分4種情況求解:①P在AC上,Q在BC上,推出方程6-t=8-3t,②P、Q都在AC上,此時P、Q重合,得到方程6-t=3t-8,Q在AC上,③P在BC上,Q在AC時,此時不存在,④當(dāng)Q到A點,與A重合,P在BC上時.【詳解】解:∵△PEC與△QFC全等,∴斜邊CP=CQ,有四種情況:①P在AC上,Q在BC上,,CP=12-2t,CQ=16-6t,∴12-2t=16-6t,∴t=1;②P、Q都在AC上,此時P、Q重合,∴CP=12-2t=6t-16,∴t=3.5;③P到BC上,Q在AC時,此時不存在;理由是:28÷6=,12÷2=6,即Q在AC上運動時,P點也在AC上運動;④當(dāng)Q到A點(和A重合),P在BC上時,∵CP=CQ=AC=12.CP=12-2t,∴2t-12=12,∴t=12符合題意;答:點P運動1或3.5或12時,△PEC與△QFC全等.【考點】本題主要考查對全等三角形的性質(zhì),解一元一次方程等知識點的理解和掌握,能根據(jù)題意得出方程是解此題的關(guān)鍵.3、①③.【解析】【分析】先求出BE=CF,根據(jù)平行線的性質(zhì)得出∠AEB=∠DFC,再根據(jù)全等三角形的判定定理推出即可.【詳解】∵BF=CE,∴BF+EF=CE+EF,即BE=CF,①在△ABE和△DCF中,,∴△ABE≌△DCF(SSS),故①正確;②∵AE∥DF,∴∠AEB=∠DFC,根據(jù)AB=CD,BE=CF和∠AEB=∠DFC不能推出△ABE≌△DCF,故②錯誤;③∵AB∥CD,∴∠B=∠C,在△ABE和△DCF中,,∴△ABE≌△DCF(SAS),故③正確;④根據(jù)AB=CD,BE=CF和∠A=∠D不能推出△ABE≌△DCF,故④錯誤.故答案為:①③.【考點】本題考查了全等三角形的判定問題,掌握全等三角形的性質(zhì)以及判定定理是解題的關(guān)鍵.4、70【解析】【分析】在BC上取點D,令,利用SAS定理證明得到,,再利用得到,所以,再由角平分線可得,利用以及AI平分可知.【詳解】解:在BC上取點D,令,連接DI,BI,如下圖所示:∵CI平分∴在和中∴∴,∵∴,即:∵AI平分、CI平分,∴BI平分,∴∵∴故答案為:70.【考點】本題考查角平分線,全等三角形的判定及性質(zhì),三角形的一個外角等于與它不相鄰的兩個內(nèi)角的和,利用,在BC上取點D等于AC,作出輔助線是解本題的關(guān)鍵點,也是難點.5、1【解析】【分析】先證明△ACD≌△CBE,再求出DE的長,解決問題.【詳解】解:∵BE⊥CE于E,AD⊥CE于D∴∵∴∵∴∴,∴.故答案為:1【考點】此題考查三角形全等的判定和性質(zhì),掌握再全等三角形的判定和性質(zhì)是解題的關(guān)鍵.三、解答題1、(1)見解析;(2)【解析】【分析】(1)由角平分線的性質(zhì)得DE=DF,再根據(jù)HL證明Rt△AED≌Rt△AFD,得AE=AF,從而證明結(jié)論;(2)根據(jù)DE=DF,得,代入計算即可.【詳解】(1)證明:∵AD是△ABC的角平分線,DE、DF分別是△ABD和△ACD的高,∴DE=DF,在Rt△AED與Rt△AFD中,,∴Rt△AED≌Rt△AFD(HL),∴AE=AF,∵DE=DF,∴AD垂直平分EF;(2)解:∵DE=DF,∴,∵AB+AC=10,∴DE=3.【考點】本題考查了全等三角形的判定與性質(zhì),角平分線的性質(zhì),解題的關(guān)鍵是掌握這些知識點.2、(1)B(2)C(3)見解析【解析】【分析】(1)根據(jù)AD=DE,∠ADC=∠BDE,BD=DC推出△ADC和△EDB全等即可;(2)根據(jù)全等得出BE=AC=6,AE=2AD,由三角形三邊關(guān)系定理得出8-6<2AD<8+6,求出即可;(3)延長AD到M,使AD=DM,連接BM,根據(jù)SAS證△ADC≌△MDB,推出BM=AC,∠CAD=∠M,根據(jù)AE=EF,推出∠CAD=∠AFE=∠BFD,求出∠BFD=∠M,根據(jù)等腰三角形的性質(zhì)求出即可.(1)∵在△ADC和△EDB中,∴△ADC≌△EDB(SAS),故選B;(2)∵由(1)知:△ADC≌△EDB,∴BE=AC=6,AE=2AD,∵在△ABE中,AB=8,由三角形三邊關(guān)系定理得:8-6<2AD<8+6,∴1<AD<7,故選:C.(3)延長AD到點M,使AD=DM,連接BM.∵AD是△ABC中線∴CD=BD∵在△ADC和△MDB中∴∴BM=AC(全等三角形的對應(yīng)邊相等)∠CAD=∠M(全等三角形的對應(yīng)角相等)∵AE=EF,∴∠CAD=∠AFE(等邊對等角)∵∠AFE=∠BFD,∴∠BFD=∠M,∴BF=BM(等角對等邊)又∵BM=AC,∴AC=BF.【考點】本題考查了三角形的中線,三角形的三邊關(guān)系定理,等腰三角形性質(zhì)和判定,全等三角形的性質(zhì)和判定等知識點,主要考查學(xué)生運用定理進行推理的能力.3、(1)見解析;(2)仍然成立,理由見解析【解析】【分析】(1)首先根據(jù)同角的余角相等得到,然后證明,然后根據(jù)全等三角形對應(yīng)邊相等得到,,然后通過線段之間的轉(zhuǎn)化即可證明;(2)首先根據(jù)三角形內(nèi)角和定理得到,然后證明,根據(jù)全等三角形對應(yīng)邊相等得到,最后通過線段之間的轉(zhuǎn)化即可證明.【詳解】證明:(1)∵,,∴,∴,∵,∴,∴,在和中,,∴,∴,,∵,∴;(2)仍然成立,理由如下:∵,∵,∴,在和中,,∴,∴,,∵,∴.【考點】此題考查了全等三角形的性質(zhì)和判定,同角的與相等,三角形內(nèi)角和定理等知識,解題的關(guān)鍵是根據(jù)同角的余角相等或三角形內(nèi)角和定理得到.4、(1)證明見解析(2)2cm【解析】【分析】(1)由角平分線的性質(zhì)可知,證明,進而結(jié)論得證;(2)由,可得,證明,則,根據(jù),計算求解即可.(1)證明:∵AC平分∠BCD,AE⊥BC,AF⊥CD,∴,在和中,∵,∴,∴.(2)解:∵,∴,在和中,∵,∴,∴,∴,∴的長為2cm.【考點】

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

最新文檔

評論

0/150

提交評論