中考數(shù)學總復習《 圓》考試綜合練習及參考答案詳解(突破訓練)_第1頁
中考數(shù)學總復習《 圓》考試綜合練習及參考答案詳解(突破訓練)_第2頁
中考數(shù)學總復習《 圓》考試綜合練習及參考答案詳解(突破訓練)_第3頁
中考數(shù)學總復習《 圓》考試綜合練習及參考答案詳解(突破訓練)_第4頁
中考數(shù)學總復習《 圓》考試綜合練習及參考答案詳解(突破訓練)_第5頁
已閱讀5頁,還剩18頁未讀 繼續(xù)免費閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)

文檔簡介

中考數(shù)學總復習《圓》考試綜合練習考試時間:90分鐘;命題人:教研組考生注意:1、本卷分第I卷(選擇題)和第Ⅱ卷(非選擇題)兩部分,滿分100分,考試時間90分鐘2、答卷前,考生務必用0.5毫米黑色簽字筆將自己的姓名、班級填寫在試卷規(guī)定位置上3、答案必須寫在試卷各個題目指定區(qū)域內(nèi)相應的位置,如需改動,先劃掉原來的答案,然后再寫上新的答案;不準使用涂改液、膠帶紙、修正帶,不按以上要求作答的答案無效。第I卷(選擇題20分)一、單選題(5小題,每小題4分,共計20分)1、如圖,△ABC內(nèi)接于⊙O,∠A=50°.E是邊BC的中點,連接OE并延長,交⊙O于點D,連接BD,則∠D的大小為()A.55° B.65° C.60° D.75°2、如圖所示,矩形紙片中,,把它分割成正方形紙片和矩形紙片后,分別裁出扇形和半徑最大的圓,恰好能作為一個圓錐的底面和側(cè)面,則圓錐的表面積為(

)A. B. C. D.3、如圖,拱橋可以近似地看作直徑為250m的圓弧,橋拱和路面之間用數(shù)根鋼索垂直相連,其正下方的路面AB長度為150m,那么這些鋼索中最長的一根的長度為()A.50m B.40m C.30m D.25m4、“圓材埋壁”是我國古代著名數(shù)學著作《九章算術(shù)》中的一個問題,“今有圓材,埋在壁中,不知大小,以鋸鋸之,深一寸,鋸道長一尺,問徑幾何?”用現(xiàn)在的數(shù)學語言表述是:如圖所示,CD為⊙O的直徑,弦AB⊥CD,垂足為E,CE為1寸,AB為10寸,求直徑CD的長.依題意,CD長為(

)A.寸 B.13寸 C.25寸 D.26寸5、如圖,一個油桶靠在直立的墻邊,量得并且則這個油桶的底面半徑是()A. B. C. D.第Ⅱ卷(非選擇題80分)二、填空題(5小題,每小題6分,共計30分)1、若一個扇形的弧長是,面積是,則扇形的圓心角是__________度.2、如圖,直線y=﹣x+6與x軸、y軸分別交于A、B兩點,點P是以C(﹣1,0)為圓心,1為半徑的圓上一點,連接PA,PB,則△PAB面積的最大值為_____.3、如圖,四邊形是的外切四邊形,且,,則四邊形的周長為__________.4、如圖所示的扇形中,,C為上一點,,連接,過C作的垂線交于點D,則圖中陰影部分的面積為_______.5、如圖,分別以等邊三角形的每個頂點為圓心、以邊長為半徑,在另兩個頂點間作一段圓弧,三段圓弧圍成的曲邊三角形稱為勒洛三角形.若等邊三角形的邊長為,則勒洛三角形的周長為_____.三、解答題(5小題,每小題10分,共計50分)1、如圖,△ABC內(nèi)接于⊙O,∠A=30°,過圓心O作OD⊥BC,垂足為D.若⊙O的半徑為6,求OD的長.2、拋物線y=ax2+2x+c與x軸交于A(﹣1,0)、B兩點,與y軸交于點C(0,3),點D(m,3)在拋物線上.(1)求拋物線的解析式;(2)如圖1,連接BC、BD,點P在對稱軸左側(cè)的拋物線上,若∠PBC=∠DBC,求點P的坐標;(3)如圖2,點Q為第四象限拋物線上一點,經(jīng)過C、D、Q三點作⊙M,⊙M的弦QF∥y軸,求證:點F在定直線上.3、如圖,在中,,以為直徑的⊙O與相交于點,過點作⊙O的切線交于點.(1)求證:;(2)若⊙O的半徑為,,求的長.4、如圖,,比較與的長度,并證明你的結(jié)論.5、如圖,為的直徑,C為上一點,弦的延長線與過點C的切線互相垂直,垂足為D,,連接.(1)求的度數(shù);(2)若,求的長.-參考答案-一、單選題1、B【解析】【分析】連接CD,根據(jù)圓內(nèi)接四邊形的性質(zhì)得到∠CDB=180°﹣∠A=130°,根據(jù)垂徑定理得到OD⊥BC,求得BD=CD,根據(jù)等腰三角形的性質(zhì)即可得到結(jié)論.【詳解】解:連接CD,∵∠A=50°,∴∠CDB=180°﹣∠A=130°,∵E是邊BC的中點,∴OD⊥BC,∴BD=CD,∴∠ODB=∠ODC=∠BDC=65°,故選:B.【考點】本題考查了圓內(nèi)接四邊形的性質(zhì),垂徑定理,等腰三角形的性質(zhì)等知識.正確理解題意是解題的關(guān)鍵.2、B【解析】【分析】設(shè)圓錐的底面的半徑為rcm,則DE=2rcm,利用圓錐的側(cè)面展開圖為一扇形,這個扇形的弧長等于圓錐底面的周長得到2πr,解方程求出r,然后求得直徑即可.【詳解】解:設(shè)圓錐的底面的半徑為rcm,則AE=BF=6-2r根據(jù)題意得2πr,解得r=1,側(cè)面積=,底面積=所以圓錐的表面積=,故選:B.【考點】本題綜合考查有關(guān)扇形和圓錐的相關(guān)計算.解題思路:解決此類問題時要緊緊抓住兩者之間的兩個對應關(guān)系:(1)圓錐的母線長等于側(cè)面展開圖的扇形半徑;(2)圓錐的底面周長等于側(cè)面展開圖的扇形弧長.正確對這兩個關(guān)系的記憶是解題的關(guān)鍵.3、D【解析】【分析】設(shè)圓弧的圓心為O,過O作OC⊥AB于C,交于D,連接OA,先由垂徑定理得AC=BC=AB=75m,再由勾股定理求出OC=100m,然后求出CD的長即可.【詳解】解:設(shè)圓弧的圓心為O,過O作OC⊥AB于C,交于D,連接OA,則OA=OD=×250=125(m),AC=BC=AB=×150=75(m),∴OC===100(m),∴CD=OD﹣OC=125﹣100=25(m),即這些鋼索中最長的一根為25m,故選:D.【考點】本題考查了垂徑定理和勾股定理等知識;熟練掌握垂徑定理和勾股定理是解題的關(guān)鍵.4、D【解析】【分析】連結(jié)AO,根據(jù)垂徑定理可得:,然后設(shè)⊙O半徑為R,則OE=R-1.再由勾股定理,即可求解.【詳解】解:連結(jié)AO,∵CD為直徑,CD⊥AB,∴.設(shè)⊙O半徑為R,則OE=R-1.Rt△AOE中,OA2=AE2+OE2,∴R2=52+(R-1)2,∴

R=13,∴

CD=2R=26(寸).故選:D【考點】本題主要考查了垂徑定理,勾股定理,熟練掌握垂徑定理是解題的關(guān)鍵.5、C【解析】【分析】根據(jù)切線的性質(zhì),連接過切點的半徑,構(gòu)造正方形求解即可.【詳解】如圖所示:設(shè)油桶所在的圓心為O,連接OA,OC,∵AB、BC與⊙O相切于點A、C,∴OA⊥AB,OC⊥BC,又∵AB⊥BC,OA=OC,∴四邊形OABC是正方形,∴OA=AB=BC=OC=0.8m,故選:C.【考點】考查了切線的性質(zhì)和正方形的判定、性質(zhì),解題關(guān)鍵是理解和掌握切線的性質(zhì).二、填空題1、60【解析】【分析】根據(jù)扇形的面積公式求出半徑,然后根據(jù)弧長公式求出圓心角即可.【詳解】解:扇形的面積==6π,解得:r=6,又∵=2π,∴n=60.故答案為:60.【考點】此題考查了扇形的面積和弧長公式,解題的關(guān)鍵是掌握運算方法.2、32【解析】【分析】如圖,作CH⊥AB于H交⊙O于E、F,求出A、B的坐標,根據(jù)勾股定理求出AB,再由S△ABC=AB?CH=OB?AC求出點C到AB的距離CH,即可求出圓C上點到AB的最大距離,根據(jù)面積公式求出即可.【詳解】如圖,作CH⊥AB于H交⊙O于E、F,∵直線y=﹣x+6與x軸、y軸分別交于A、B兩點,∴當y=0時,可得0=﹣x+6,解得:x=8,∴A(8,0),當x=0時,得y=6,∴B(0,6),∴OA=8,OB=6,∴=10,∵C(﹣1,0),∴AC=8+1=9,∴S△ABC=AB?CH=OB?AC,∴,∴CH=5.4,∴FH=CH+CF=5.4+1=6.4,即⊙C上到AB的最大距離為6.4,∴△PAB面積的最大值=×10×6.4=32,故答案為32.【考點】本題考查了三角形的面積,勾股定理、三角形等面積法求高、求圓心到直線的距離等知識,解此題的關(guān)鍵是求出圓上的點到直線AB的最大距離.3、48【解析】【分析】根據(jù)切線長定理得到AE=AH,BE=BF,CF=CG,DH=DG,得到AD+BC=AB+CD=24,根據(jù)四邊形的周長公式計算,得到答案.【詳解】解:∵四邊形ABCD是⊙O的外切四邊形,∴AE=AH,BE=BF,CF=CG,DH=DG,∴AD+BC=AB+CD=24,∴四邊形ABCD的周長=AD+BC+AB+CD=24+24=48,故答案為:48.【考點】本題考查了切線長定理,掌握從圓外一點引圓的兩條切線,它們的切線長相等是解題的關(guān)鍵.4、【解析】【分析】先根據(jù)題目條件計算出OD,CD的長度,判斷為等邊三角形,之后表示出陰影面積的計算公式進行計算即可.【詳解】在中,∴∵∴∵∴為等邊三角形∴故答案為:【考點】本題考查了陰影面積的計算,熟知不規(guī)則陰影面積的計算方法是解題的關(guān)鍵.5、πa【解析】【分析】首先根據(jù)等邊三角形的性質(zhì)得出∠A=∠B=∠C=60°,AB=BC=CA=a,再利用弧長公式求出的長=的長=的長=,那么勒洛三角形的周長為【詳解】解:如圖.∵△ABC是等邊三角形,∴∠A=∠B=∠C=60°,AB=BC=CA=a,∴的長=的長=的長=,∴勒洛三角形的周長為故答案為:πa.【考點】本題考查了弧長公式,解題的關(guān)鍵是掌握(弧長為l,圓心角度數(shù)為n,圓的半徑為R),也考查了等邊三角形的性質(zhì).三、解答題1、【解析】【分析】連接OB、OC,由圓周角定理及圓的性質(zhì)得△OBC是等邊三角形,由OD⊥BC可得CD=BD,由勾股定理可求得OD的長.【詳解】連接OB、OC,如圖則OB=OC=6∵圓周角∠A與圓心角∠BOC對著同一段弧∴∠BOC=2∠A=60゜∴△OBC是等邊三角形∴BC=OB=6∵OD⊥BC∴在Rt△ODC中,由勾股定理得:【考點】本題考查了圓周角定理、等邊三角形的判定與性質(zhì)、勾股定理等知識,連接兩個半徑運用圓周角定理是本題的關(guān)鍵.2、(1)(2)P(,)(3)證明見解析【解析】【分析】(1)把A、C坐標代入可得關(guān)于a、c的二元一次方程組,解方程組求出a、c的值即可得答案;(2)如圖,設(shè)BP與y軸交于點E,直線解析式為,根據(jù)(1)中解析式可知D、B兩點坐標,可得CD//AB,利用ASA可證明△DCB≌△ECB,可得CE=CD,即可得出點E坐標,利用待定系數(shù)法可得直線BP的解析式,聯(lián)立直線BP與拋物線解析式求出交點坐標即可得答案;(3)如圖,連接MD,MF,設(shè)Q(m,-m2+2m+3),F(xiàn)(m,t),根據(jù)CD、QF為⊙M的弦可得圓心M是CD、QF的垂直平分線的交點,即可表示出點M坐標,根據(jù)MD=MF,利用兩點間距離公式可得()2+(2-1)2=(m-1)2+()2,整理可得t=2,即可得答案.(1)∵A(﹣1,0)、C(0,3)在拋物線y=ax2+2x+c圖象上,∴,解得:,∴拋物線解析式為:.(2)如圖,設(shè)BP與y軸交于點E,直線解析式為,∵點D(m,3)在拋物線上,∴,解得:,(與點C重合,舍去),∴D(2,3),∴CD//AB,CD=2,當y=0時,,解得:,,

∴B(3,0),∴OB=OC,∴∠OCB=∠OBC=∠DCB=45°,在△DCB和△ECB中,∵,∴△DCB≌△ECB,∴CE=CD=2,∴OE=OC-CE=1,∴E(0,1),∴,解得:,∴直線BP的解析式為,聯(lián)立直線BP與拋物線解析式得:,解得:(舍去),,∴P(,).(3)如圖,連接MD,MF,設(shè)Q(m,-m2+2m+3),F(xiàn)(m,t),∵CD、QF為⊙M的弦,∴圓心M是CD、QF的垂直平分線的交點,∵C(0,3),D(2,3),QF//y軸,∴M(1,),∵MD=MF,∴2+(2-1)2=(m-1)2+()2,整理得:t=2,∴點F在定直線y=2上.【考點】本題考查待定系數(shù)法求二次函數(shù)解析式、全等三角形的判定與性質(zhì)、二次函數(shù)與一次函數(shù)的交點問題及圓的性質(zhì),綜合性強,熟練掌握相關(guān)知識及定理是解題關(guān)鍵.3、(1)見詳解;(2)4.8.【解析】【分析】(1)連接OD,由AB=AC,OB=OD,則∠B=∠ODB=∠C,則OD∥AC,由DE為切線,即可得到結(jié)論成立;(2)連接AD,則有AD⊥BC,得到BD=CD=8,求出AD=6,利用三角形的面積公式,即可求出DE的長度.【詳解】解:連接OD,如圖:∵AB=AC,∴∠B=∠C,∵OB=OD,∴∠B=∠ODB,∴∠B=∠ODB=∠C,∴OD∥AC,∵DE是切線,∴OD⊥DE,∴AC⊥DE;(2)連接AD,如(1)圖,∵AB為直徑,AB=AC,∴AD是等腰三角形ABC的高,也是中線,∴CD=BD=,∠ADC=90°,∵AB=AC=,由勾股定理,得:,∵,∴;【考點】本題主要考查的是切線的性質(zhì)、等腰三角形的性質(zhì)、平行線的性質(zhì)、勾股定理,解題的關(guān)鍵是熟練掌握所學的性質(zhì)定理,正確的求出邊的長度.4、=,見解析.【解析】【分析】根據(jù)圓心角、弧、弦的關(guān)系,由AD=BC解得=,繼而得到=.【詳解】解:=,證明如下:∵AD=BC,∴=,∴+=+,即=.【考點】本題考查圓心角、弧、弦的關(guān)系,在同圓或等圓中,如果兩個圓心角、兩條弧、兩條弦中有一組量相等,那么它們所對應的其余各組量都分別相等.5、(1)55°;(2).【解析】【分析】(1)連接OC,如圖,利用切線的性質(zhì)得到OC⊥CD,則判斷OC∥AE,所以∠DAC=∠OCA,然后利用∠OCA=∠OAC得到∠OAB的度數(shù),即可求解;(2)利用(1)的結(jié)論先求得∠AEO∠EAO70°,再平行線的性質(zhì)求得∠COE=70°,然后利用弧

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
  • 6. 下載文件中如有侵權(quán)或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論