中考數學總復習《 圓》過關檢測試卷【名師系列】附答案詳解_第1頁
中考數學總復習《 圓》過關檢測試卷【名師系列】附答案詳解_第2頁
中考數學總復習《 圓》過關檢測試卷【名師系列】附答案詳解_第3頁
中考數學總復習《 圓》過關檢測試卷【名師系列】附答案詳解_第4頁
中考數學總復習《 圓》過關檢測試卷【名師系列】附答案詳解_第5頁
已閱讀5頁,還剩13頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領

文檔簡介

中考數學總復習《圓》過關檢測試卷考試時間:90分鐘;命題人:教研組考生注意:1、本卷分第I卷(選擇題)和第Ⅱ卷(非選擇題)兩部分,滿分100分,考試時間90分鐘2、答卷前,考生務必用0.5毫米黑色簽字筆將自己的姓名、班級填寫在試卷規(guī)定位置上3、答案必須寫在試卷各個題目指定區(qū)域內相應的位置,如需改動,先劃掉原來的答案,然后再寫上新的答案;不準使用涂改液、膠帶紙、修正帶,不按以上要求作答的答案無效。第I卷(選擇題20分)一、單選題(5小題,每小題4分,共計20分)1、如圖,在中,,AB=AC=5,點在上,且,點E是AB上的動點,連結,點,G分別是BC,DE的中點,連接,,當AG=FG時,線段長為(

)A. B. C. D.42、已知圓的半徑為扇形的圓心角為,則扇形的面積為(

)A. B. C. D.3、如圖,AB是⊙O的直徑,BC與⊙O相切于點B,AC交⊙O于點D,若∠ACB=50°,則∠BOD等于()A.40° B.50° C.60° D.80°4、已知扇形的半徑為6,圓心角為.則它的面積是(

)A. B. C. D.5、在平面直角坐標系xOy中,已知點A(4,3),以原點O為圓心,5為半徑作⊙O,則()A.點A在⊙O上B.點A在⊙O內C.點A在⊙O外D.點A與⊙O的位置關系無法確定第Ⅱ卷(非選擇題80分)二、填空題(5小題,每小題6分,共計30分)1、如圖,在⊙O中,,,則圖中陰影部分的面積是_________.(結果保留)2、若⊙O的半徑為6cm,則⊙O中最長的弦為________厘米.3、如圖1是臺灣某品牌手工蛋卷的外包裝盒,其截面圖如圖2所示,盒子上方是一段圓?。ɑN).D,E為手提帶的固定點,DE與弧MN所在的圓相切,DE=2.手提帶自然下垂時,最低點為C,且呈拋物線形,拋物線與弧MN交于點F,G.若△CDE是等腰直角三角形,且點C,F(xiàn)到盒子底部AB的距離分別為1,,則弧MN所在的圓的半徑為_____.4、已知圓錐的底面半徑為,側面展開圖的圓心角是180°,則圓錐的高是______.5、如圖,矩形ABCD的對角線交于點O,以點A為圓心,AB的長為半徑畫弧,剛好過點O,以點D為圓心,DO的長為半徑畫弧,交AD于點E,若AC=2,則圖中陰影部分的面積為_____.(結果保留π)三、解答題(5小題,每小題10分,共計50分)1、如圖,在Rt△ABC中,∠ACB=90°,∠BAC的平分線交BC于點O,OC=1,以點O為圓心OC為半徑作半圓.(1)求證:AB為⊙O的切線;(2)如果tan∠CAO=,求cosB的值.2、如圖,在中,∠=45°,,以為直徑的⊙與邊交于點.(1)判斷直線與⊙的位置關系,并說明理由;(2)若,求圖中陰影部分的面積.3、在中,,,,已知⊙O經過點C,且與相切于點D.(1)在圖中作出⊙O;(要求:尺規(guī)作圖,不寫作法,保留作圖痕跡)(2)若點D是邊上的動點,設⊙O與邊、分別相交于點E、F,求的最小值.4、用反證法證明:一條線段只有一個中點.5、如圖,,分別切、于點、.切于點,交于點與不重合).(1)用直尺和圓規(guī)作出;(保留作圖痕跡,不寫作法)(2)若半徑為1,,求的長.-參考答案-一、單選題1、A【解析】【分析】連接DF,EF,過點F作FN⊥AC,F(xiàn)M⊥AB,結合直角三角形斜邊中線等于斜邊的一半求得點A,D,F(xiàn),E四點共圓,∠DFE=90°,然后根據勾股定理及正方形的判定和性質求得AE的長度,從而求解.【詳解】解:連接DF,EF,過點F作FN⊥AC,F(xiàn)M⊥AB∵在中,,點G是DE的中點,∴AG=DG=EG又∵AG=FG∴點A,D,F(xiàn),E四點共圓,且DE是圓的直徑∴∠DFE=90°∵在Rt△ABC中,AB=AC=5,點是BC的中點,∴CF=BF=,F(xiàn)N=FM=又∵FN⊥AC,F(xiàn)M⊥AB,∴四邊形NAMF是正方形∴AN=AM=FN=又∵,∴∴△NFD≌△MFE∴ME=DN=AN-AD=∴AE=AM+ME=3∴在Rt△DAE中,DE=故選:A.【考點】本題考查直徑所對的圓周角是90°,四點共圓及正方形的判定和性質和用勾股定理解直角三角形,掌握相關性質定理正確推理計算是解題關鍵.2、B【解析】【分析】扇形面積公式為:利用公式直接計算即可得到答案.【詳解】解:圓的半徑為扇形的圓心角為,故選:【考點】本題考查的是扇形的面積的計算,掌握扇形的面積的計算公式是解題的關鍵.3、D【解析】【分析】根據切線的性質得到∠ABC=90°,根據直角三角形的性質求出∠A,根據圓周角定理計算即可.【詳解】∵BC是⊙O的切線,∴∠ABC=90°,∴∠A=90°-∠ACB=40°,由圓周角定理得,∠BOD=2∠A=80°,故選D.【考點】本題考查的是切線的性質、圓周角定理,掌握圓的切線垂直于經過切點的半徑是解題的關鍵.4、D【解析】【分析】已知扇形的半徑和圓心角度數求扇形的面積,選擇公式直接計算即可.【詳解】解:.故選:D【考點】本題考查扇形面積公式的知識點,熟知扇形面積公式及適用條件是解題的關鍵.5、A【解析】【分析】先求出點A到圓心O的距離,再根據點與圓的位置依據判斷可得.【詳解】解:∵點A(4,3)到圓心O的距離,∴OA=r=5,∴點A在⊙O上,故選:A.【考點】本題考查了對點與圓的位置關系的判斷.關鍵要記住若半徑為,點到圓心的距離為,則有:當時,點在圓外;當時,點在圓上,當時,點在圓內,也考查了勾股定理的應用.二、填空題1、【解析】【分析】由,根據圓周角定理得出,根據S陰影=S扇形AOB-可得出結論.【詳解】解:∵,∴,∴S陰影=S扇形AOB-,故答案為:.【考點】本題主要考查圓周角定理、扇形的面積計算,根據題意求得三角形與扇形的面積是解答此題的關鍵.2、12【解析】【詳解】解:∵⊙O的半徑為6cm,∴⊙O的直徑為12cm,即圓中最長的弦長為12cm.故答案為12.3、.【解析】【分析】以DE的垂直平分線為y軸,AB所在的直線為x軸建立平面直角坐標系,設拋物線的表達式為y=ax2+1,因為△CDE是等腰直角三角形,DE=2,得點E的坐標為(1,2),可得拋物線的表達式為y=x2+1,把當y代入拋物線表達式,求得MH的長,再在Rt△FHM中,用勾股定理建立方程,求得所在的圓的半徑.【詳解】如圖,以DE的垂直平分線為y軸,AB所在的直線為x軸建立平面直角坐標系,設所在的圓的圓心為P,半徑為r,過F作y軸的垂線交y軸于H,設拋物線的表達式為y=ax2+1.∵△CDE是等腰直角三角形,DE=2,∴點E的坐標為(1,2),代入拋物線的表達式,得:2=a+1,a=1,∴拋物線的表達式為y=x2+1,當y時,即,解得:,∴FH.∵∠FHM=90°,DE與所在的圓相切,∴,解得:,∴所在的圓的半徑為.故答案為.【考點】本題考查了圓的切線的性質,待定系數法求拋物線的表達式,垂徑定理.解題的關鍵是建立合適的平面直角坐標系得出拋物線的表達式.4、【解析】【分析】設圓錐的母線長為Rcm,根據圓錐的側面展開圖為一扇形,這個扇形的弧長等于圓錐底面的周長,扇形的半徑等于圓錐的母線長和弧長公式得到2π?5=,然后解方程即可得母線長,然后利用勾股定理求得圓錐的高即可.【詳解】解:設圓錐的母線長為Rcm,根據題意得2π?5=,解得R=10.即圓錐的母線長為10cm,∴圓錐的高為:(cm).故答案為:.【考點】本題考查了圓錐的計算:圓錐的側面展開圖為一扇形,這個扇形的弧長等于圓錐底面的周長,扇形的半徑等于圓錐的母線長.5、【解析】【分析】由圖可知,陰影部分的面積是扇形ABO和扇形DEO的面積之和,然后根據題目中的數據,可以求得AB、OA、DE的長,∠BAO和∠EDO的度數,從而可以解答本題.【詳解】解:∵四邊形ABCD是矩形,∴OA=OC=OB=OD,∵AB=AO,∴△ABO是等邊三角形,∴∠BAO=60°,∴∠EDO=30°,∵AC=2,∴OA=OD=1,∴圖中陰影部分的面積為:,故答案為:.【考點】本題主要考查扇形面積、矩形的性質及等邊三角形的性質與判定,熟練掌握扇形面積、矩形的性質及等邊三角形的性質與判定是解題的關鍵.三、解答題1、(1)證明見解析(2)【解析】【詳解】(1)證明:作OM⊥AB于M,∵OA平分∠CAB,OC⊥AC,OM⊥AB,∴OC=OM.∴AB是⊙O的切線.(2)設BM=x,OB=y(tǒng),則y2-x2=1.①∵tan∠CAO=,∴AC=AM=3.∵cosB=,∴.∴x2+3x=y(tǒng)2+y.②由①②可得y=3x-1,∴(3x-1)2-x2=1.∴x=,y=.∴cosB==.2、(1)證明見解析(2)【解析】【分析】(1)利用等腰三角形的性質與三角形的內角和定理證明從而可得結論;(2)如圖,記BC與的交點為M,連接OM,先證明再利用陰影部分的面積等于三角形ABC的面積減去三角形BOM的面積,減去扇形AOM的面積即可.(1)證明:∠=45°,,即在上,為的切線.(2)如圖,記BC與的交點為M,連接OM,,,,,,,.【考點】本題考查的是等腰三角形的性質,切線的判定,扇形面積的計算,掌握“切線的判定方法與割補法求解不規(guī)則圖形面積的方法”是解本題的關鍵.3、(1)見詳解.(2)【解析】【分析】(1)連接CD,用尺規(guī)作圖,作線段CD的垂直平分線,找到線段CD的中點O,然后以O為圓心,為半徑主要作圓即為所作圓.(2)過點C作,根據點到直線的距離,垂線段最短可知,點CD為圓的直徑時,此時圓的直徑最短,根據面積法可得出因為EF也為圓的直徑,所以可得出EF最最小值為(1)如圖所示,為所作圓.(2)如圖,作于點D,當CD為過的圓心點O時,此時圓的直徑最短∴EF為的直徑,∴此時EF的長為故EF的最小值為:【考點】本題主要考查了尺規(guī)作圖,勾股定理,三角形面積求斜邊上的高,垂線段最短等知識點的應用,熟練掌握點到直線的距離垂線段最短這性質定理是解此題的關鍵.4、見解析.【解析】【分析】首先假設結論的反面:一條線段可以有多個中點,不妨設有兩個,根據中點的定義得出矛盾,即可證得.【詳解】解:已知:一條線段,點M為的中點.求證:線段只有一個中點M,證明:假設線段有兩個中點,分別為點M、N,不妨設點M在點N的左邊,則,又∵,這與矛盾,∴假設不成立,線段只有一個中點M.∴一條線段只有一個中點.【考點】本題主要

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經權益所有人同意不得將文件中的內容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
  • 6. 下載文件中如有侵權或不適當內容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

最新文檔

評論

0/150

提交評論