綜合解析人教版8年級(jí)數(shù)學(xué)下冊(cè)《平行四邊形》定向測(cè)試試卷(含答案詳解)_第1頁(yè)
綜合解析人教版8年級(jí)數(shù)學(xué)下冊(cè)《平行四邊形》定向測(cè)試試卷(含答案詳解)_第2頁(yè)
綜合解析人教版8年級(jí)數(shù)學(xué)下冊(cè)《平行四邊形》定向測(cè)試試卷(含答案詳解)_第3頁(yè)
綜合解析人教版8年級(jí)數(shù)學(xué)下冊(cè)《平行四邊形》定向測(cè)試試卷(含答案詳解)_第4頁(yè)
綜合解析人教版8年級(jí)數(shù)學(xué)下冊(cè)《平行四邊形》定向測(cè)試試卷(含答案詳解)_第5頁(yè)
已閱讀5頁(yè),還剩22頁(yè)未讀 繼續(xù)免費(fèi)閱讀

下載本文檔

版權(quán)說(shuō)明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)

文檔簡(jiǎn)介

人教版8年級(jí)數(shù)學(xué)下冊(cè)《平行四邊形》定向測(cè)試考試時(shí)間:90分鐘;命題人:教研組考生注意:1、本卷分第I卷(選擇題)和第Ⅱ卷(非選擇題)兩部分,滿分100分,考試時(shí)間90分鐘2、答卷前,考生務(wù)必用0.5毫米黑色簽字筆將自己的姓名、班級(jí)填寫(xiě)在試卷規(guī)定位置上3、答案必須寫(xiě)在試卷各個(gè)題目指定區(qū)域內(nèi)相應(yīng)的位置,如需改動(dòng),先劃掉原來(lái)的答案,然后再寫(xiě)上新的答案;不準(zhǔn)使用涂改液、膠帶紙、修正帶,不按以上要求作答的答案無(wú)效。第I卷(選擇題20分)一、單選題(5小題,每小題4分,共計(jì)20分)1、如圖,正方形ABCD中,AB=12,點(diǎn)E在邊BC上,BE=EC,將△DCE沿DE對(duì)折至△DFE,延長(zhǎng)EF交邊AB于點(diǎn)G,連接DG、BF,給出以下結(jié)論:①△DAG≌△DFG;②BG=2AG;③BF//DE;④S△BEF=.其中所有正確結(jié)論的個(gè)數(shù)是()A.1 B.2 C.3 D.42、直角三角形的兩條直角邊分別為5和12,那么這個(gè)三角形的斜邊上的中線長(zhǎng)為()A.6 B.6.5 C.10 D.133、如圖,已知菱形ABCD的對(duì)角線AC,BD的長(zhǎng)分別為6,8,AE⊥BC,垂足為點(diǎn)E,則AE的長(zhǎng)是()A.5 B.2 C. D.4、如圖,在?ABCD中,AD=2AB,F(xiàn)是AD的中點(diǎn),作CE⊥AB于E,在線段AB上,連接EF、CF.則下列結(jié)論:①∠BCD=2∠DCF;②∠ECF=∠CEF;③S△BEC=2S△CEF;④∠DFE=3∠AEF,其中一定正確的是(

)A.②④ B.①②④

C.①②③④

D.②③④5、平行四邊形OABC在平面直角坐標(biāo)系中的位置如圖所示,∠AOC=45°,OA=OC=,則點(diǎn)B的坐標(biāo)為()A.(,1) B.(1,) C.(+1,1) D.(1,+1)第Ⅱ卷(非選擇題80分)二、填空題(5小題,每小題6分,共計(jì)30分)1、如圖,將長(zhǎng)方形ABCD按圖中方式折疊,其中EF、EC為折痕,折疊后、、E在一直線上,已知∠BEC=65°,那么∠AEF的度數(shù)是_____.2、一個(gè)矩形的兩條對(duì)角線所夾的銳角是60°,這個(gè)角所對(duì)的邊長(zhǎng)為10cm,則該矩形的面積為_(kāi)______.3、如圖,已知Rt△ACB,∠ACB=90°,∠ABC=60°,AB=8,點(diǎn)D在CB所在直線上運(yùn)動(dòng),以AD為邊作等邊三角形ADE,則CB=___.在點(diǎn)D運(yùn)動(dòng)過(guò)程中,CE的最小值為_(kāi)__.4、如圖,在平面直角坐標(biāo)系中,O是菱形ABCD對(duì)角線BD的中點(diǎn),AD∥x軸,AD=4,∠A=60°.將菱形ABCD繞點(diǎn)O旋轉(zhuǎn),使點(diǎn)D落在x軸上,則旋轉(zhuǎn)后點(diǎn)C的對(duì)應(yīng)點(diǎn)的坐標(biāo)是_____________.5、如圖,在正方形ABCD中,點(diǎn)O在內(nèi),,則的度數(shù)為_(kāi)_____.三、解答題(5小題,每小題10分,共計(jì)50分)1、如圖,在平行四邊形ABCD中,,點(diǎn)E、F分別是BC、AD的中點(diǎn).(1)求證:;(2)當(dāng)時(shí),在不添加輔助線的情況下,直接寫(xiě)出圖中等于的2倍的所有角.2、如圖,△ABC為等邊三角形,點(diǎn)D為線段BC上一點(diǎn),將線段AD以點(diǎn)A為旋轉(zhuǎn)中心順時(shí)針旋轉(zhuǎn)60°得到線段AE,連接BE,點(diǎn)D關(guān)于直線BE的對(duì)稱點(diǎn)為F,BE與DF交于點(diǎn)G,連接DE,EF.(1)求證:∠BDF=30°(2)若∠EFD=45°,AC=+1,求BD的長(zhǎng);(3)如圖2,在(2)條件下,以點(diǎn)D為頂點(diǎn)作等腰直角△DMN,其中DN=MN=,連接FM,點(diǎn)O為FM的中點(diǎn),當(dāng)△DMN繞點(diǎn)D旋轉(zhuǎn)時(shí),求證:EO的最大值等于BC.3、(閱讀材料)材料一:我們?cè)谛W(xué)學(xué)習(xí)過(guò)正方形,知道:正方形的四條邊都相等,四個(gè)角都是直角;材料二:如圖1,由一個(gè)等腰直角三角形和一個(gè)正方形組成的圖形,我們要判斷等腰直角三角形的面積與正方形的面積的大小關(guān)系,可以這樣做:如圖2,連接AC,BD,把正方形分成四個(gè)與等腰三角形ADE全等的三角形,所以.(解決問(wèn)題)如圖3,圖中由三個(gè)正方形組成的圖形(1)請(qǐng)你直接寫(xiě)出圖中所有的全等三角形;(2)任意選擇一組全等三角形進(jìn)行證明;(3)設(shè)圖中兩個(gè)小正方形的面積分別為S1和S2,若,求S1和S2的值.4、如圖,已知四邊形ABCD是正方形,點(diǎn)E是AD邊上的一點(diǎn)(不與點(diǎn)A,D重合),連接CE,以CE為一邊作正方形CEFG,使點(diǎn)F,G與點(diǎn)A,B在CE的兩側(cè),連接BE并延長(zhǎng),交GD延長(zhǎng)線于點(diǎn)H.(1)如圖1,請(qǐng)判斷線段BE與GD的數(shù)量關(guān)系和位置關(guān)系,并說(shuō)明理由;(2)如圖2,連接BG,若AB=2,CE=,請(qǐng)你直接寫(xiě)出的值.5、如圖,在平行四邊形中,連接.(1)請(qǐng)用尺規(guī)完成基本作圖:在上方作,使,射線交于點(diǎn)F,在線段上截取,使.(2)連接,求證:四邊形是菱形.-參考答案-一、單選題1、D【解析】【分析】根據(jù)正方形的性質(zhì)和折疊的性質(zhì)可得AD=DF,∠A=∠GFD=90°,于是根據(jù)“HL”判定Rt△ADG≌Rt△FDG;②再由GF+GB=GA+GB=12,EB=EF,△BGE為直角三角形,可通過(guò)勾股定理列方程求出AG=4,BG=8,即可判斷;③由△BEF是等腰三角形,證明∠EBF=∠DEC,;④結(jié)合①可得AG=GF,根據(jù)等高的兩個(gè)三角形的面積的比等于底與底的比即可求出三角形BEF的面積.【詳解】解:①由折疊可知,DF=DC=DA,∠DFE=∠C=90°,∴∠DFG=∠A=90°,在Rt△ADG和Rt△FDG中,∴Rt△ADG≌Rt△FDG(HL),故①正確;②∵正方形邊長(zhǎng)是12,∴BE=EC=EF=6,設(shè)AG=FG=x,則EG=x+6,BG=12?x,由勾股定理得:EG2=BE2+BG2,即:(x+6)2=62+(12?x)2,解得:x=4,∴AG=GF=4,BG=8,BG=2AG,故②正確;③∵EF=EC=EB,∴∠EFB=∠EBF,∵∠DEC=∠DEF,∠CEF=∠EFB+∠EBF,∴∠DEC=∠EBF,∴BF//DE,故③正確;④∵S△GBE=BE?BG=×6×8=24,∵GF=AG=4,EF=BE=6,∴,∴S△BEF=S△GBE=×24=,故④正確.綜上可知正確的結(jié)論的是4個(gè).故選:D.【點(diǎn)睛】本題考查了圖形的翻折變換的性質(zhì)和正方形的性質(zhì),全等三角形的判定與性質(zhì),勾股定理,平行線的判定,三角形的面積計(jì)算,有一定的難度.2、B【解析】【分析】根據(jù)勾股定理可求得直角三角形斜邊的長(zhǎng),再根據(jù)直角三角形斜邊上的中線等于斜邊的一半即可求解.【詳解】解:∵直角三角形兩直角邊長(zhǎng)為5和12,∴斜邊=,∴此直角三角形斜邊上的中線的長(zhǎng)==6.5.故選:B.【點(diǎn)睛】本題主要考查勾股定理及直角三角形斜邊中線定理,熟練掌握勾股定理及直角三角形斜邊中線定理是解題的關(guān)鍵.3、D【解析】【分析】根據(jù)菱形的性質(zhì)得出BO、CO的長(zhǎng),在Rt△BOC中求出BC,利用菱形面積等于對(duì)角線乘積的一半,也等于BC×AE,可得出AE的長(zhǎng)度.【詳解】解:∵四邊形ABCD是菱形,∴CO=AC=3,BO=BD=4,AO⊥BO,∴BC==5,∴S菱形ABCD=,∵S菱形ABCD=BC×AE,∴BC×AE=24,∴AE=,故選:D.【點(diǎn)睛】此題考查了菱形的性質(zhì),也涉及了勾股定理,要求我們掌握菱形的面積的兩種表示方法,及菱形的對(duì)角線互相垂直且平分.4、B【解析】【分析】根據(jù)易得DF=CD,由平行四邊形的性質(zhì)AD∥BC即可對(duì)①作出判斷;延長(zhǎng)EF,交CD延長(zhǎng)線于M,可證明△AEF≌△DMF,可得EF=FM,由直角三角形斜邊上中線的性質(zhì)即可對(duì)②作出判斷;由△AEF≌△DMF可得這兩個(gè)三角形的面積相等,再由MC>BE易得S△BEC<2S△EFC,從而③是錯(cuò)誤的;設(shè)∠FEC=x,由已知及三角形內(nèi)角和可分別計(jì)算出∠DFE及∠AEF,從而可判斷④正確與否.【詳解】①∵F是AD的中點(diǎn),∴AF=FD,∵在?ABCD中,AD=2AB,∴AF=FD=CD,∴∠DFC=∠DCF,∵AD∥BC,∴∠DFC=∠FCB,∴∠DCF=∠BCF,∴∠BCD=2∠DCF,故①正確;②延長(zhǎng)EF,交CD延長(zhǎng)線于M,∵四邊形ABCD是平行四邊形,∴AB∥CD,∴∠A=∠MDF,∵F為AD中點(diǎn),∴AF=FD,在△AEF和△DFM中,,∴△AEF≌△DMF(ASA),∴FE=MF,∠AEF=∠M,∵CE⊥AB,∴∠AEC=90°,∴∠AEC=∠ECD=90°,∵FM=EF,∴FC=FE,∴∠ECF=∠CEF,故②正確;③∵EF=FM,∴S△EFC=S△CFM,∵M(jìn)C>BE,,∴S△BEC<2S△EFC,故S△BEC=2S△CEF,故③錯(cuò)誤;④設(shè)∠FEC=x,則∠FCE=x,∴∠DCF=∠DFC=90°﹣x,∴∠EFC=180°﹣2x,∴∠EFD=90°﹣x+180°﹣2x=270°﹣3x,∵∠AEF=90°﹣x,∴∠DFE=3∠AEF,故④正確,故選:B.【點(diǎn)睛】本題考查了平行四邊形的性質(zhì),全等三角形的判定與性質(zhì),直角三角形斜邊上中線的性質(zhì),三角形的面積等知識(shí),構(gòu)造輔助線證明三角形全等是本題的關(guān)鍵和難點(diǎn).5、C【解析】【分析】作,求得、的長(zhǎng)度,即可求解.【詳解】解:作,如下圖:則在平行四邊形中,,∴∴為等腰直角三角形則,解得∴故選:C【點(diǎn)睛】此題考查了平行四邊形的性質(zhì),等腰直角三角形的性質(zhì)以及勾股定理,解題的關(guān)鍵是靈活運(yùn)用相關(guān)性質(zhì)進(jìn)行求解.二、填空題1、25°【解析】【分析】利用翻折變換的性質(zhì)即可解決.【詳解】解:由折疊可知,∠EF=∠AEF,∠EC=∠BEC=65°,∵∠EF+∠AEF+∠EC+∠BEC=180°,∴∠EF+∠AEF=50°,∴∠AEF=25°,故答案為:25°.【點(diǎn)睛】本題考查了折疊的性質(zhì),熟練掌握折疊的性質(zhì)是解題的關(guān)鍵.2、【解析】【分析】先根據(jù)矩形的性質(zhì)證明△ABC是等邊三角形,得到,則,然后根據(jù)勾股定理求出,最后根據(jù)矩形面積公式求解即可.【詳解】:如圖所示,在矩形ABCD中,∠AOB=60°,,∵四邊形ABCD是矩形,∴∠ABC=90°,,∴△ABC是等邊三角形,∴,∴,∴,∴,故答案為:.【點(diǎn)睛】本題主要考查了矩形的性質(zhì),勾股定理,等邊三角形的性質(zhì)與判定,解題的關(guān)鍵在于能夠熟練掌握矩形的性質(zhì).3、4【解析】【分析】以AC為邊作正△AFC,并作FH⊥AC,垂足為點(diǎn)H,連接FD、CE,由直角三角形可求BC=4,,由“SAS”可證△FAD≌△CAE,得CE=FD,CE最小即是FD最小,此時(shí),故CE的最小值是.【詳解】解:以AC為邊作正△AFC,并作FH⊥AC,垂足為點(diǎn)H,連接FD、CE,如圖:在Rt△ACB中,∠ACB=90°,∠ABC=60°,∴∠BAC=30°,∴,∴∵△AFC,△ADE都是等邊三角形,∴AD=AE,AF=AC,∠DAE=∠FAC=60°,∴∠FAD+∠DAC=∠CAE+∠DAC,即∠FAD=∠CAE,在△FAD和△CAE中,,∴△FAD≌△CAE(SAS),∴CE=FD,∴CE最小即是FD最小,∴當(dāng)FD⊥BD時(shí),F(xiàn)D最小,此時(shí)∠FDC=∠DCH=∠CHF=90°,∴四邊形FDCH是矩形,∴,∴CE的最小值是.故答案為:4,.【點(diǎn)睛】本題主要考查了等邊三角形的性質(zhì),全等三角形的性質(zhì)與判定,矩形的性質(zhì)與判定,含30度角的直角三角形的性質(zhì),勾股定理等等,解題的關(guān)鍵在于能夠熟練掌握等邊三角形的性質(zhì).4、或##或【解析】【分析】分當(dāng)D落在x軸正半軸時(shí)和當(dāng)D落在x軸負(fù)半軸時(shí),兩種情況討論求解即可.【詳解】解:如圖1所示,當(dāng)D落在x軸正半軸時(shí),∵O是菱形ABCD對(duì)角線BD的中點(diǎn),∴AO⊥DO,∴當(dāng)D落在x軸正半軸時(shí),A點(diǎn)在y軸正半軸,∴同理可得A、B、C三點(diǎn)均在坐標(biāo)軸上,且點(diǎn)C在y軸負(fù)半軸,∵∠BAD=60°,∴∠OAD=30°,∴,∴,∴點(diǎn)C的坐標(biāo)為(0,);如圖2所示,當(dāng)D落在x軸負(fù)半軸時(shí),同理可得,∴點(diǎn)C的坐標(biāo)為(0,);∴綜上所述,點(diǎn)C的坐標(biāo)為(0,)或(0,),故答案為:(0,)或(0,).【點(diǎn)睛】本題主要考查了菱形的性質(zhì),坐標(biāo)與圖形,含30度角的直角三角形的性質(zhì),勾股定理,熟練掌握菱形的性質(zhì)是解題的關(guān)鍵.5、135°【解析】【分析】先根據(jù)正方形的性質(zhì)得到∠OAC+∠OAD=45°,再由∠OAC=∠ODA,推出∠ODA+∠OAD=45°,即可利用三角形內(nèi)角和定理求解.【詳解】解:∵四邊形ABCD是正方形,∴∠CAD=45°,∴∠OAC+∠OAD=45°,又∵∠OAC=∠ODA,∴∠ODA+∠OAD=45°,∴∠AOD=180°-∠ODA-∠OAD=135°,故答案為:135°.【點(diǎn)睛】本題主要考查了正方形的性質(zhì),三角形內(nèi)角和定理,解題的關(guān)鍵在于能夠熟練掌握正方形的性質(zhì).三、解答題1、(1)證明見(jiàn)解析;(2)【分析】(1)先證明再證明從而可得結(jié)論;(2)證明是等邊三角形,再分別求解從而可得答案.【詳解】證明(1)平行四邊形ABCD中,,點(diǎn)E、F分別是BC、AD的中點(diǎn),(2),是等邊三角形,四邊形是平行四邊形,而,所以等于的2倍的角有:【點(diǎn)睛】本題考查的是全等三角形的判定與性質(zhì),等邊三角形的判定與性質(zhì),平行四邊形的性質(zhì),證明“是等邊三角形”是解(2)的關(guān)鍵.2、(1)見(jiàn)解析;(2)2;(3)見(jiàn)解析【分析】(1)由△ABC是等邊三角形,可得∠ABC=60°,由D、F關(guān)于直線BE對(duì)稱,得到BF=BD,則∠BFD=∠BDF,由三角形外角的性質(zhì)得到∠BFD+∠BDF=∠ABD,則∠BDF=∠BFD=30°;(2)設(shè),由D、F關(guān)于直線BE對(duì)稱,得到∠BGD=∠BGF=90°,EF=ED,EG=DG,由含30度角的直角三角形的性質(zhì)和勾股定理得,,證明△EAB≌△DAC得到,再由,得到,由此求解即可;(3)連接OG,先求出,證明OG是三角形DMF的中位線,得到,再根據(jù)兩點(diǎn)之間線段最短可知,則OE的最大值等于BC.【詳解】解:(1)∵△ABC是等邊三角形,∴∠ABC=60°,∵D、F關(guān)于直線BE對(duì)稱,∴BF=BD,∴∠BFD=∠BDF,∵∠BFD+∠BDF=∠ABD,∴∠BDF=∠BFD=30°;(2)設(shè),∵D、F關(guān)于直線BE對(duì)稱,∴∠BGD=∠BGF=90°,EF=ED,∴∠EDG=EFG=45°,∴EG=DG,∵∠BDG=30°,∴,∴,由旋轉(zhuǎn)的性質(zhì)可得AE=AD,∠EAD=∠BAC=60°,∴∠EAB+∠BAD=∠CAD+∠BAD,即∠EAB=∠DAC,又∵AB=AC,∴△EAB≌△DAC(SAS),∴,∵,∴,∴,∴;(3)如圖所示,連接OG,∵在等腰直角三角形DMN中,,∴,∵D、F關(guān)于直線BE對(duì)稱,∴G為DF的中點(diǎn),又∵O為FM的中點(diǎn),∴OG是三角形DMF的中位線,∴,由(2)可得,根據(jù)兩點(diǎn)之間線段最短可知,∴OE的最大值等于BC.【點(diǎn)睛】本題主要考查了等邊三角形的性質(zhì),軸對(duì)稱的性質(zhì),全等三角形的性質(zhì)與判定,勾股定理,含30度角的直角三角形性質(zhì),三角形中位線定理,兩點(diǎn)之間線段最短等等,解題的關(guān)鍵在于能夠熟練掌握軸對(duì)稱的性質(zhì)和等邊三角形的性質(zhì).3、(1);;;(2)證明;證明見(jiàn)解析;(3),【分析】(1)根據(jù)圖形可得出三對(duì)全等三角形;(2)根據(jù)正方形的性質(zhì)及全等三角形的判定定理對(duì)(1)中全等三角形依次證明即可;(3)連接BG,由材料二可得,被分成4個(gè)面積相等的等腰直角三角形,即可得出;連接HJ,KI,過(guò)點(diǎn)H作HM⊥AD于點(diǎn)M,過(guò)點(diǎn)I作IN⊥CD于點(diǎn)N,則被分為9個(gè)面積相等的等腰直角三角形,即可得出.【詳解】解:(1);;(2)證明;由題意得,在正方形ABCD中,∵,,在和中;證明:;由題意得,在正方形HIJK中,,,∵AC為正方形ABCD的對(duì)角線,∴,在和中,∴;證明:由題意得,在正方形EBFG中,,,∵AC為正方形ABCD的對(duì)角線,∴,在和中,∴;(3)如圖,連接BG,由材料二可得,被分成4個(gè)面積相等的等腰直角三角形,.∴連接HJ,KI,過(guò)點(diǎn)H作HM⊥AD于點(diǎn)M,過(guò)點(diǎn)I作IN⊥CD于點(diǎn)N,則被分為9個(gè)面積相等的等腰直角三角形,∴.∴,.【點(diǎn)睛】題目主要考查正方形的性質(zhì)、全等三角形的判定定理及對(duì)題意的理解能力,熟練掌握全等三角形的判定定理及理解題意是解題關(guān)鍵.4、(1)BE=DG,BE⊥DG,理由見(jiàn)解析;(2).【分析】(1)由“SAS”證得△GCD≌△ECB;再由全等三角形的性質(zhì)和平行線的性質(zhì)可得∠EBC=∠HED

溫馨提示

  • 1. 本站所有資源如無(wú)特殊說(shuō)明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒(méi)有圖紙預(yù)覽就沒(méi)有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。

最新文檔

評(píng)論

0/150

提交評(píng)論