版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領
文檔簡介
北師大版9年級數(shù)學上冊期末試卷考試時間:90分鐘;命題人:教研組考生注意:1、本卷分第I卷(選擇題)和第Ⅱ卷(非選擇題)兩部分,滿分100分,考試時間90分鐘2、答卷前,考生務必用0.5毫米黑色簽字筆將自己的姓名、班級填寫在試卷規(guī)定位置上3、答案必須寫在試卷各個題目指定區(qū)域內相應的位置,如需改動,先劃掉原來的答案,然后再寫上新的答案;不準使用涂改液、膠帶紙、修正帶,不按以上要求作答的答案無效。第I卷(選擇題24分)一、單選題(6小題,每小題2分,共計12分)1、如下圖所示的幾何體從上面看到的圖形()A. B. C. D.2、如圖,點D、E分別在△ABC的邊BA、CA的延長線上,且DE∥BC,已知AE=3,AC=6,AD=2,則BD的長為()A.4 B.6 C.7 D.83、為了解某地區(qū)九年級男生的身高情況,隨機抽取了該地區(qū)1000名九年級男生的身高數(shù)據(jù),統(tǒng)計結果如下.身高人數(shù)60260550130根據(jù)以上統(tǒng)計結果,隨機抽取該地區(qū)一名九年級男生,估計他的身高不低于的概率是(
)A.0.32 B.0.55 C.0.68 D.0.874、如圖,菱形ABCD的兩條對角線長分別為AC=6,BD=8,點P是BC邊上的一動點,則AP的最小值為(
)A.4 B.4.8 C.5 D.5.55、如圖,在中,,,將繞點C順時針旋轉得到,點在上,交于F,則圖中與相似的三角形有(不再添加其他線段)(
)A.1個 B.2個 C.3個 D.4個6、如圖,正方形紙板的一條對角線重直于地面,紙板上方的燈(看作一個點)與這條對角線所確定的平面垂直于紙板,在燈光照射下,正方形紙板在地面上形成的影子的形狀可以是(
)A. B. C. D.二、多選題(6小題,每小題2分,共計12分)1、如圖,□ABCD中,E是AD延長線上一點,BE交AC于點F,交DC于點G,則下列結論中正確的是()A.△ABE∽△DGE B.△CGB∽△DGEC.△BCF∽△EAF D.△ACD∽△GCF2、已知兩個直角三角形的三邊長分別為3,4,m和6,8,n,且這兩個直角三角形不相似,則m+n的值為(
).A.5+2B.15C.10+D.15+33、如圖,在直角坐標系中,直線y1=2x﹣2與坐標軸交于A、B兩點,與雙曲線y2=(x>0)交于點C,過點C作CD⊥x軸,垂足為D,且OA=AD,則以下結論中正確的是(
)A.S△ADB=S△ADC;B.當0<x<3時,y1<y2;C.如圖,當x=3時,EF=;D.當x>0時,y1隨x的增大而增大,y2隨x的增大而減?。?、如圖,若,則不能得到的是(
)A. B. C. D.5、(多選)為了推動“成渝地區(qū)雙城經濟圈”的建設,某工廠為了推進產業(yè)協(xié)作“一條鏈”,自2021年1月開始科學整改,其月利潤(萬元)與月份之間的變化如圖所示,整改前是反比例函數(shù)圖象的一部分,整改后是一次函數(shù)圖象的一部分,下列選項正確的有(
)A.4月份的利潤為50萬元B.治污改造完成后每月利潤比前一個月增加30萬元C.治污改造完成前后共有4個月的利潤低于100萬元D.9月份該廠利潤達到200萬元6、如圖,在四邊形ABCD中,∠B=∠C,AB=3,CD=2,BC=6,點P是邊BC上的動點,若△ABP與△CDP相似,則BP=(
)A.3.6 B.C. D.2.4第Ⅱ卷(非選擇題76分)三、填空題(8小題,每小題2分,共計16分)1、如圖,在Rt△ABC中,∠ACB=90°,,點D為AB的中點,點P在AC上,且CP=1,將CP繞點C在平面內旋轉,點P的對應點為點Q,連接AQ,DQ.當∠ADQ=90°時,AQ的長為______.2、一個直角三角形的兩條直角邊相差5cm,面積是7cm2,則其斜邊的長是___.3、如圖,點E、F分別是矩形ABCD邊BC和CD上的點,把△CEF沿直線EF折疊得到△GEF,再把△BEG沿直線BG折疊,點E的對應點H恰好落在對角線BD上,若此時F、G、H三點在同一條直線上,且線段HF與HD也恰好關于某條直線對稱,則的值為______.4、關于的方程有兩個不相等的實數(shù)根,則的取值范圍是________.5、如圖,在矩形ABCD中,AB=6,BC=8,點E、F分別是邊AB、BC上的動點,且EF=4,點G是EF的中點,AG、CG,則四邊形AGCD面積的最小值為_______.6、如圖,在一塊長為22m,寬為14m的矩形空地內修建三條寬度相等的小路(陰影部分),其余部分種植花草.若花草的種植面積為240m2,則小路的寬為________m.7、如圖,在邊長為1的正方形ABCD中,等邊△AEF的頂點E、F分別在邊BC和CD上則下列結論:①CE=CF:②∠AEB=75°;③S△EFC=1;④,其中正確的有______(用序號填寫)8、如圖,四邊形ABCD為菱形,,延長BC到E,在內作射線CM,使得,過點D作,垂足為F.若,則對角線BD的長為______.四、解答題(6小題,每小題10分,共計60分)1、解一元二次方程(1)(2)2、解下列方程.(1)x2+2x=0;(2)2x2-3x-1=0.3、如圖所示,直線y=x+2與坐標軸交于A、B兩點,與反比例函數(shù)y=(x>0)交于點C,已知AC=2AB.(1)求反比例函數(shù)解析式;(2)若在點C的右側有一平行于y軸的直線,分別交一次函數(shù)圖象與反比例函數(shù)圖象于D、E兩點,若CD=CE,求點D坐標.4、解關于y的方程:by2﹣1=y(tǒng)2+2.5、已知圖中的曲線是反比例函數(shù)y=(m為常數(shù))圖象的一支.(1)根據(jù)圖象位置,求m的取值范圍;(2)若該函數(shù)的圖象任取一點A,過A點作x軸的垂線,垂足為B,當△OAB的面積為4時,求m的值.6、如圖,在Rt△ABC中,∠ACB=90°,∠BAC=60°,AC=6,AD平分∠BAC,交邊BC于點D,過點D作CA的平行線,交邊AB于點E.(1)求線段DE的長;(2)取線段AD的中點M,連接BM,交線段DE于點F,延長線段BM交邊AC于點G,求的值.-參考答案-一、單選題1、D【解析】【分析】該幾何體是下面一個長方體,上面是一個小的長方體,因此從上面看到的圖形是兩個長方形疊在一起.【詳解】解:從上面看到的圖形:故答案為:D.【考點】此題考查了從不同方向觀察物體和幾何體,考查學生的空間想象能力和抽象思維能力.2、B【解析】【分析】只需要證明△AED∽△ACB即可求解.【詳解】解∵DE∥BC,∴∠ABC=∠ADE,∠ACB=∠AED∴△AED∽△ACB∴∴∴BD=AD+AB=2+4=6.故選B.【考點】本題主要考查了平行線的性質,相似三角形的性質與判定,解題的關鍵在于能夠熟練掌握相關知識進行求解.3、C【解析】【分析】先計算出樣本中身高不低于170cm的頻率,然后根據(jù)利用頻率估計概率求解.【詳解】解:樣本中身高不低于170cm的頻率,所以估計抽查該地區(qū)一名九年級男生的身高不低于170cm的概率是0.68.故選:C.【考點】本題考查了利用頻率估計概率:大量重復實驗時,事件發(fā)生的頻率在某個固定位置左右擺動,并且擺動的幅度越來越小,根據(jù)這個頻率穩(wěn)定性定理,可以用頻率的集中趨勢來估計概率,這個固定的近似值就是這個事件的概率.用頻率估計概率得到的是近似值,隨實驗次數(shù)的增多,值越來越精確.4、B【解析】【分析】由垂線段最短,可得AP⊥BC時,AP有最小值,由菱形的性質和勾股定理可求BC的長,由菱形的面積公式可求解.【詳解】如圖,設AC與BD的交點為O,∵點P是BC邊上的一動點,∴AP⊥BC時,AP有最小值,∵四邊形ABCD是菱形,∴AC⊥BD,AO=CO=AC=3,BO=DO=BD=4,∴BC=,∵S菱形ABCD=×AC×BD=BC×AP,∴AP==4.8,故選:B.【考點】本題考查了菱形的性質,勾股定理,確定當AP⊥BC時,AP有最小值是本題關鍵.5、D【解析】【分析】根據(jù)旋轉的性質及相似三角形的判定方法進行分析,找出存在的相似三角形即可.【詳解】根據(jù)題意得:BC=B′C,AB=A′B′,AC=A′C,∠B=∠B′,∠A=∠A′=30°,∠ACB=∠A′CB′=90°∵∠A=30°,∠ACB=90°∴∠B=60°∴BB′=BC=B′C,∠B=∠BCB′=∠BB′C=60°∴∠B′CA=30°,∠ACA′=60°,A′B′∥BC∴∠B′FC=∠B′FA=90°∴△AB′F∽△ABC∽△A′B′C∽△A′CF∽△CFB′∴有4個故選D.【考點】考查了相似三角形的判定:①如果兩個三角形的三組對應邊的比相等,那么這兩個三角形相似;②如果兩個三角形的兩條對應邊的比相等,且夾角相等,那么這兩個三角形相似;③如果兩個三角形的兩個對應角相等,那么這兩個三角形相似.平行于三角形一邊的直線截另兩邊或另兩邊的延長線所組成的三角形與原三角形相似.6、D【解析】【分析】因為中心投影物體的高和影長成比例,正確的區(qū)分中心投影和平行投影,依次分析選項即可找到符合題意的選項【詳解】因為正方形的對角線互相垂直,且一條對角線垂直地面,光源與對角線組成的平面垂直于地面,則有影子的對角線仍然互相垂直,且由于光源在平板的的上方,則上方的邊長影子會更長一些,故選D【考點】本題考查了中心投影的概念,應用,利用中心投影的特點,理解中心投影物體的高和影長成比例是解題的關鍵.二、多選題1、ABC【解析】【分析】本題中可利用平行四邊形ABCD中兩對邊平行的特殊條件來進行求解.【詳解】解:∵四邊形ABCD是平行四邊形,∴AB∥CD,∴∠EDG=∠EAB,∵∠E=∠E,∴△ABE∽△DGE,故選項A正確;∵AE∥BC,∴∠EDC=∠BCG,∠E=∠CBG,∴△CGB∽△DGE,故選項B正確;∵AE∥BC,∴∠E=∠FBC,∠EAF=∠BCF,∴△BCF∽△EAF,故選項C正確;無法證得△ACD∽△GCF,故選:ABC.【考點】本題考查了相似三角形的判定定理,平行四邊形的性質,正確的識別圖形是解題的關鍵.2、AC【解析】【分析】根據(jù)相似三角形的性質、分情況計算即可.【詳解】解:當3,4為直角邊,6,8也為直角邊時,此時兩三角形相似;當三邊分別為3,4,,和6,8,2,此時兩三角形相似;當3,4為直角邊時,m=5;則8為另一三角形的斜邊,其直角邊為:n==2,故m+n=5+2;當6,8為直角邊,n=10;則4為另一三角形的斜邊,其直角邊為:m==,故m+n=10+;綜上所述:m+n的值為5+2或10+,故選:A、C.【考點】本題主要考查了勾股定理以及相似三角形的性質,在直角三角形中對未知邊是直角邊還是斜邊進行不同情況的討論是解題的關鍵.3、ACD【解析】【分析】對于直線解析式,分別令x與y為0求出y與x的值,確定出A與B坐標,利用AAS得到三角形OBA與三角形CDA全等,利用全等三角形對應邊相等得到,確定出C坐標,代入反比例解析式求出k的值,確定出反比例解析式,由圖象判斷時x的范圍,以及與的增減性,把分別代入直線與反比例解析式,相減求出EF的長,即可做出判斷.【詳解】解:對于直線,令,得到;令,得到,,,即,,在和中,,,,(同底等高三角形面積相等),選項A正確;,把C點坐標代入反比例解析式得:,即,由函數(shù)圖象得:當時,,選項B錯誤;當時,,,即,選項C正確;當時,隨x的增大而增大,隨x的增大而減小,選項D正確.故選:ACD.【考點】此題考查了反比例函數(shù)與一次函數(shù)的交點,涉及的知識有:一次函數(shù)與坐標系的交點,待定系數(shù)法確定反比例函數(shù)解析式,坐標與圖形性質以及反比例函數(shù)的性質,熟練掌握函數(shù)的性質是解本題的關鍵.4、ABC【解析】【分析】根據(jù)平行線分線段成比例定理及其推論列出比例式,對比選項解答即可.【詳解】解:∵,∴,故選項A錯誤,符合題意;,故選項B錯誤,符合題意;,故選項C錯誤,符合題意;,故選項D正確,不符合題意,故選:ABC.【考點】本題考查平行線分線段成比例定理及其推論,熟練掌握平行線分線段成比例定理及其推論,明確線段之間的對應關系是解答的關鍵.5、ABD【解析】【分析】直接利用已知點求出一次函數(shù)與反比例函數(shù)的解析式進而分別分析得出答案.【詳解】解:A、設反比例函數(shù)的解析式為,把(1,200)代入得,k=200,∴反比例函數(shù)的解析式為:,當x=4時,y=50,∴4月份的利潤為50萬元,正確,符合題意;B、治污改造完成后,從4月到6月,利潤從50萬到110萬,故每月利潤比前一個月增加30萬元,正確,符合題意;C、當y=100時,則,解得:x=2,則只有3月,4月,5月共3個月的利潤低于100萬元,不正確,不符合題意.D、設一次函數(shù)解析式為:y=kx+b,則,解得:,故一次函數(shù)解析式為:y=30x?70,故y=200時,200=30x?70,解得:x=9,則治污改造完成后的第5個月,即9月份該廠利潤達到200萬元,正確,符合題意.故選:ABD【考點】此題主要考查了一次函數(shù)與反比函數(shù)的應用,正確得出函數(shù)解析式是解題關鍵.6、ABC【解析】【分析】根據(jù)相似求出相似比,根據(jù)相似比分類討論計算出結果即可.【詳解】解:∠B=∠C,根據(jù)題意:或,則:或,則:或,故答案為:或,故選:ABC.【考點】本題考查相似三角形得的性質與應用,能夠熟練掌握相似三角形的性質是解決本題的關鍵.三、填空題1、或##或【解析】【分析】連接,根據(jù)題意可得,當∠ADQ=90°時,分點在線段上和的延長線上,且,勾股定理求得即可.【詳解】如圖,連接,在Rt△ABC中,∠ACB=90°,,,,,根據(jù)題意可得,當∠ADQ=90°時,點在上,且,,如圖,在中,,在中,故答案為:或.【考點】本題考查了旋轉的性質,勾股定理,直角三角形斜邊上中線的性質,確定點的位置是解題的關鍵.2、cm【解析】【分析】設較短的直角邊長是xcm,較長的就是(x+5)cm,根據(jù)面積是7cm,求出直角邊長,根據(jù)勾股定理求出斜邊長.【詳解】解:設這個直角三角形的較短直角邊長為xcm,則較長直角邊長為(x+5)cm,根據(jù)題意,得,所以,解得,,因為直角三角形的邊長為正數(shù),所以不符合題意,舍去,所以x=2,當x=2時,x+5=7,由勾股定理,得直角三角形的斜邊長為==cm.故答案為:cm.【考點】本題考查了勾股定理,一元二次方程的應用,關鍵是知道三角形面積公式以及直角三角形中勾股定理的應用.3、【解析】【分析】根據(jù)線段HF與HD也恰好關于某條直線對稱,可得HF=HD,由折疊和同角的余角相等得,然后證明,再利用設元法即可解決問題.【詳解】解:∵線段HF與HD也恰好關于某條直線對稱,∴HF=HD,∴∠HFD=∠FDH,∴∠BHF=2∠HFD由折疊可知:GF=CF,HG=CE=EG,,∠BHG=∠BEG,∠CEF=∠GEF,∵∠BEG+∠CEF+∠GEF=180°,∴2∠HFD+2∠CEF=180°∴∠HFD+∠CEF=90°,又∵∠CFE+∠CEF=90°∴,又∵HF=HD,∴△DHF是等邊三角形,∴∠CBD=∠CEF=30°,∴,設GF=CF=x,HF=DF=y,則HG=CE=EG=,HF=HG+GF=GE+CF,即y=x+,∵,∴.【考點】本題主要考查折疊的性質、軸對稱的性質、相似三角形的判定與性質.解決本題的關鍵是掌握翻折的性質.4、且【解析】【分析】若一元二次方程有兩個不相等的實數(shù)根,則△=b2-4ac>0,建立關于k的不等式,求得k的取值范圍,還要使二次項系數(shù)不為0.【詳解】∵方程有兩個不相等的實數(shù)根,∴解得:,又二次項系數(shù)故答案為且【考點】考查一元二次方程根的判別式,當時,方程有兩個不相等的實數(shù)根.當時,方程有兩個相等的實數(shù)根.當時,方程沒有實數(shù)根.5、38【解析】【分析】根據(jù)題目要求,要使四邊形AGCD的面積最小,因為的面積固定,只需使的面積最小即可,即的高最小即可,又在中,,則BG=2,高的最小值為點B到AC的距離減去BG的長度,則可求解.【詳解】依題意,在中,為EF的中點,,,點G在以B為圓心,2為半徑的圓與長方形重合的弧上運動,,要使四邊形AGCD的面積最小,則B所在直線垂直線段AC,又,點B到AC的距離為,此時點G到AC的距離為,故的最小面積為,,故答案為:38.【考點】本題考查了動點問題中四邊形的最小面積問題,利用勾股定理,直角三角形中線的性質,三角形等積法求高等性質定理進行求解,對于相關性質定理的熟練運用是解題的關鍵.6、2【解析】【分析】設小路寬為xm,則種植花草部分的面積等同于長(22-x)m,寬(14-x)m的矩形的面積,根據(jù)花草的種植面積為240m2,即可得出關于x的一元二次方程,解之取其符合題意的值即可得出結論.【詳解】解:設小路寬為xm,則種植花草部分的面積等同于長(22-x)m,寬(14-x)m的矩形的面積,依題意得:(22-x)(14-x)=240,整理得:x2-36x+68=0,解得:x1=2,x2=34(不合題意,舍去).故答案為:2.【考點】本題考查了一元二次方程的應用,找準等量關系,正確列出一元二次方程是解題的關鍵.7、①②④【解析】【分析】根據(jù)三角形的全等的知識可以判斷①的正誤;根據(jù)角角之間的數(shù)量關系,以及三角形內角和為180°判斷②的正誤;根據(jù)等邊三角形的邊長求得直角三角形的邊長,從而求得面積③的正誤,根據(jù)勾股定理列方程可以判斷④的正誤.【詳解】解:∵四邊形ABCD是正方形,∴AB=AD,∵△AEF是等邊三角形,∴AE=AF,在Rt△ABE和Rt△ADF中,,∴Rt△ABE≌Rt△ADF(HL),∴BE=DF,∵BC=DC,∴BC-BE=CD-DF,∴CE=CF,∴①說法正確;∵CE=CF,∴△ECF是等腰直角三角形,∴∠CEF=45°,∵∠AEF=60°,∴∠AEB=75°,∴②說法正確;∵正方形ABCD的邊長為1,③說法錯誤,∵∠AEB=75°,∠AEF=60°,∴∠CEF=45°,∴△CEF是等腰直角三角形,設BE=DF=x,∴CE=CF=1-x,(不合題意,舍去),∴EF=;④說法正確;∴正確的有①②④.故答案為①②④.【考點】本題主要考查正方形的性質的知識點,解答本題的關鍵是熟練掌握全等三角形的證明以及輔助線的正確作法,此題難度不大.8、【解析】【分析】連接AC交BD于H,證明DCH≌DCF,得出DH的長度,再根據(jù)菱形的性質得出BD的長度.【詳解】解:如圖,連接AC交BD于點H,由菱形的性質得∠BDC=35,∠DCE=70,又∵∠MCE=15,∴∠DCF=55,∵DF⊥CM,∴∠CDF=35,又∵四邊形ABCD是菱形,∴BD平分∠ADC,∴∠HDC=35,在CDH和CDF中,∴CDH≌CDF(AAS),∴,∴DB=,故答案為.【考點】本題主要考查菱形的性質和全等三角形的判定,菱形的對角線互相平分是此題的關鍵知識點,得出∠HDC=∠FDC是這個題最關鍵的一點.四、解答題1、(1)x1=2,x2=-2;(2)x1=4,x2=-2.【解析】【分析】(1)先把方程變形為x2=4,然后利用直接開平方法解方程;(2)先把方程化為一般式,然后利用因式分解法解方程.【詳解】解:(1)∵x2=4,∴x=±2,∴x1=2,x2=-2;(2)方程整理為x2-2x-8=0.(x-4)(x+2)=0,x-4=0或x+2=0,∴x1=4,x2=-2.【考點】本題考查了解一元二次方程-因式分解法:因式分解法就是利用因式分解求出方程的解的方法,這種方法簡便易用,是解一元二次方程最常用的方法.也考查了直接開平方法解方程.2、(1)x1=-2,x2=0.(2)x1=,x2=【解析】【分析】(1)采用因式分解法即可求解;(2)直接用公式法即可求解.(1)原方程左邊因式分解,得:,即有:x1=-2,x2=0;(2)∵,∴,∴,.【考點】本題考查了用因式分解法和公式法解一元二次方程的知識,掌握求根公式是解答本題的關鍵.3、(1)y=;(2)D(6,8).【解析】【分析】(1)作CM⊥y軸于M,如圖,利用直線解析式確定A(0,2),B(﹣2,0),再根據(jù)平行線分線段成比例定理求出MC=4,AM=4,則C(4,6),然后把C點坐標代入y=中求出k得到反比例函數(shù)解析式;(2)MC交直線DE于N,如圖,證明△CND為等腰直角三角形得到CN=DN,再利用CD=CE得到CN=NE=DN,設CN=t,則N(4+t,6),D(4+t,6+t),E(4+t,6﹣t),然后把E(4+t,6﹣t)代入y=得(4+t)(6﹣t)=24,最后解方程求出t得到D點坐標.【詳解】解:(1)作CM⊥y軸于M,如圖,當x=0時,y=x+2=2,則A(0,2),當y=0時,x+2=0,解得x=﹣2,則B(﹣2,0),∵MC∥OB,∴===2,∴MC=2OB=4,AM=2OA=4,∴C(4,6),把C(4,6)代入y=得k=4×6=24,∴反比例函數(shù)解析式為y=;(2)MC交直線DE于N,如圖,∵MC=MA,∴△MAC為等腰
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經權益所有人同意不得將文件中的內容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
- 6. 下載文件中如有侵權或不適當內容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 湖南省株洲市2026屆高三上學期教學質量統(tǒng)一檢測(一模)歷史試卷(含答案)
- 河南省駐馬店市泌陽縣2025-2026學年八年級上學期1月期末考試物理試卷(含答案)
- 五年級下冊期末測試卷及答案
- 文秘筆試題目及答案
- 北京化工大學《中國近現(xiàn)代史綱要實務》2024-2025學年期末試卷(A卷)
- 湖北省隨州市曾都區(qū)第一高級中學2025-2026學年高一上學期1月期末復習綜合測試歷史試題(原卷版+解析版)
- 2025 小學三年級科學下冊植物與陽光關系實驗課件
- 數(shù)控銑床考試題目及答案
- 生產決定消費試題及答案
- 軟考中級科目試題及答案
- 老年人安寧療護護理計劃制定與實施指南
- 線性代數(shù)課件 第6章 二次型 第2節(jié)
- 餐飲餐具消毒安全培訓課件
- 心理科治療咨詢方案模板
- (2021-2025)5年高考1年模擬物理真題分類匯編專題04 機械能守恒、動量守恒及功能關系(廣東專用)(解析版)
- 2025年車間核算員考試題及答案
- 2026年高考作文備考之提高議論文的思辨性三大技法
- 南寧市人教版七年級上冊期末生物期末考試試卷及答案
- 項目安全生產管理辦法
- 乳糜胸護理新進展
- 社區(qū)護理中的青少年保健
評論
0/150
提交評論