重難點解析北師大版9年級數(shù)學上冊期中試卷【基礎(chǔ)題】附答案詳解_第1頁
重難點解析北師大版9年級數(shù)學上冊期中試卷【基礎(chǔ)題】附答案詳解_第2頁
重難點解析北師大版9年級數(shù)學上冊期中試卷【基礎(chǔ)題】附答案詳解_第3頁
重難點解析北師大版9年級數(shù)學上冊期中試卷【基礎(chǔ)題】附答案詳解_第4頁
重難點解析北師大版9年級數(shù)學上冊期中試卷【基礎(chǔ)題】附答案詳解_第5頁
已閱讀5頁,還剩26頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)

文檔簡介

北師大版9年級數(shù)學上冊期中試卷考試時間:90分鐘;命題人:教研組考生注意:1、本卷分第I卷(選擇題)和第Ⅱ卷(非選擇題)兩部分,滿分100分,考試時間90分鐘2、答卷前,考生務(wù)必用0.5毫米黑色簽字筆將自己的姓名、班級填寫在試卷規(guī)定位置上3、答案必須寫在試卷各個題目指定區(qū)域內(nèi)相應(yīng)的位置,如需改動,先劃掉原來的答案,然后再寫上新的答案;不準使用涂改液、膠帶紙、修正帶,不按以上要求作答的答案無效。第I卷(選擇題20分)一、單選題(7小題,每小題2分,共計14分)1、把標號為1,2,3的三個小球放入一個不透明的口袋中,隨機摸取一個小球然后放回,再隨機摸出一個小球,兩次取出的小球的標號的和大于3的概率是(

)A. B. C. D.2、一元二次方程配方后可化為(

)A. B.C. D.3、如圖1,點Q為菱形ABCD的邊BC上一點,將菱形ABCD沿直線AQ翻折,點B的對應(yīng)點P落在BC的延長線上.已知動點M從點B出發(fā),在射線BC上以每秒1個單位長度運動.設(shè)點M運動的時間為x,△APM的面積為y.圖2為y關(guān)于x的函數(shù)圖象,則菱形ABCD的面積為(

)A.12 B.24 C.10 D.204、如圖,已知菱形ABCD的兩條對角線分別為6和8,M、N分別是邊BC、CD的中點,P是對角線BD上一點,則PM+PN的最小值是()A.5 B.10 C.6 D.85、如圖,在中,,動點P,Q分別從點A,B同時開始移動(移動方向如圖所示),點P的速度為,點Q的速度為,點Q移動到C點后停止,點P也隨之停止運動,當?shù)拿娣e為時,則點P運動的時間是(

)A. B.或 C. D.6、設(shè),是方程的兩個實數(shù)根,則的值為(

)A.2020 B.2021 C.2022 D.20237、小穎有兩頂帽子,分別為紅色和黑色,有三條圍巾,分別為紅色、黑色和白色,她隨機拿出一頂帽子和一條圍巾戴上,恰好為紅色帽子和紅色圍巾的概率是(

)A. B. C. D.二、多選題(3小題,每小題2分,共計6分)1、如圖,在正方形中,,點在邊上,且.將沿對折至,點落在正方形內(nèi)部點處,延長交邊于點,連接,.下列結(jié)論正確的是(

)A. B.C. D.2、在下列選項中,是方程的根的是(

)A.6 B. C.2 D.3、矩形一定具有的性質(zhì)是().A.對角線相等 B.內(nèi)角和為180° C.鄰邊相等 D.對角互補第Ⅱ卷(非選擇題80分)三、填空題(10小題,每小題2分,共計20分)1、菱形的一條對角線長為8,其邊長是方程x2-8x+15=0的一個根,則該菱形的面積為________.2、為增強學生身體素質(zhì),提高學生足球運動競技水平,我市開展“市長杯”足球比賽,賽制為單循環(huán)形式(每兩隊之間賽一場).現(xiàn)計劃安排21場比賽,應(yīng)邀請多少個球隊參賽?設(shè)邀請x個球隊參賽,根據(jù)題意,可列方程為_____.3、如圖,點E在正方形ABCD的邊CD上,將△ADE繞點A順時針旋轉(zhuǎn)90°到△ABF的位置,連接EF,過點A作EF的垂線,垂足為點H,與BC交于點G.若BG=3,CG=2,則CE的長為________.4、設(shè)分別為一元二次方程的兩個實數(shù)根,則____.5、若m,n是一元二次方程的兩個實數(shù)根,則的值為___________.6、如圖,四邊形ABCD為菱形,,延長BC到E,在內(nèi)作射線CM,使得,過點D作,垂足為F.若,則對角線BD的長為______.7、如圖,直角三角形ABC中,AC=1,BC=2,P為斜邊AB上一動點.PE⊥BC,PF⊥CA,則線段EF長的最小值為_________.8、在解一元二次方程x2+bx+c=0時,小明看錯了一次項系數(shù)b,得到的解為x1=2,x2=3;小剛看錯了常數(shù)項c,得到的解為x1=1,x2=5.請你寫出正確的一元二次方程________.9、若關(guān)于x的一元二次方程x2+mx+2n=0有一個根是2,則m+n=_____.10、如圖,在矩形ABCD中,AB=6,BC=8,點E、F分別是邊AB、BC上的動點,且EF=4,點G是EF的中點,AG、CG,則四邊形AGCD面積的最小值為_______.四、解答題(6小題,每小題10分,共計60分)1、如圖,在?ABCD中,各內(nèi)角的平分線相交于點E,F(xiàn),G,H.(1)求證:四邊形EFGH是矩形;(2)若AB=6,BC=4,∠DAB=60°,求四邊形EFGH的面積.2、如圖,在四邊形中,AB//DC,,對角線,交于點,平分,過點作交的延長線于點,連接.(1)求證:四邊形是菱形;(2)若,,求的長.3、如圖,在△ABC和△DCB中,AB=DC,∠A=∠D,AC、DB交于點M.(1)求證:△ABC≌△DCB;(2)作CN∥BD,BN∥AC,CN交BN于點N,四邊形BNCM是什么四邊形?請證明你的結(jié)論.4、安順市某商貿(mào)公司以每千克40元的價格購進一種干果,計劃以每千克60元的價格銷售,為了讓顧客得到更大的實惠,現(xiàn)決定降價銷售,已知這種干果銷售量(千克)與每千克降價(元)之間滿足一次函數(shù)關(guān)系,其圖象如圖所示:(1)求與之間的函數(shù)關(guān)系式;(2)商貿(mào)公司要想獲利2090元,則這種干果每千克應(yīng)降價多少元?5、(1)解方程:.(2)解方程:.6、如圖,BF平行于正方形ADCD的對角線AC,點E在BF上,且AE=AC,CF∥AE,求∠BCF.-參考答案-一、單選題1、D【解析】【分析】首先根據(jù)題意畫出樹狀圖,然后由樹狀圖求得所有等可能的結(jié)果與兩次摸出的小球標號和大于3的情況,再利用概率公式即可求得答案.【詳解】解:根據(jù)題意,畫樹狀圖如下:共有9種等可能結(jié)果,其中兩次摸出的小球標號的和大于3的有6種,∴兩次摸出的小球標號的和大于3的概率是,故選:D【考點】此題考查了樹狀圖法與列表法求概率.用到的知識點為:概率=所求情況數(shù)與總情況數(shù)之比.2、B【解析】【分析】根據(jù)題意直接對一元二次方程配方,然后把常數(shù)項移到等號右邊即可.【詳解】解:根據(jù)題意,把一元二次方程配方得:,即,∴化成的形式為.故選:B.【考點】本題考查配方法解一元二次方程,注意掌握配方法的一般步驟:把常數(shù)項移到等號的右邊;把二次項的系數(shù)化為1;等式兩邊同時加上一次項系數(shù)一半的平方.選擇用配方法解一元二次方程時,最好使方程的二次項的系數(shù)為1,一次項的系數(shù)是2的倍數(shù).3、D【解析】【分析】由圖2,可知BP=6,S△ABP=12,由圖1翻折可知,AQ⊥BP,進而得出AQ=4,由勾股定理,可知BC=AB=5,菱形ABCD的面積為BC×AQ即可求出.【詳解】解:由圖2,得BP=6,S△ABP=12∴AQ=4由翻折可知,AQ⊥BP由勾股定理,得BC=AB==5∴菱形ABCD的面積為BC×AQ=5×4=20故選:D【考點】本題是一道幾何變換綜合題,解決本題主要用到勾股定理,翻折的性質(zhì),根據(jù)函數(shù)圖象找出幾何圖形中的對應(yīng)關(guān)系是解決本題的關(guān)鍵.4、A【解析】【分析】作M關(guān)于BD的對稱點Q,連接NQ,交BD于P,連接MP,此時MP+NP的值最小,連接AC,求出CP、BP,根據(jù)勾股定理求出BC長,證出MP+NP=QN=BC,即可得出答案.【詳解】解:作M關(guān)于BD的對稱點Q,連接NQ,交BD于P,連接MP,此時MP+NP的值最小,連接AC,則P是AC中點,∵四邊形ABCD是菱形,∴AC⊥BD,∠QBP=∠MBP,即Q在AB上,∵MQ⊥BD,∴AC∥MQ,∵M為BC中點,∴Q為AB中點,∵N為CD中點,四邊形ABCD是菱形,∴BQ∥CD,BQ=CN,∴四邊形BQNC是平行四邊形,∴PQ∥AD,而點Q是AB的中點,故PQ是△ABD的中位線,即點P是BD的中點,同理可得,PM是△ABC的中位線,故點P是AC的中點,即點P是菱形ABCD對角線的交點,∵四邊形ABCD是菱形,則△BPC為直角三角形,,在Rt△BPC中,由勾股定理得:BC=5,即NQ=5,∴MP+NP=QP+NP=QN=5,故選:A.【考點】本題考查了軸對稱-最短路線問題,平行四邊形的性質(zhì)和判定,菱形的性質(zhì),勾股定理的應(yīng)用,解此題的關(guān)鍵是能根據(jù)軸對稱找出P的位置.5、A【解析】【分析】設(shè)出動點P,Q運動t秒,能使的面積為,用t分別表示出BP和BQ的長,利用三角形的面積計算公式即可解答.【詳解】解:設(shè)動點P,Q運動t秒,能使的面積為,則BP為(8-t)cm,BQ為2tcm,由三角形的面積公式列方程得(8-t)×2t=15,解得t1=3,t2=5(當t2=5,BQ=10,不合題意,舍去)∴動點P,Q運動3秒,能使的面積為.故選A.【考點】本題考查了一元二次方程的應(yīng)用.借助三角形的面積計算公式來研究圖形中的動點問題.6、B【解析】【分析】由題意根據(jù)一元二次方程的解及根與系數(shù)的關(guān)系可得出,將其代入中即可得出答案.【詳解】解:∵,是方程的兩個實數(shù)根,∴,∴=2022-1=2021.故選:B.【考點】本題考查根與系數(shù)的關(guān)系以及一元二次方程的解,根據(jù)一元二次方程的解及根與系數(shù)的關(guān)系找出是解題的關(guān)鍵.7、C【解析】【分析】利用列表法或樹狀圖即可解決.【詳解】分別用r、b代表紅色帽子、黑色帽子,用R、B、W分別代表紅色圍巾、黑色圍巾、白色圍巾,列表如下:RBWrrRrBrWbbRbBbW則所有可能的結(jié)果數(shù)為6種,其中恰好為紅色帽子和紅色圍巾的結(jié)果數(shù)為1種,根據(jù)概率公式,恰好為紅色帽子和紅色圍巾的概率是.故選:C.【考點】本題考查了簡單事件的概率,常用列表法或畫樹狀圖來求解.二、多選題1、ABC【解析】【分析】根據(jù)正方形的性質(zhì)得出AB=AD=DC=6,∠B=D=90°,求出DE=2,AF=AB,根據(jù)HL推出Rt△ABG≌Rt△AFG,推出BG=FG,∠AGB=∠AGF,設(shè)BG=x,則CG=BC﹣BG=6﹣x,GE=GF+EF=BG+DE=x+2,在Rt△ECG中,由勾股定理得出(6﹣x)2+42=(x+2)2,求出x=3,得出BG=GF=CG,求出∠AGB=∠FCG,再根據(jù)等角的余角相等即可證得∠BAG=∠FCE,根據(jù)GF=3,EF=2可得GF=GE,進而S△FGC=S△GCE=,由此即可求得答案.【詳解】解:∵四邊形ABCD是正方形,∴AB=AD=DC=6,∠B=D=90°.∵CD=3DE,∴DE=2,CE=4.∵△ADE沿AE折疊得到△AFE,∴DE=EF=2,AD=AF,∠D=∠AFE=∠AFG=90°,∴AF=AB.∵在Rt△ABG和Rt△AFG中,,∴Rt△ABG≌Rt△AFG(HL),故A選項正確;∴BG=FG,∠AGB=∠AGF,設(shè)BG=x,則CG=BC﹣BG=6﹣x,GE=GF+EF=BG+DE=x+2.在Rt△ECG中,由勾股定理得:CG2+CE2=EG2.∵CG=6﹣x,CE=4,EG=x+2,∴(6﹣x)2+42=(x+2)2,解得:x=3,∴BG=GF=CG=3,故B選項正確;∵CG=GF,∴∠CFG=∠FCG,∵∠BGF=∠CFG+∠FCG,又∵∠BGF=∠AGB+∠AGF,∴∠CFG+∠FCG=∠AGB+∠AGF,∵∠AGB=∠AGF,∠CFG=∠FCG,∴∠AGB=∠FCG,∵∠B=∠BCD=90°,∴∠BAG+∠AGB=∠FCE+∠FCG=90°,∴∠BAG=∠FCE,故C選項正確;∵GF=3,EF=2,∴GF=GE,∴S△FGC=S△GCE=×CG·CE=××3×4=,故D選項錯誤,故選:ABC.【考點】本題考查了翻折變換,正方形性質(zhì),全等三角形的性質(zhì)和判定,等腰三角形的性質(zhì)和判定,勾股定理等知識點的運用,依據(jù)翻折的性質(zhì)找出其中對應(yīng)相等的線段和對應(yīng)相等的角是解題的關(guān)鍵.2、AD【解析】【分析】分別將選項帶入方程計算即可.【詳解】解:當時,,成立,6是方程的根;當時,,不是方程的根;當時,,2不是方程的根;當時,,成立,是方程的根;故選:AD.【考點】本題考查了一元二次方程方程的根,使方程成立的未知數(shù)的取值是方程的根.3、AD【解析】【分析】根據(jù)矩形的性質(zhì)依次進行判斷即可.【詳解】解:A、矩形的對角線相等,正確;B、矩形的內(nèi)角和為360°,選項錯誤;C、矩形的鄰邊不一定相等,選項錯誤;D、矩形的對角相等均為90°,所以對角互補,正確;故選:AD.【考點】題目主要考查矩形的性質(zhì),理解矩形的性質(zhì)是解題關(guān)鍵.三、填空題1、24【解析】【分析】利用因式分解法解方程得到x1=3,x2=5,再根據(jù)菱形的性質(zhì)得到菱形的邊長為5,利用勾股定理計算出菱形的另一條對角線長,然后根據(jù)菱形的面積公式計算.【詳解】解:x2-8x+15=0,(x-3)(x-5)=0,x-3=0或x-5=0,∴x1=3,x2=5,∵菱形一條對角線長為8,∴菱形的邊長為5,∵菱形的另一條對角線長=2×=6,∴菱形的面積=×6×8=24.故答案為:24.【考點】本題考查了解一元二次方程-因式分解法:因式分解法就是利用因式分解求出方程的解的方法,這種方法簡便易用,是解一元二次方程最常用的方法.也考查了菱形的性質(zhì).2、x(x﹣1)=21【解析】【分析】賽制為單循環(huán)形式(每兩隊之間都賽一場),x個球隊比賽總場數(shù)為x(x﹣1),即可列方程.【詳解】有x個隊,每個隊都要賽(x﹣1)場,但兩隊之間只有一場比賽,由題意得:x(x﹣1)=21,故答案為x(x﹣1)=21.【考點】本題考查了一元二次方程的應(yīng)用,弄清題意,找準等量關(guān)系列出方程是解題的關(guān)鍵.3、【解析】【詳解】解:如圖所示,連接EG,由旋轉(zhuǎn)可知△ABF≌△ADE,∴DE=BF,AE=AF,∵AG⊥EF,∴H為EF的中點,∴AG垂直平分EF,∴EG=FG,設(shè)CE=x,則DE=5-x=BF,F(xiàn)G=EG=BF+BG=8-x,∵∠C=90°,∴CE2+CG2=EG2即x2+22=(8?x)2解得x=,∴CE的長為,故答案為:.【考點】本題主要考查了正方形的性質(zhì)以及旋轉(zhuǎn)的性質(zhì),解決該題的關(guān)鍵是根據(jù)勾股定理列方程.4、2020【解析】【分析】根據(jù)一元二次方程的解結(jié)合根與系數(shù)的關(guān)系即可得出m2+2m=2022,m+n=?2,將其代入m2+3m+n=m2+2m+(m+n)中即可求出結(jié)論.【詳解】解:∵m,n分別為一元二次方程x2+2x?2022=0的兩個實數(shù)根,∴m2+2m=2022,m+n=?2,∴m2+3m+n=m2+2m+(m+n)=2022+(?2)=2020.故答案為:2020.【考點】本題考查了根與系數(shù)的關(guān)系以及一元二次方程的解,根據(jù)一元二次方程的解結(jié)合根與系數(shù)的關(guān)系得出m2+2m=2022,m+n=?2是解題的關(guān)鍵.5、3【解析】【分析】先根據(jù)一元二次方程的解的定義得到m2+3m-1=0,則3m-1=-m2,根據(jù)根與系數(shù)的關(guān)系得出m+n=-3,再將其代入整理后的代數(shù)式計算即可.【詳解】解:∵m是一元二次方程x2+3x-1=0的根,∴m2+3m-1=0,∴3m-1=-m2,∵m、n是一元二次方程x2+3x-1=0的兩個根,∴m+n=-3,∴,故答案為:3.【考點】本題考查了根與系數(shù)的關(guān)系:若x1,x2是一元二次方程()的兩根時,,.也考查了一元二次方程的解.6、【解析】【分析】連接AC交BD于H,證明DCH≌DCF,得出DH的長度,再根據(jù)菱形的性質(zhì)得出BD的長度.【詳解】解:如圖,連接AC交BD于點H,由菱形的性質(zhì)得∠BDC=35,∠DCE=70,又∵∠MCE=15,∴∠DCF=55,∵DF⊥CM,∴∠CDF=35,又∵四邊形ABCD是菱形,∴BD平分∠ADC,∴∠HDC=35,在CDH和CDF中,∴CDH≌CDF(AAS),∴,∴DB=,故答案為.【考點】本題主要考查菱形的性質(zhì)和全等三角形的判定,菱形的對角線互相平分是此題的關(guān)鍵知識點,得出∠HDC=∠FDC是這個題最關(guān)鍵的一點.7、.【解析】【分析】先連接PC,判定四邊形ECFP是矩形,得到EF=PC,再根據(jù)當PC最小時,EF也最小,根據(jù)垂線段最短,可得當CP⊥AB時,PC最小,最后根據(jù)面積法,求得CP的長即可得到線段EF長的最小值.【詳解】解:連接PC,∵PE⊥BC,PF⊥CA,∴∠PEC=∠PFC=∠C=90°,∴四邊形ECFP是矩形,∴EF=PC,∴當PC最小時,EF也最小,∵垂線段最短,∴當CP⊥AB時,PC最小,∵AC=1,BC=2,∴AB=,又∵當CP⊥AB時,×AC×BC=×AB×CP,∴.∴線段EF長的最小值為.故答案為:.【考點】本題主要考查了矩形的判定與性質(zhì),勾股定理以及垂線段最短的綜合應(yīng)用,解決問題的關(guān)鍵是運用矩形對角線相等的性質(zhì)進行求解.8、x2﹣6x+6=0【解析】【分析】根據(jù)根與系數(shù)的關(guān)系分別求出b和c即可.【詳解】解:根據(jù)題意得2×3=c,1+5=﹣b,解得b=﹣6,c=6,所以正確的一元二次方程為x2﹣6x+6=0.故答案為:x2﹣6x+6=0.【考點】本題考查了一元二次方程ax2+bx+c=0(a≠0)根與系數(shù)的關(guān)系,若x1,x2為方程的兩個根,則x1,x2與系數(shù)的關(guān)系式:,.9、﹣2【解析】【分析】根據(jù)一元二次方程的解的定義把x=2代入得到得然后利用整體代入的方法進行計算.【詳解】∵2是關(guān)于x的一元二次方程的一個根,∴,∴n+m=?2,故答案為?2.【考點】本題考查了一元二次方程的解,掌握方程的解的定義是解決本題的關(guān)鍵.10、38【解析】【分析】根據(jù)題目要求,要使四邊形AGCD的面積最小,因為的面積固定,只需使的面積最小即可,即的高最小即可,又在中,,則BG=2,高的最小值為點B到AC的距離減去BG的長度,則可求解.【詳解】依題意,在中,為EF的中點,,,點G在以B為圓心,2為半徑的圓與長方形重合的弧上運動,,要使四邊形AGCD的面積最小,則B所在直線垂直線段AC,又,點B到AC的距離為,此時點G到AC的距離為,故的最小面積為,,故答案為:38.【考點】本題考查了動點問題中四邊形的最小面積問題,利用勾股定理,直角三角形中線的性質(zhì),三角形等積法求高等性質(zhì)定理進行求解,對于相關(guān)性質(zhì)定理的熟練運用是解題的關(guān)鍵.四、解答題1、(1)證明見解析;(2)矩形EFGH的面積=.【解析】【分析】(1)根據(jù)角平分線的定義以及平行四邊形的性質(zhì),即可得出∠AGB=90°,∠DEC=90°,∠AHD=90°=∠EHG,進而判定四邊形EFGH是矩形;(2)根據(jù)含30°角的直角三角形的性質(zhì),得到BGAB=3,AG=3CE,BFBC=2,CF=2,進而得出EF和GF的長,可得四邊形EFGH的面積.【詳解】(1)∵GA平分∠BAD,GB平分∠ABC,∴∠GAB∠BAD,∠GBA∠ABC.∵?ABCD中,∠DAB+∠ABC=180°,∴∠GAB+∠GBA(∠DAB+∠ABC)=90°,即∠AGB=90°,同理可得:∠DEC=90°,∠AHD=90°=∠EHG,∴四邊形EFGH是矩形;(2)依題意得:∠BAG∠BAD=30°.∵AB=6,∴BGAB=3,AG=3CE.∵BC=4,∠BCF∠BCD=30°,∴BFBC=2,CF=2,∴EF=3,GF=3﹣2=1,∴矩形EFGH的面積=EF×GF.【考點】本題考查了平行四邊形的性質(zhì),矩形的判定以及全等三角形的判定與性質(zhì)的運用,解題時注意:有三個角是直角的四邊形是矩形.在判定三角形全等時,關(guān)鍵是選擇恰當?shù)呐卸l件.2、(1)證明見解析;(2)OE=2.【解析】【分析】(1)根據(jù)一組對邊相等的平行四邊形是菱形進行判定即可.(2)根據(jù)菱形的性質(zhì)和勾股定理求出,根據(jù)直角三角形斜邊的中線等于斜邊的一半即可求解.【詳解】(1)證明:∵AB//CD,∴,∵平分,∴,∴,∴,又∵,∴,又∵∥,∴四邊形是平行四邊形,又∵,∴是菱形.(2)解:∵四邊形是菱形,對角線、交于點,∴,,,∴,在Rt△AOB中,,∴,∵,∴,在Rt△AEC中,,為中點,∴.【考點】本題考查了平行四邊形的性質(zhì)和判定,菱形的判定與性質(zhì),直角三角形的性質(zhì),勾股定理等,熟練掌握菱形的判定方法以及直角三角形斜邊的中線等于斜邊的一半是解題的關(guān)鍵.3、(1)證明見解析;(2)四邊形BNCM是菱形,證明見解析.【解析】【分析】(1)根據(jù)題意利用AAS可證明出△ABM和△DCM,然后根據(jù)全等三角形的性質(zhì)得出∠MBC=∠MCB,最后利用AAS即可作出證明;(2)根據(jù)平行線的性質(zhì)和題意,即可得出△MBC≌△NCB,根據(jù)全等三角形的性質(zhì)即可作出證明.【詳解】如圖所示(1)在△ABM和△DCM中,,∴△ABM≌△DCM(AAS),∴BM=CM,∴∠MBC=∠MCB,在△ABC和△DCB中,,∴△ABC≌△DCB(AAS)(2)四邊形BNCM是菱形,其理由如下:∵CN∥BD,

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
  • 6. 下載文件中如有侵權(quán)或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論