北京版八年級上冊壓軸題數(shù)學(xué)數(shù)學(xué)模擬試題_第1頁
北京版八年級上冊壓軸題數(shù)學(xué)數(shù)學(xué)模擬試題_第2頁
北京版八年級上冊壓軸題數(shù)學(xué)數(shù)學(xué)模擬試題_第3頁
北京版八年級上冊壓軸題數(shù)學(xué)數(shù)學(xué)模擬試題_第4頁
北京版八年級上冊壓軸題數(shù)學(xué)數(shù)學(xué)模擬試題_第5頁
已閱讀5頁,還剩33頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認(rèn)領(lǐng)

文檔簡介

北京版八年級上冊壓軸題數(shù)學(xué)數(shù)學(xué)模擬試題一、壓軸題1.在中,若存在一個內(nèi)角角度,是另外一個內(nèi)角角度的倍(為大于1的正整數(shù)),則稱為倍角三角形.例如,在中,,,,可知,所以為3倍角三角形.(1)在中,,,則為________倍角三角形;(2)若是3倍角三角形,且其中一個內(nèi)角的度數(shù)是另外一個內(nèi)角的余角的度數(shù)的,求的最小內(nèi)角.(3)若是2倍角三角形,且,請直接寫出的最小內(nèi)角的取值范圍.2.某校八年級數(shù)學(xué)興趣小組對“三角形內(nèi)角或外角平分線的夾角與第三個內(nèi)角的數(shù)量關(guān)系”進行了探究.(1)如圖1,在△ABC中,∠ABC與∠ACB的平分線交于點P,∠A=64°,則∠BPC=;(2)如圖2,△ABC的內(nèi)角∠ACB的平分線與△ABC的外角∠ABD的平分線交于點E.其中∠A=α,求∠BEC.(用α表示∠BEC);(3)如圖3,∠CBM、∠BCN為△ABC的外角,∠CBM、∠BCN的平分線交于點Q,請你寫出∠BQC與∠A的數(shù)量關(guān)系,并證明.3.在中,,是直線上一點,在直線上,且.(1)如圖1,當(dāng)D在上,在延長線上時,求證:;(2)如圖2,當(dāng)為等邊三角形時,是的延長線上一點,在上時,作,求證:;(3)在(2)的條件下,的平分線交于點,連,過點作于點,當(dāng),時,求的長度.4.如圖1,在等邊△ABC中,E、D兩點分別在邊AB、BC上,BE=CD,AD、CE相交于點F.(1)求∠AFE的度數(shù);(2)過點A作AH⊥CE于H,求證:2FH+FD=CE;(3)如圖2,延長CE至點P,連接BP,∠BPC=30°,且CF=CP,求的值.(提示:可以過點A作∠KAF=60°,AK交PC于點K,連接KB)5.閱讀下面材料,完成(1)-(3)題.?dāng)?shù)學(xué)課上,老師出示了這樣一道題:如圖1,已知等腰△ABC中,AB=AC,AD為BC邊上的中線,以AB為邊向AB左側(cè)作等邊△ABE,直線CE與直線AD交于點F.請?zhí)骄烤€段EF、AF、DF之間的數(shù)量關(guān)系,并證明.同學(xué)們經(jīng)過思考后,交流了自已的想法:小明:“通過觀察和度量,發(fā)現(xiàn)∠DFC的度數(shù)可以求出來.”小強:“通過觀察和度量,發(fā)現(xiàn)線段DF和CF之間存在某種數(shù)量關(guān)系.”小偉:“通過做輔助線構(gòu)造全等三角形,就可以將問題解決.”......老師:“若以AB為邊向AB右側(cè)作等邊△ABE,其它條件均不改變,請在圖2中補全圖形,探究線段EF、AF、DF三者的數(shù)量關(guān)系,并證明你的結(jié)論.”(1)求∠DFC的度數(shù);(2)在圖1中探究線段EF、AF、DF之間的數(shù)量關(guān)系,并證明;(3)在圖2中補全圖形,探究線段EF、AF、DF之間的數(shù)量關(guān)系,并證明.6.探究:如圖①,在△ABC中,∠ACB=90°,CD⊥AB于點D,若∠B=30°,則∠ACD的度數(shù)是度;拓展:如圖②,∠MCN=90°,射線CP在∠MCN的內(nèi)部,點A、B分別在CM、CN上,分別過點A、B作AD⊥CP、BE⊥CP,垂足分別為D、E,若∠CBE=70°,求∠CAD的度數(shù);應(yīng)用:如圖③,點A、B分別在∠MCN的邊CM、CN上,射線CP在∠MCN的內(nèi)部,點D、E在射線CP上,連接AD、BE,若∠ADP=∠BEP=60°,則∠CAD+∠CBE+∠ACB=度.7.如圖所示,在平面直角坐標(biāo)系中,已知點的坐標(biāo),過點作軸,垂足為點,過點作直線軸,點從點出發(fā)在軸上沿著軸的正方向運動.(1)當(dāng)點運動到點處,過點作的垂線交直線于點,證明,并求此時點的坐標(biāo);(2)點是直線上的動點,問是否存在點,使得以為頂點的三角形和全等,若存在求點的坐標(biāo)以及此時對應(yīng)的點的坐標(biāo),若不存在,請說明理由.8.在等腰中,,為邊上的高,點在的外部且,,連接交直線于點,連接.(1)如圖①,當(dāng)時,求證:;(2)如圖②,當(dāng)時,求的度數(shù);(3)如圖③,當(dāng)時,求證:.9.如圖,中,,,點為射線上一動點,連結(jié),作且.(1)如圖1,過點作交于點,求證:;(2)如圖2,連結(jié)交于點,若,,求證:點為中點.(3)當(dāng)點在射線上,連結(jié)與直線交于點,若,,則______.(直接寫出結(jié)果)10.如圖,在等邊中,線段為邊上的中線.動點在直線上時,以為一邊在的下方作等邊,連結(jié).(1)求的度數(shù);(2)若點在線段上時,求證:;(3)當(dāng)動點在直線上時,設(shè)直線與直線的交點為,試判斷是否為定值?并說明理由.11.如圖,以直角三角形AOC的直角頂點O為原點,以O(shè)C,OA所在直線為軸和軸建立平面直角坐標(biāo)系,點A(0,a),C(b,0)滿足.(1)a=;b=;直角三角形AOC的面積為.(2)已知坐標(biāo)軸上有兩動點P,Q同時出發(fā),P點從C點出發(fā)以每秒2個單位長度的速度向點O勻速移動,Q點從O點出發(fā)以每秒1個單位長度的速度向點A勻速移動,點P到達(dá)O點整個運動隨之結(jié)束.AC的中點D的坐標(biāo)是(4,3),設(shè)運動時間為t秒.問:是否存在這樣的t,使得△ODP與△ODQ的面積相等?若存在,請求出t的值;若不存在,請說明理由.(3)在(2)的條件下,若∠DOC=∠DCO,點G是第二象限中一點,并且y軸平分∠GOD.點E是線段OA上一動點,連接接CE交OD于點H,當(dāng)點E在線段OA上運動的過程中,探究∠GOD,∠OHC,∠ACE之間的數(shù)量關(guān)系,并證明你的結(jié)論(三角形的內(nèi)角和為180).12.在等邊△ABC的頂點A、C處各有一只蝸牛,它們同時出發(fā),分別以每分鐘1米的速度由A向B和由C向A爬行,其中一只蝸牛爬到終點時,另一只也停止運動,經(jīng)過t分鐘后,它們分別爬行到D、E處,請問:(1)如圖1,在爬行過程中,CD和BE始終相等嗎,請證明?(2)如果將原題中的“由A向B和由C向A爬行”,改為“沿著AB和CA的延長線爬行”,EB與CD交于點Q,其他條件不變,蝸牛爬行過程中∠CQE的大小保持不變,請利用圖2說明:∠CQE=60°;(3)如果將原題中“由C向A爬行”改為“沿著BC的延長線爬行,連接DE交AC于F”,其他條件不變,如圖3,則爬行過程中,證明:DF=EF13.如圖,已知△ABC中,AB=AC=10cm,BC=8cm,點D為AB的中點.如果點P在線段BC上以3cm/s的速度由B點向C點運動,同時,點Q在線段CA上由C點向A點運動.(1)若點Q的運動速度與點P的運動速度相等,經(jīng)過1s后,BP=cm,CQ=cm.(2)若點Q的運動速度與點P的運動速度相等,經(jīng)過1s后,△BPD與△CQP是否全等,請說明理由;(3)若點Q的運動速度與點P的運動速度不相等,當(dāng)點Q的運動速度為多少時,能夠使△BPD與△CQP全等?(4)若點Q以(3)中的運動速度從點C出發(fā),點P以原來的運動速度從點B同時出發(fā),都逆時針沿△ABC三邊運動,求經(jīng)過多長時間點P與點Q第一次相遇?14.如圖1,在平面直角坐標(biāo)系中,點的坐為,點的坐標(biāo)為,在中,軸交軸于點.(1)求和的度數(shù);(2)如圖,在圖的基礎(chǔ)上,以點為一銳角頂點作,,交于點,求證:;(3)在第()問的條件下,若點的標(biāo)為,求四邊形的面積.15.已知ABC,P是平面內(nèi)任意一點(A、B、C、P中任意三點都不在同一直線上).連接PB、PC,設(shè)∠PBA=s°,∠PCA=t°,∠BPC=x°,∠BAC=y(tǒng)°.(1)如圖,當(dāng)點P在ABC內(nèi)時,①若y=70,s=10,t=20,則x=;②探究s、t、x、y之間的數(shù)量關(guān)系,并證明你得到的結(jié)論.(2)當(dāng)點P在ABC外時,直接寫出s、t、x、y之間所有可能的數(shù)量關(guān)系,并畫出相應(yīng)的圖形.16.(概念認(rèn)識)如圖①,在∠ABC中,若∠ABD=∠DBE=∠EBC,則BD,BE叫做∠ABC的“三分線”.其中,BD是“鄰AB三分線”,BE是“鄰BC三分線”.(問題解決)(1)如圖②,在△ABC中,∠A=70°,∠B=45°,若∠B的三分線BD交AC于點D,則∠BDC=°;(2)如圖③,在△ABC中,BP、CP分別是∠ABC鄰AB三分線和∠ACB鄰AC三分線,且BP⊥CP,求∠A的度數(shù);(延伸推廣)(3)在△ABC中,∠ACD是△ABC的外角,∠B的三分線所在的直線與∠ACD的三分線所在的直線交于點P.若∠A=m°,∠B=n°,直接寫出∠BPC的度數(shù).(用含m、n的代數(shù)式表示)17.已知,如圖1,直線l2⊥l1,垂足為A,點B在A點下方,點C在射線AM上,點B、C不與點A重合,點D在直線11上,點A的右側(cè),過D作l3⊥l1,點E在直線l3上,點D的下方.(1)l2與l3的位置關(guān)系是;(2)如圖1,若CE平分∠BCD,且∠BCD=70°,則∠CED=°,∠ADC=°;(3)如圖2,若CD⊥BD于D,作∠BCD的角平分線,交BD于F,交AD于G.試說明:∠DGF=∠DFG;(4)如圖3,若∠DBE=∠DEB,點C在射線AM上運動,∠BDC的角平分線交EB的延長線于點N,在點C的運動過程中,探索∠N:∠BCD的值是否變化,若變化,請說明理由;若不變化,請直接寫出比值.18.(1)如圖1,和都是等邊三角形,且,,三點在一條直線上,連接,相交于點,求證:.(2)如圖2,在中,若,分別以,和為邊在外部作等邊,等邊,等邊,連接、、恰交于點.①求證:;②如圖2,在(2)的條件下,試猜想,,與存在怎樣的數(shù)量關(guān)系,并說明理由.19.已知在中,,點在上,邊在上,在中,邊在直線上,;(1)如圖1,求的度數(shù);(2)如圖2,將沿射線的方向平移,當(dāng)點在上時,求度數(shù);(3)將在直線上平移,當(dāng)以為頂點的三角形是直角三角形時,直接寫出度數(shù).20.閱讀并填空:如圖,是等腰三角形,,是邊延長線上的一點,在邊上且聯(lián)接交于,如果,那么,為什么?解:過點作交于所以(兩直線平行,同位角相等)(________)在與中所以,(________)所以(________)因為(已知)所以(________)所以(等量代換)所以(________)所以【參考答案】***試卷處理標(biāo)記,請不要刪除一、壓軸題1.(1)4;(2)的最小內(nèi)角為15°或9°或;(3)30°<x<45°.【解析】【分析】(1)根據(jù)三角形內(nèi)角和定理求出∠C的度數(shù),再根據(jù)倍角三角形的定義判斷即可得到答案;(2)根據(jù)△DEF是3倍角三角形,必定有一個內(nèi)角是另一個內(nèi)角的3倍,然后根據(jù)這兩個角之間的關(guān)系,分情況進行解答即可得到答案;(3)可設(shè)未知數(shù)表示2倍角三角形的各個內(nèi)角,然后列不等式組確定最小內(nèi)角的取值范圍.【詳解】解:(1)∵在中,,,∴∠C=180°-55°-25°=100°,∴∠C=4∠B,故為4倍角三角形;(2)設(shè)其中一個內(nèi)角為x°,3倍角為3x°,則另外一個內(nèi)角為:①當(dāng)小的內(nèi)角的度數(shù)是3倍內(nèi)角的余角的度數(shù)的時,即:x=(90°-3x),解得:x=15°,②3倍內(nèi)角的度數(shù)是小內(nèi)角的余角的度數(shù)的時,即:3x=(90°-x),解得:x=9°,③當(dāng)時,解得:,此時:=,因此為最小內(nèi)角,因此,△DEF的最小內(nèi)角是9°或15°或.(3)設(shè)最小內(nèi)角為x,則2倍內(nèi)角為2x,第三個內(nèi)角為(180°-3x),由題意得:2x<90°且180°-3x<90°,∴30°<x<45°,答:△MNP的最小內(nèi)角的取值范圍是30°<x<45°.2.(1)∠BPC=122°;(2)∠BEC=;(3)∠BQC=90°﹣∠A,證明見解析【解析】【分析】(1)根據(jù)三角形的內(nèi)角和化為角平分線的定義;(2)根據(jù)三角形的一個外角等于與它不相鄰的兩個內(nèi)角的和,用∠A與∠1表示出∠2,再利用∠E與∠1表示出∠2,于是得到結(jié)論;(3)根據(jù)三角形的一個外角等于與它不相鄰的兩個內(nèi)角的和以及角平分線的定義表示出∠EBC與∠ECB,然后再根據(jù)三角形的內(nèi)角和定理列式整理即可得解.【詳解】解:(1)、分別平分和,,,,,,,,故答案為:;(2)和分別是和的角平分線,,,又是的一外角,,,是的一外角,;(3),,,,,結(jié)論:.【點睛】本題考查了三角形的外角性質(zhì)與內(nèi)角和定理,熟記三角形的一個外角等于與它不相鄰的兩個內(nèi)角的和是解題的關(guān)鍵.3.(1)見解析;(2)見解析;(3)3【解析】【分析】(1)根據(jù)等腰三角形的性質(zhì)和外角的性質(zhì)即可得到結(jié)論;(2)過E作EF∥AC交AB于F,根據(jù)已知條件得到△ABC是等邊三角形,推出△BEF是等邊三角形,得到BE=EF,∠BFE=60°,根據(jù)全等三角形的性質(zhì)即可得到結(jié)論;(3)連接AF,證明△ABF≌△CBF,得AF=CF,再證明DH=AH=CF=3.【詳解】解:(1)∵AB=AC,∴∠ABC=∠ACB,∵DE=DC,∴∠E=∠DCE,∴∠ABC-∠E=∠ACB-∠DCB,即∠EDB=∠ACD;(2)∵△ABC是等邊三角形,∴∠B=60°,∴△BEF是等邊三角形,∴BE=EF,∠BFE=60°,∴∠DFE=120°,∴∠DFE=∠CAD,在△DEF與△CAD中,,∴△DEF≌△CAD(AAS),∴EF=AD,∴AD=BE;(3)連接AF,如圖3所示:∵DE=DC,∠EDC=30°,∴∠DEC=∠DCE=75°,∴∠ACF=75°-60°=15°,∵BF平分∠ABC,∴∠ABF=∠CBF,在△ABF和△CBF中,,△ABF≌△CBF(SAS),∴AF=CF,∴∠FAC=∠ACF=15°,∴∠AFH=15°+15°=30°,∵AH⊥CD,∴AH=AF=CF=3,∵∠DEC=∠ABC+∠BDE,∴∠BDE=75°-60°=15°,∴∠ADH=15°+30°=45°,∴∠DAH=∠ADH=45°,∴DH=AH=3.【點睛】本題考查了全等三角形的判定與性質(zhì),等腰三角形和直角三角形的性質(zhì),三角形的外角的性質(zhì),等邊三角形的判定和性質(zhì),證明三角形全等是解決問題的關(guān)鍵.4.(1)∠AFE=60°;(2)見解析;(3)【解析】【分析】(1)通過證明得到對應(yīng)角相等,等量代換推導(dǎo)出;(2)由(1)得到,則在中利用30°所對的直角邊等于斜邊的一半,等量代換可得;(3)通過在PF上取一點K使得KF=AF,作輔助線證明和全等,利用對應(yīng)邊相等,等量代換得到比值.(通過將順時針旋轉(zhuǎn)60°也是一種思路.)【詳解】(1)解:如圖1中.∵為等邊三角形,∴AC=BC,∠BAC=∠ABC=∠ACB=60°,在和中,,∴(SAS),∴∠BCE=∠DAC,∵∠BCE+∠ACE=60°,∴∠DAC+∠ACE=60°,∴∠AFE=60°.(2)證明:如圖1中,∵AH⊥EC,∴∠AHF=90°,在Rt△AFH中,∵∠AFH=60°,∴∠FAH=30°,∴AF=2FH,∵,∴EC=AD,∵AD=AF+DF=2FH+DF,∴2FH+DF=EC.(3)解:在PF上取一點K使得KF=AF,連接AK、BK,∵∠AFK=60°,AF=KF,∴△AFK為等邊三角形,∴∠KAF=60°,∴∠KAB=∠FAC,在和中,,∴(SAS),∴∠AKB=∠AFC=120°,∴∠BKE=120°﹣60°=60°,∵∠BPC=30°,∴∠PBK=30°,∴,∴,∵∴.【點睛】掌握等邊三角形、直角三角形的性質(zhì),及三角形全等的判定通過一定等量代換為本題的關(guān)鍵.5.(1)60°;(2)EF=AF+FC,證明見解析;(3)AF=EF+2DF,證明見解析.【解析】【分析】(1)可設(shè)∠BAD=∠CAD=α,∠AEC=∠ACE=β,在△ACE中,根據(jù)三角形內(nèi)角和可得2α+60+2β=180°,從而有α+β=60°,即可得出∠DFC的度數(shù);(2)在EC上截取EG=CF,連接AG,證明△AEG≌△ACF,然后再證明△AFG為等邊三角形,從而可得出EF=EG+GF=AF+FC;(3)在AF上截取AG=EF,連接BG,BF,證明方法類似(2),先證明△ABG≌△EBF,再證明△BFG為等邊三角形,最后可得出結(jié)論.【詳解】解:(1)∵AB=AC,AD為BC邊上的中線,∴可設(shè)∠BAD=∠CAD=α,又△ABE為等邊三角形,∴AE=AB=AC,∠EAB=60°,∴可設(shè)∠AEC=∠ACE=β,在△ACE中,2α+60°+2β=180°,∴α+β=60°,∴∠DFC=α+β=60°;(2)EF=AF+FC,證明如下:∵AB=AC,AD為BC邊上的中線,∴AD⊥BC,∴∠FDC=90°,∵∠CFD=60°,則∠DCF=30°,∴CF=2DF,在EC上截取EG=CF,連接AG,又AE=AC,∴∠AEG=∠ACF,∴△AEG≌△ACF(SAS),∴∠EAG=∠CAF,AG=AF,又∠CAF=∠BAD,∴∠EAG=∠BAD,∴∠GAF=∠BAD+∠BAG=∠EAG+∠BAG=∠60°,∴△AFG為等邊三角形,∴EF=EG+GF=AF+FC,即EF=AF+FC;(3)補全圖形如圖所示,結(jié)論:AF=EF+2DF.證明如下:同(1)可設(shè)∠BAD=∠CAD=α,∠ACE=∠AEC=β,∴∠CAE=180°-2β,∴∠BAE=2α+180°-2β=60°,∴β-α=60°,∴∠AFC=β-α=60°,又△ABE為等邊三角形,∴∠ABE=∠AFC=60°,∴由8字圖可得:∠BAD=∠BEF,在AF上截取AG=EF,連接BG,BF,又AB=BE,∴△ABG≌△EBF(SAS),∴BG=BF,又AF垂直平分BC,∴BF=CF,∴∠BFA=∠AFC=60°,∴△BFG為等邊三角形,∴BG=BF,又BC⊥FG,∴FG=BF=2DF,∴AF=AG+GF=BF+EF=2DF+EF.【點睛】本題考查了全等三角形的判定和性質(zhì)、等邊三角形的性質(zhì)、等腰三角形的性質(zhì)等知識,解決問題的關(guān)鍵是常用輔助線構(gòu)造全等三角形,屬于中考常考題型.6.探究:30;(2)拓展:20°;(3)應(yīng)用:120【解析】【分析】(1)利用直角三角形的性質(zhì)依次求出∠A,∠ACD即可;(2)利用直角三角形的性質(zhì)直接計算得出即可;(3)利用三角形的外角的性質(zhì)得出結(jié)論,直接轉(zhuǎn)化即可得出結(jié)論.【詳解】(1)在△ABC中,∠ACB=90°,∠B=30°,∴∠A=60°,∵CD⊥AB,∴∠ADC=90°,∴∠ACD=90°﹣∠A=30°;故答案為:30,(2)∵BE⊥CP,∴∠BEC=90°,∵∠CBE=70°,∴∠BCE=90°﹣∠CBE=20°,∵∠ACB=90°,∴∠ACD=90°﹣∠BCE=70°,∵AD⊥CP,∴∠CAD=90°﹣∠ACD=20°;(3)∵∠ADP是△ACD的外角,∴∠ADP=∠ACD+∠CAD=60°,同理,∠BEP=∠BCE+∠CBE=60°,∴∠CAD+∠CBE+∠ACB=∠CAD+∠CBE+∠ACD+∠BCE=(∠CAD+∠ACD)+(∠CBE+∠BCE)=120°,故答案為120.【點睛】此題是三角形的綜合題,主要考查了直角三角形的性質(zhì),三角形的外角的性質(zhì),垂直的定義,解本題的關(guān)鍵是充分利用直角三角形的性質(zhì):兩銳角互余,是一道比較簡單的綜合題.7.(1)證明見解析;;(2)存在,,或,或,或,或,或,.【解析】【分析】(1)通過全等三角形的判定定理ASA證得△ABP≌△PCD,由全等三角形的對應(yīng)邊相等證得AP=DP,DC=PB=3,易得點D的坐標(biāo);(2)設(shè)P(a,0),Q(2,b).需要分類討論:①AB=PC,BP=CQ;②AB=CQ,BP=PC.結(jié)合兩點間的距離公式列出方程組,通過解方程組求得a、b的值,得解.【詳解】(1)軸在和中,(2)設(shè),①,,解得或,或,或,或,②,,,解得,或,綜上:,或,或,或,或,或,【點睛】考查了三角形綜合題.涉及到了全等三角形的判定與性質(zhì),兩點間的距離公式,一元一次絕對值方程組的解法等知識點.解答(2)題時,由于沒有指明全等三角形的對應(yīng)邊(角),所以需要分類討論,以防漏解.8.(1)見解析;(2);(3)見解析【解析】【分析】(1)根據(jù)等腰三角形三線合一的性質(zhì),可得AE垂直平分BC,F(xiàn)為垂直平分線AE上點,即可得出結(jié)論;(2)根據(jù)(1)的結(jié)論可得AE平分∠BAC,∠BAF=20°,由AB=AC=AD,推出,根據(jù)外角性質(zhì)可得計算即可;(3)在CF上截取CM=DF,連接AM,證明△ACM≌△ADF(SAS),進而證得△AFM為等邊三角形即可.【詳解】(1)證明:∵AE為等腰△ABC底邊BC上的高線,AB=AC,,∠AEB=∠AEC=90°,BE=CE,∴AE垂直平分BE,F(xiàn)在AE上,;(2),,,,由(1)知,AE平分∠BAC,,,故答案為:60°;(3)在CF上截取CM=DF,連接AM,由(1)可知,∠ABC=∠ACB,∠FBC=∠FCB,,,,,在△ACM和△ADF中,∴△ACM≌△ADF(SAS),,,∴△AFM為等邊三角形,,.【點睛】本題考查了等腰三角形的性質(zhì),垂直平分線的性質(zhì),三角形全等的判定和性質(zhì),等邊三角形的判定和性質(zhì),掌握三角形全等的判定和性質(zhì)是解題的關(guān)鍵.9.(1)見解析;(2)見解析;(3)或【解析】【分析】(1)證明△AFD≌△EAC,根據(jù)全等三角形的性質(zhì)得到DF=AC,等量代換證明結(jié)論;(2)作FD⊥AC于D,證明△FDG≌△BCG,得到DG=CG,求出CE,CB的長,得到答案;(3)過F作FD⊥AG的延長線交于點D,根據(jù)全等三角形的性質(zhì)得到CG=GD,AD=CE=7,代入計算即可.【詳解】解:(1)證明:∵FD⊥AC,∴∠FDA=90°,∴∠DFA+∠DAF=90°,同理,∠CAE+∠DAF=90°,∴∠DFA=∠CAE,在△AFD和△EAC中,,∴△AFD≌△EAC(AAS),∴DF=AC,∵AC=BC,∴FD=BC;(2)作FD⊥AC于D,由(1)得,F(xiàn)D=AC=BC,AD=CE,在△FDG和△BCG中,,∴△FDG≌△BCG(AAS),∴DG=CG=1,∴AD=2,∴CE=2,∵BC=AC=AG+CG=4,∴E點為BC中點;(3)當(dāng)點E在CB的延長線上時,過F作FD⊥AG的延長線交于點D,BC=AC=4,CE=CB+BE=7,由(1)(2)知:△ADF≌△ECA,△GDF≌△GCB,∴CG=GD,AD=CE=7,∴CG=DG=1.5,∴,同理,當(dāng)點E在線段BC上時,,故答案為:或.【點睛】本題考查的是全等三角形的判定和性質(zhì),掌握全等三角形的判定定理和性質(zhì)定理是解題的關(guān)鍵.10.(1)30°;(2)證明見解析;(3)是定值,.【解析】【分析】(1)根據(jù)等邊三角形的性質(zhì)可以直接得出結(jié)論;(2)根據(jù)等邊三角形的性質(zhì)就可以得出,,,,由等式的性質(zhì)就可以,根據(jù)就可以得出;(3)分情況討論:當(dāng)點在線段上時,如圖1,由(2)可知,就可以求出結(jié)論;當(dāng)點在線段的延長線上時,如圖2,可以得出而有而得出結(jié)論;當(dāng)點在線段的延長線上時,如圖3,通過得出同樣可以得出結(jié)論.【詳解】(1)是等邊三角形,.線段為邊上的中線,,.(2)與都是等邊三角形,,,,,.在和中,;(3)是定值,,理由如下:①當(dāng)點在線段上時,如圖1,由(2)可知,則,又,,是等邊三角形,線段為邊上的中線平分,即.②當(dāng)點在線段的延長線上時,如圖2,與都是等邊三角形,,,,,,在和中,,,同理可得:,.③當(dāng)點在線段的延長線上時,與都是等邊三角形,,,,,,在和中,,,同理可得:,∵,.綜上,當(dāng)動點在直線上時,是定值,.【點睛】此題考查等邊三角形的性質(zhì),全等三角形的判定及性質(zhì),等邊三角形三線合一的性質(zhì),解題中注意分類討論的思想解題.11.(1)6;8;24;(2)存在時,使得△ODP與△ODQ的面積相等;(3)∠GOD+∠ACE=∠OHC,見解析【解析】【分析】(1)利用非負(fù)性即可求出a,b即可得出結(jié)論,即可求出△ABC的面積;(2)先表示出OQ,OP,利用那個面積相等,建立方程求解即可得出結(jié)論;(3)先判斷出∠OAC=∠AOD,進而判斷出OG∥AC,即可判斷出∠FHC=∠ACE,同理∠FHO=∠GOD,即可得出結(jié)論.【詳解】解:(1)解:(1)∵,∴a-6=0,b-8=0,∴a=6,b=8,∴A(0,6),C(8,0);∴S△ABC=6×8÷2=24,故答案為(0,6),(8,0);6;8;24(2)∵由時,∴存在時,使得△ODP與△ODQ的面積相等(3))∴2∠GOA+∠ACE=∠OHC,理由如下:∵x軸⊥y軸,∴∠AOC=∠DOC+∠AOD=90°∴∠OAC+∠ACO=90°又∵∠DOC=∠DCO∴∠OAC=∠AOD∵y軸平分∠GOD∴∠GOA=∠AOD∴∠GOA=∠OAC∴OG∥AC,如圖,過點H作HF∥OG交x軸于F,∴HF∥AC∴∠FHC=∠ACE同理∠FHO=∠GOD,∵OG∥FH,∴∠GOD=∠FHO,∴∠GOD+∠ACE=∠FHO+∠FHC即∠GOD+∠ACE=∠OHC,∴2∠GOA+∠ACE=∠OHC.∴∠GOD+∠ACE=∠OHC.【點睛】此題是三角形綜合題,主要考查了非負(fù)性的性質(zhì),三角形的面積公式,角平分線的定義,平行線的性質(zhì),正確作出輔助線是解本題的關(guān)鍵.12.(1)相等,證明見解析;(2)證明見解析;(3)證明見解析.【解析】【分析】(1)先證明△ACD≌△CBE,再由全等三角形的性質(zhì)即可證得CD=BE;(2)先證明△BCD≌△ABE,得到∠BCD=∠ABE,求出∠DQB=∠BCQ+∠CBQ=∠ABE+∠CBQ=180°-∠ABC,∠CQE=180°-∠DQB,即可解答;(3)如圖3,過點D作DG∥BC交AC于點G,根據(jù)等邊三角形的三邊相等,可以證得AD=DG=CE;進而證明△DGF和△ECF全等,最后根據(jù)全等三角形的性質(zhì)即可證明.【詳解】(1)解:CD和BE始終相等,理由如下:如圖1,AB=BC=CA,兩只蝸牛速度相同,且同時出發(fā),∴CE=AD,∠A=∠BCE=60°在△ACD與△CBE中,AC=CB,∠A=∠BCE,AD=CE∴△ACD≌△CBE(SAS),∴CD=BE,即CD和BE始終相等;(2)證明:根據(jù)題意得:CE=AD,∵AB=AC,∴AE=BD,∴△ABC是等邊三角形,∴AB=BC,∠BAC=∠ACB=60°,∵∠EAB+∠ABC=180°,∠DBC+∠ABC=180°,∴∠EAB=∠DBC,在△BCD和△ABE中,BC=AB,∠DBC=∠EAB,BD=AE∴△BCD≌△ABE(SAS),∴∠BCD=∠ABE∴∠DQB=∠BCQ+∠CBQ=∠ABE+∠CBQ=180°-∠ABC=180°-60°=120°,∴∠CQE=180°-∠DQB=60°,即CQE=60°;(3)解:爬行過程中,DF始終等于EF是正確的,理由如下:如圖,過點D作DG∥BC交AC于點G,∴∠ADG=∠B=∠AGD=60°,∠GDF=∠E,∴△ADG為等邊三角形,∴AD=DG=CE,在△DGF和△ECF中,∠GFD=∠CFE,∠GDF=∠E,DG=EC∴△DGF≌△EDF(AAS),∴DF=EF.【點睛】本題主要考查了全等三角形的判定與性質(zhì)和等邊三角形的性質(zhì);題弄懂題中所給的信息,再根據(jù)所提供的思路尋找證明條件是解答本題的關(guān)鍵.13.(1)BP=3cm,CQ=3cm;(2)全等,理由詳見解析;(3);(4)經(jīng)過s點P與點Q第一次相遇.【解析】【分析】(1)速度和時間相乘可得BP、CQ的長;(2)利用SAS可證三角形全等;(3)三角形全等,則可得出BP=PC,CQ=BD,從而求出t的值;(4)第一次相遇,即點Q第一次追上點P,即點Q的運動的路程比點P運動的路程多10+10=20cm的長度.【詳解】解:(1)BP=3×1=3㎝,CQ=3×1=3㎝(2)∵t=1s,點Q的運動速度與點P的運動速度相等∴BP=CQ=3×1=3cm,∵AB=10cm,點D為AB的中點,∴BD=5cm.又∵PC=BC﹣BP,BC=8cm,∴PC=8﹣3=5cm,∴PC=BD又∵AB=AC,∴∠B=∠C,在△BPD和△CQP中,∴△BPD≌△CQP(SAS)(3)∵點Q的運動速度與點P的運動速度不相等,∴BP與CQ不是對應(yīng)邊,即BP≠CQ∴若△BPD≌△CPQ,且∠B=∠C,則BP=PC=4cm,CQ=BD=5cm,∴點P,點Q運動的時間t=s,∴cm/s;(4)設(shè)經(jīng)過x秒后點P與點Q第一次相遇.由題意,得x=3x+2×10,解得∴經(jīng)過s點P與點Q第一次相遇.【點睛】本題考查動點問題,解題關(guān)鍵還是全等的證明和利用,將動點問題視為定點問題來分析可簡化思考過程.14.(1)∠OAD=∠ODA=45°;(2)證明見解析;(3)18.【解析】【分析】(1)由等腰直角三角形的性質(zhì)可求解;(2)通過“ASA”可證得△ODB≌△OAP,進而可得BO=OP;(3)過點P作PF⊥x軸于點F,延長FP交BC于N,過點A作AQ⊥BC于Q,由“AAS”可證△OBM≌△OPF,可得PF=BM=2,OF=OM=4,由面積和差關(guān)系可求四邊形BOPC的面積.【詳解】(1)∵點A的坐為(2,0),點D的坐標(biāo)為(0,-2),∴OA=OD,∵∠AOD=90°,∴∠OAD=∠ODA=45°;(2)∵∠BOE=∠AOD=90°,∴∠BOD=∠AOP,∵∠ABC=∠ACB=45°,∴∠BAC=90°,AB=AC,∵∠OAD=∠ODA=45°,∴∠ODB=135°=∠OAP,在△ODB和△OAP中,,∴△ODB≌△OAP(ASA),∴BO=OP;(3)如圖,過點P作PF⊥x軸于點F,延長FP交BC于N,過點A作AQ⊥BC于Q,∵BC∥x軸,AQ⊥BC,PF⊥x軸,∴AQ⊥x軸,PN⊥BC,∠AOM=∠BMO=90°,∴點Q橫坐標(biāo)為2,∵∠BAC=90°,AB=AC,AQ⊥BC,∴BQ=QC,∵點B的標(biāo)為(-2,-4),∴BM=2,OM=4,BQ=4=QC,∵PF⊥x軸,∴∠OFP=∠OMB=90°,在△OBM和△OPF中,,∴△OBM≌△OPF(AAS),∴PF=BM=2,OF=OM=4,∵BC∥x軸,AQ⊥x軸,NF⊥x軸,∴OM=AQ=FN=4,∴PN=2,∵∠PNC=90°,∠ACB=45°,∴∠ACB=∠CPN=45°,∴CN=PN=2,∵四邊形BOPC的面積=S△OBM+S梯形OMNP+S△PNC,∴四邊形BOPC的面積=×2×4+×4×(2+4)+×2×2=18.【點睛】本題考查了全等三角形的判定和性質(zhì)、等腰直角三角形的性質(zhì)、三角形的面積公式等知識,難度較大,添加恰當(dāng)?shù)妮o助線構(gòu)造全等三角形是解本題的關(guān)鍵.15.(1)①100;②x=y+s+t;(2)見詳解.【解析】【分析】(1)①利用三角形的內(nèi)角和定理即可解決問題;②結(jié)論:x=y+s+t.利用三角形內(nèi)角和定理即可證明;(2)分6種情形分別求解即可解決問題.【詳解】解:(1)①∵∠BAC=70°,∴∠ABC+∠ACB=110°,∵∠PBA=10°,∠PCA=20°,∴∠PBC+∠PCB=80°,∴∠BPC=100°,∴x=100,故答案為:100.②結(jié)論:x=y+s+t.理由:∵∠A+∠ABC+∠ACB=∠A+∠PBA+∠PCA+∠PBC+∠PCB=180°,∠PBC+∠PCB+∠BPC=180°,∴∠A+∠PBA+∠PCA=∠BPC,∴x=y+s+t.(2)s、t、x、y之間所有可能的數(shù)量關(guān)系:如圖1:s+x=t+y;如圖2:s+y=t+x;如圖3:y=x+s+t;如圖4:x+y+s+t=360°;如圖5:t=s+x+y;如圖6:s=t+x+y;【點睛】本題考查三角形的內(nèi)角和定理,三角形的外角的性質(zhì)等知識,解題的關(guān)鍵是學(xué)會用分類討論的思想思考問題.16.(1)85或100;(2)45°;(3)m或m或m+n或m-n或n-m【解析】【分析】(1)根據(jù)題意可得的三分線有兩種情況,畫圖根據(jù)三角形的外角性質(zhì)即可得的度數(shù);(2)根據(jù)、分別是鄰三分線和鄰三分線,且可得,進而可求的度數(shù);(3)根據(jù)的三分線所在的直線與的三分線所在的直線交于點.分四種情況畫圖:情況一:如圖①,當(dāng)和分別是“鄰三分線”、“鄰三分線”時;情況二:如圖②,當(dāng)和分別是“鄰三分線”、“鄰三分線”時;情況三:如圖③,當(dāng)和分別是“鄰三分線”、“鄰三分線”時;情況四:如圖④,當(dāng)和分別是“鄰三分線”、“鄰三分線”時,再根據(jù),,即可求出的度數(shù).【詳解】解:(1)如圖,當(dāng)是“鄰三分線”時,;當(dāng)是“鄰三分線”時,;故答案為:85或100;(2),,,又、分別是鄰三分線和鄰三分線,,,,,在中,.(3)分4種情況進行畫圖計算:情況一:如圖①,當(dāng)和分別是“鄰三分線”、“鄰三分線”時,;情況二:如圖②,當(dāng)和分別是“鄰三分線”、“鄰三分線”時,;情況三:如圖③,當(dāng)和分別是“鄰三分線”、“鄰三分線”時,;情況四:如圖④,當(dāng)和分別是“鄰三分線”、“鄰三分線”時,①當(dāng)時,;②當(dāng)時,.【點睛】本題考查了三角形的外角性質(zhì),解決本題的關(guān)鍵是掌握三角形的外角性質(zhì).注意要分情況討論.17.(1)互相平行;(2)35,20;(3)見解析;(4)不變,【解析】【分析】(1)根據(jù)平行線的判定定理即可得到結(jié)論;(2)根據(jù)角平分線的定義和平行線的性質(zhì)即可得到結(jié)論;(3)根據(jù)角平分線的定義和平行線的性質(zhì)即可得到結(jié)論;(4)根據(jù)角平分線的定義,平行線的性質(zhì),三角形外角的性質(zhì)即可得到結(jié)論.【詳解】解:(1)直線l2⊥l1,l3⊥l1,∴l(xiāng)2∥l3,即l2與l3的位置關(guān)系是互相平行,故答案為:互相平行;(2)∵CE平分∠BCD,∴∠BCE=∠DCE=BCD,∵∠BCD=70°,∴∠DCE=35°,∵l2∥l3,∴∠CED=∠DCE=35°,∵l2⊥l1,∴∠CAD=90°,∴∠ADC=90°﹣70°=20°;故答案為:35,20;(3)∵CF平分∠BCD,∴∠BCF=∠DCF,∵l2⊥l1,∴∠CAD=90°,∴∠BCF+∠AGC=90°,∵CD⊥BD,∴∠DCF+∠CFD=90°,∴∠AGC=∠CFD,∵∠AGC=∠DGF,∴∠DGF

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

最新文檔

評論

0/150

提交評論