2025-2026學(xué)年四川省涼山州會東中學(xué)數(shù)學(xué)高三上期末檢測模擬試題_第1頁
2025-2026學(xué)年四川省涼山州會東中學(xué)數(shù)學(xué)高三上期末檢測模擬試題_第2頁
2025-2026學(xué)年四川省涼山州會東中學(xué)數(shù)學(xué)高三上期末檢測模擬試題_第3頁
2025-2026學(xué)年四川省涼山州會東中學(xué)數(shù)學(xué)高三上期末檢測模擬試題_第4頁
2025-2026學(xué)年四川省涼山州會東中學(xué)數(shù)學(xué)高三上期末檢測模擬試題_第5頁
已閱讀5頁,還剩14頁未讀 繼續(xù)免費閱讀

付費下載

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報或認(rèn)領(lǐng)

文檔簡介

2025-2026學(xué)年四川省涼山州會東中學(xué)數(shù)學(xué)高三上期末檢測模擬試題注意事項:1.答卷前,考生務(wù)必將自己的姓名、準(zhǔn)考證號填寫在答題卡上。2.回答選擇題時,選出每小題答案后,用鉛筆把答題卡上對應(yīng)題目的答案標(biāo)號涂黑,如需改動,用橡皮擦干凈后,再選涂其它答案標(biāo)號?;卮鸱沁x擇題時,將答案寫在答題卡上,寫在本試卷上無效。3.考試結(jié)束后,將本試卷和答題卡一并交回。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.在中,,,,則在方向上的投影是()A.4 B.3 C.-4 D.-32.已知函數(shù)若恒成立,則實數(shù)的取值范圍是()A. B. C. D.3.若表示不超過的最大整數(shù)(如,,),已知,,,則()A.2 B.5 C.7 D.84.已知四棱錐中,平面,底面是邊長為2的正方形,,為的中點,則異面直線與所成角的余弦值為()A. B. C. D.5.已知為拋物線的準(zhǔn)線,拋物線上的點到的距離為,點的坐標(biāo)為,則的最小值是()A. B.4 C.2 D.6.定義在上函數(shù)滿足,且對任意的不相等的實數(shù)有成立,若關(guān)于x的不等式在上恒成立,則實數(shù)m的取值范圍是()A. B. C. D.7.已知,則的取值范圍是()A.[0,1] B. C.[1,2] D.[0,2]8.已知函數(shù),為圖象的對稱中心,若圖象上相鄰兩個極值點,滿足,則下列區(qū)間中存在極值點的是()A. B. C. D.9.我國古代數(shù)學(xué)巨著《九章算術(shù)》中,有如下問題:“今有女子善織,日自倍,五日織五尺,問日織幾何?”這個問題用今天的白話敘述為:有一位善于織布的女子,每天織的布都是前一天的2倍,已知她5天共織布5尺,問這位女子每天分別織布多少?根據(jù)上述問題的已知條件,若該女子共織布尺,則這位女子織布的天數(shù)是()A.2 B.3 C.4 D.110.已知隨機(jī)變量服從正態(tài)分布,,()A. B. C. D.11.要得到函數(shù)的圖象,只需將函數(shù)的圖象()A.向右平移個單位 B.向右平移個單位C.向左平移個單位 D.向左平移個單位12.已知表示兩條不同的直線,表示兩個不同的平面,且則“”是“”的()條件.A.充分不必要 B.必要不充分 C.充要 D.既不充分也不必要二、填空題:本題共4小題,每小題5分,共20分。13.在平面直角坐標(biāo)系xOy中,A,B為x軸正半軸上的兩個動點,P(異于原點O)為y軸上的一個定點.若以AB為直徑的圓與圓x2+(y-2)2=1相外切,且∠APB的大小恒為定值,則線段OP的長為_____.14.在三棱錐P-ABC中,,,,三個側(cè)面與底面所成的角均為,三棱錐的內(nèi)切球的表面積為_________.15.已知集合,,則________.16.如圖是一個幾何體的三視圖,若它的體積是,則_________,該幾何體的表面積為_________.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17.(12分)某超市計劃按月訂購一種酸奶,每天進(jìn)貨量相同,進(jìn)貨成本每瓶4元,售價每瓶6元,未售出的酸奶降價處理,以每瓶2元的價格當(dāng)天全部處理完.根據(jù)往年銷售經(jīng)驗,每天需求量與當(dāng)天最高氣溫(單位:℃)有關(guān).如果最高氣溫不低于25,需求量為500瓶;如果最高氣溫位于區(qū)間[20,25),需求量為300瓶;如果最高氣溫低于20,需求量為200瓶.為了確定六月份的訂購計劃,統(tǒng)計了前三年六月份各天的最高氣溫數(shù)據(jù),得下面的頻數(shù)分布表:最高氣溫[10,15)[15,20)[20,25)[25,30)[30,35)[35,40)天數(shù)216362574以最高氣溫位于各區(qū)間的頻率估計最高氣溫位于該區(qū)間的概率.(1)求六月份這種酸奶一天的需求量不超過300瓶的概率;(2)設(shè)六月份一天銷售這種酸奶的利潤為Y(單位:元),當(dāng)六月份這種酸奶一天的進(jìn)貨量為450瓶時,寫出Y的所有可能值,并估計Y大于零的概率.18.(12分)已知傾斜角為的直線經(jīng)過拋物線的焦點,與拋物線相交于、兩點,且.(1)求拋物線的方程;(2)設(shè)為拋物線上任意一點(異于頂點),過做傾斜角互補(bǔ)的兩條直線、,交拋物線于另兩點、,記拋物線在點的切線的傾斜角為,直線的傾斜角為,求證:與互補(bǔ).19.(12分)已知橢圓的右頂點為,為上頂點,點為橢圓上一動點.(1)若,求直線與軸的交點坐標(biāo);(2)設(shè)為橢圓的右焦點,過點與軸垂直的直線為,的中點為,過點作直線的垂線,垂足為,求證:直線與直線的交點在橢圓上.20.(12分)已知函數(shù),.(1)當(dāng)為何值時,軸為曲線的切線;(2)用表示、中的最大值,設(shè)函數(shù),當(dāng)時,討論零點的個數(shù).21.(12分)2018年9月,臺風(fēng)“山竹”在我國多個省市登陸,造成直接經(jīng)濟(jì)損失達(dá)52億元.某青年志愿者組織調(diào)查了某地區(qū)的50個農(nóng)戶在該次臺風(fēng)中造成的直接經(jīng)濟(jì)損失,將收集的數(shù)據(jù)分成五組:,,,,(單位:元),得到如圖所示的頻率分布直方圖.(1)試根據(jù)頻率分布直方圖估計該地區(qū)每個農(nóng)戶的平均損失(同一組中的數(shù)據(jù)用該組區(qū)間的中點值代表);(2)臺風(fēng)后該青年志愿者與當(dāng)?shù)卣蛏鐣l(fā)出倡議,為該地區(qū)的農(nóng)戶捐款幫扶,現(xiàn)從這50戶并且損失超過4000元的農(nóng)戶中隨機(jī)抽取2戶進(jìn)行重點幫扶,設(shè)抽出損失超過8000元的農(nóng)戶數(shù)為,求的分布列和數(shù)學(xué)期望.22.(10分)在角中,角A、B、C的對邊分別是a、b、c,若.(1)求角A;(2)若的面積為,求的周長.

參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.D【解析】分析:根據(jù)平面向量的數(shù)量積可得,再結(jié)合圖形求出與方向上的投影即可.詳解:如圖所示:,,,又,,在方向上的投影是:,故選D.點睛:本題考查了平面向量的數(shù)量積以及投影的應(yīng)用問題,也考查了數(shù)形結(jié)合思想的應(yīng)用問題.2.D【解析】

由恒成立,等價于的圖像在的圖像的上方,然后作出兩個函數(shù)的圖像,利用數(shù)形結(jié)合的方法求解答案.【詳解】因為由恒成立,分別作出及的圖象,由圖知,當(dāng)時,不符合題意,只須考慮的情形,當(dāng)與圖象相切于時,由導(dǎo)數(shù)幾何意義,此時,故.故選:D此題考查的是函數(shù)中恒成立問題,利用了數(shù)形結(jié)合的思想,屬于難題.3.B【解析】

求出,,,,,,判斷出是一個以周期為6的周期數(shù)列,求出即可.【詳解】解:.,∴,,,同理可得:;;.;,,…….∴.故是一個以周期為6的周期數(shù)列,則.故選:B.本題考查周期數(shù)列的判斷和取整函數(shù)的應(yīng)用.4.B【解析】

由題意建立空間直角坐標(biāo)系,表示出各點坐標(biāo)后,利用即可得解.【詳解】平面,底面是邊長為2的正方形,如圖建立空間直角坐標(biāo)系,由題意:,,,,,為的中點,.,,,異面直線與所成角的余弦值為即為.故選:B.本題考查了空間向量的應(yīng)用,考查了空間想象能力,屬于基礎(chǔ)題.5.B【解析】

設(shè)拋物線焦點為,由題意利用拋物線的定義可得,當(dāng)共線時,取得最小值,由此求得答案.【詳解】解:拋物線焦點,準(zhǔn)線,過作交于點,連接由拋物線定義,

,

當(dāng)且僅當(dāng)三點共線時,取“=”號,∴的最小值為.

故選:B.本題主要考查拋物線的定義、標(biāo)準(zhǔn)方程,以及簡單性質(zhì)的應(yīng)用,體現(xiàn)了數(shù)形結(jié)合的數(shù)學(xué)思想,屬于中檔題.6.B【解析】

結(jié)合題意可知是偶函數(shù),且在單調(diào)遞減,化簡題目所給式子,建立不等式,結(jié)合導(dǎo)函數(shù)與原函數(shù)的單調(diào)性關(guān)系,構(gòu)造新函數(shù),計算最值,即可.【詳解】結(jié)合題意可知為偶函數(shù),且在單調(diào)遞減,故可以轉(zhuǎn)換為對應(yīng)于恒成立,即即對恒成立即對恒成立令,則上遞增,在上遞減,所以令,在上遞減所以.故,故選B.本道題考查了函數(shù)的基本性質(zhì)和導(dǎo)函數(shù)與原函數(shù)單調(diào)性關(guān)系,計算范圍,可以轉(zhuǎn)化為函數(shù),結(jié)合導(dǎo)函數(shù),計算最值,即可得出答案.7.D【解析】

設(shè),可得,構(gòu)造()22,結(jié)合,可得,根據(jù)向量減法的模長不等式可得解.【詳解】設(shè),則,,∴()2?2||22=4,所以可得:,配方可得,所以,又則[0,2].故選:D.本題考查了向量的運算綜合,考查了學(xué)生綜合分析,轉(zhuǎn)化劃歸,數(shù)學(xué)運算的能力,屬于中檔題.8.A【解析】

結(jié)合已知可知,可求,進(jìn)而可求,代入,結(jié)合,可求,即可判斷.【詳解】圖象上相鄰兩個極值點,滿足,即,,,且,,,,,,當(dāng)時,為函數(shù)的一個極小值點,而.故選:.本題主要考查了正弦函數(shù)的圖象及性質(zhì)的簡單應(yīng)用,解題的關(guān)鍵是性質(zhì)的靈活應(yīng)用.9.B【解析】

將問題轉(zhuǎn)化為等比數(shù)列問題,最終變?yōu)榍蠼獾缺葦?shù)列基本量的問題.【詳解】根據(jù)實際問題可以轉(zhuǎn)化為等比數(shù)列問題,在等比數(shù)列中,公比,前項和為,,,求的值.因為,解得,,解得.故選B.本題考查等比數(shù)列的實際應(yīng)用,難度較易.熟悉等比數(shù)列中基本量的計算,對于解決實際問題很有幫助.10.B【解析】

利用正態(tài)分布密度曲線的對稱性可得出,進(jìn)而可得出結(jié)果.【詳解】,所以,.故選:B.本題考查利用正態(tài)分布密度曲線的對稱性求概率,屬于基礎(chǔ)題.11.D【解析】

直接根據(jù)三角函數(shù)的圖象平移規(guī)則得出正確的結(jié)論即可;【詳解】解:函數(shù),要得到函數(shù)的圖象,只需將函數(shù)的圖象向左平移個單位.故選:D.本題考查三角函數(shù)圖象平移的應(yīng)用問題,屬于基礎(chǔ)題.12.B【解析】

根據(jù)充分必要條件的概念進(jìn)行判斷.【詳解】對于充分性:若,則可以平行,相交,異面,故充分性不成立;若,則可得,必要性成立.故選:B本題主要考查空間中線線,線面,面面的位置關(guān)系,以及充要條件的判斷,考查學(xué)生綜合運用知識的能力.解決充要條件判斷問題,關(guān)鍵是要弄清楚誰是條件,誰是結(jié)論.二、填空題:本題共4小題,每小題5分,共20分。13.【解析】分析:設(shè)O2(a,0),圓O2的半徑為r(變量),OP=t(常數(shù)),利用差角的正切公式,結(jié)合以AB為直徑的圓與圓x2+(y-2)2=1相外切.且∠APB的大小恒為定值,即可求出線段OP的長.詳解:設(shè)O2(a,0),圓O2的半徑為r(變量),OP=t(常數(shù)),則∵∠APB的大小恒為定值,

∴t=,∴|OP|=.故答案為點睛:本題考查圓與圓的位置關(guān)系,考查差角的正切公式,考查學(xué)生的計算能力,屬于中檔題.14.【解析】

先確定頂點在底面的射影,再求出三棱錐的高以及各側(cè)面三角形的高,利用各個面的面積和乘以內(nèi)切球半徑等于三棱錐的體積的三倍即可解決.【詳解】設(shè)頂點在底面上的射影為H,H是三角形ABC的內(nèi)心,內(nèi)切圓半徑.三個側(cè)面與底面所成的角均為,,,的高,,設(shè)內(nèi)切球的半徑為R,∴,內(nèi)切球表面積.故答案為:.本題考查三棱錐內(nèi)切球的表面積問題,考查學(xué)生空間想象能力,本題解題關(guān)鍵是找到內(nèi)切球的半徑,是一道中檔題.15.【解析】

利用交集定義直接求解.【詳解】解:集合奇數(shù),偶數(shù),.故答案為:.本題考查交集的求法,考查交集定義等基礎(chǔ)知識,考查運算求解能力,屬于基礎(chǔ)題.16.;【解析】試題分析:如圖:此幾何體是四棱錐,底面是邊長為的正方形,平面平面,并且,,所以體積是,解得,四個側(cè)面都是直角三角形,所以計算出邊長,表面積是考點:1.三視圖;2.幾何體的表面積.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17.(1).(2).【解析】

(1)由前三年六月份各天的最高氣溫數(shù)據(jù),求出最高氣溫位于區(qū)間[20,25)和最高氣溫低于20的天數(shù),由此能求出六月份這種酸奶一天的需求量不超過300瓶的概率.(2)當(dāng)溫度大于等于25℃時,需求量為500,求出Y=900元;當(dāng)溫度在[20,25)℃時,需求量為300,求出Y=300元;當(dāng)溫度低于20℃時,需求量為200,求出Y=﹣100元,從而當(dāng)溫度大于等于20時,Y>0,由此能估計估計Y大于零的概率.【詳解】解:(1)由前三年六月份各天的最高氣溫數(shù)據(jù),得到最高氣溫位于區(qū)間[20,25)和最高氣溫低于20的天數(shù)為2+16+36=54,根據(jù)往年銷售經(jīng)驗,每天需求量與當(dāng)天最高氣溫(單位:℃)有關(guān).如果最高氣溫不低于25,需求量為500瓶,如果最高氣溫位于區(qū)間[20,25),需求量為300瓶,如果最高氣溫低于20,需求量為200瓶,∴六月份這種酸奶一天的需求量不超過300瓶的概率p.(2)當(dāng)溫度大于等于25℃時,需求量為500,Y=450×2=900元,當(dāng)溫度在[20,25)℃時,需求量為300,Y=300×2﹣(450﹣300)×2=300元,當(dāng)溫度低于20℃時,需求量為200,Y=400﹣(450﹣200)×2=﹣100元,當(dāng)溫度大于等于20時,Y>0,由前三年六月份各天的最高氣溫數(shù)據(jù),得當(dāng)溫度大于等于20℃的天數(shù)有:90﹣(2+16)=72,∴估計Y大于零的概率P.本題考查概率的求法,考查利潤的所有可能取值的求法,考查函數(shù)、古典概型等基礎(chǔ)知識,考查推理論證能力、運算求解能力、空間想象能力,考查數(shù)形結(jié)合思想、化歸與轉(zhuǎn)化思想,是中檔題.18.(1)(2)證明見解析【解析】

(1)根據(jù)題意,設(shè)直線方程為,聯(lián)立方程,根據(jù)拋物線的定義即可得到結(jié)論;(2)根據(jù)題意,設(shè)的方程為,聯(lián)立方程得,同理可得,進(jìn)而得到,再利用點差法得直線的斜率,利用切線與導(dǎo)數(shù)的關(guān)系得直線的斜率,進(jìn)而可得與互補(bǔ).【詳解】(1)由題意設(shè)直線的方程為,令、,聯(lián)立,得,根據(jù)拋物線的定義得,又,故所求拋物線方程為.(2)依題意,設(shè),,設(shè)的方程為,與聯(lián)立消去得,,同理,直線的斜率=切線的斜率,由,即與互補(bǔ).本題考查直線與拋物線的位置關(guān)系的綜合應(yīng)用,直線斜率的應(yīng)用,考查分析問題解決問題的能力,屬于中檔題.19.(1)(2)見解析【解析】

(1)直接求出直線方程,與橢圓方程聯(lián)立求出點坐標(biāo),從而可得直線方程,得其與軸交點坐標(biāo);(2)設(shè),則,求出直線和的方程,從而求得兩直線的交點坐標(biāo),證明此交點在橢圓上,即此點坐標(biāo)適合橢圓方程.代入驗證即可.注意分和說明.【詳解】解:本題考查直線與橢圓的位置關(guān)系的綜合,(1)由題知,,則.因為,所以,則直線的方程為,聯(lián)立,可得故.則,直線的方程為.令,得,故直線與軸的交點坐標(biāo)為.(2)證明:因為,,所以.設(shè)點,則.設(shè)當(dāng)時,設(shè),則,此時直線與軸垂直,其直線方程為,直線的方程為,即.在方程中,令,得,得交點為,顯然在橢圓上.同理當(dāng)時,交點也在橢圓上.當(dāng)時,可設(shè)直線的方程為,即.直線的方程為,聯(lián)立方程,消去得,化簡并解得.將代入中,化簡得.所以兩直線的交點為.因為,又因為,所以,則,所以點在橢圓上.綜上所述,直線與直線的交點在橢圓上.本題考查直線與橢圓相交問題,解題方法是解析幾何的基本方程,求出直線方程,解方程組求出交點坐標(biāo),代入曲線方程驗證點在曲線.本題考查了學(xué)生的運算求解能力.20.(1);(2)見解析.【解析】

(1)設(shè)切點坐標(biāo)為,然后根據(jù)可解得實數(shù)的值;(2)令,,然后對實數(shù)進(jìn)行分類討論,結(jié)合和的符號來確定函數(shù)的零點個數(shù).【詳解】(1),,設(shè)曲線與軸相切于點,則,即,解得.所以,當(dāng)時,軸為曲線的切線;(2)令,,則,,由,得.當(dāng)時,,此時,函數(shù)為增函數(shù);當(dāng)時,,此時,函數(shù)為減函數(shù).,.①當(dāng),即當(dāng)時,函數(shù)有一個零點;②當(dāng),即當(dāng)時,函數(shù)有兩個零點;③當(dāng),即當(dāng)時,函數(shù)有三個零點;④當(dāng),即當(dāng)時,函數(shù)有兩個零點;⑤當(dāng),即當(dāng)時,函數(shù)只有一個零點.綜上所述,當(dāng)或時,函數(shù)只有一個零點;當(dāng)或時,函數(shù)有兩個零點;當(dāng)時,函數(shù)有三個零點.本題考查了利用導(dǎo)數(shù)的幾何意義研究切線方程和利用導(dǎo)數(shù)研究函數(shù)的單調(diào)性與極值,關(guān)鍵是分類討論思想的應(yīng)用,屬難題.21.(1)3360元;(2)見解析【解析】

(1)根據(jù)頻率分布直方圖計算每個農(nóng)戶的平均損失;(2)

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

最新文檔

評論

0/150

提交評論