版權說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權,請進行舉報或認領
文檔簡介
重慶市大學城第一中學7年級數(shù)學下冊第四章三角形同步測評考試時間:90分鐘;命題人:教研組考生注意:1、本卷分第I卷(選擇題)和第Ⅱ卷(非選擇題)兩部分,滿分100分,考試時間90分鐘2、答卷前,考生務必用0.5毫米黑色簽字筆將自己的姓名、班級填寫在試卷規(guī)定位置上3、答案必須寫在試卷各個題目指定區(qū)域內(nèi)相應的位置,如需改動,先劃掉原來的答案,然后再寫上新的答案;不準使用涂改液、膠帶紙、修正帶,不按以上要求作答的答案無效。第I卷(選擇題20分)一、單選題(10小題,每小題2分,共計20分)1、如圖,BD是△ABC的中線,AB=6,BC=4,△ABD和△BCD的周長差為()A.2 B.4 C.6 D.102、如圖,在和中,已知,在不添加任何輔助線的前提下,要使,只需再添加的一個條件不可以是()A. B. C. D.3、三角形的外角和是()A.60° B.90° C.180° D.360°4、如圖,AB∥CD,∠E+∠F=85°,則∠A+∠C=()A.85° B.105°C.115° D.95°5、如圖,直線EF經(jīng)過AC的中點O,交AB于點E,交CD于點F,下列不能使△AOE≌△COF的條件為()A.∠A=∠C B.AB∥CD C.AE=CF D.OE=OF6、如圖,若MB=ND,∠MBA=∠NDC,下列條件中不能判定的是()A.AM=CN B. C.AB=CD D.∠M=∠N7、以下列各組線段為邊,能組成三角形的是()A.3cm,4cm,5cm B.3cm,3cm,6cm C.5cm,10cm,4cm D.1cm,2cm,3cm8、如圖,已知,要使,添加的條件不正確的是()A. B. C. D.9、如圖,點、、、在同一條直線上,已知,,添加下列條件中的一個:①;②;③;④.其中不能確定的是()A.① B.② C.③ D.④10、如圖,點,,,在一條直線上,,,,,,則()A.4 B.5 C.6 D.7第Ⅱ卷(非選擇題80分)二、填空題(10小題,每小題2分,共計20分)1、如圖,正三角形△ABC和△CDE,A,C,E在同一直線上,AD與BE交于點O,AD與BC交于點P,BE與CD交于點Q,連接PQ.①AD=BE;②PQ∥AE;③AP=BQ;④DE=DP;⑤∠AOB=60°.成立的結論有_____.(填序號)2、如圖,△ABC≌△DEF,BE=a,BF=b,則CF=___.3、如圖,∠ABD=80°,∠C=38°,則∠D=___度.4、如圖,已知∠A=60°,∠B=20°,∠C=30°,則∠BDC的度數(shù)為_____.5、如圖,PA=PB,請你添加一個適當?shù)臈l件:___________,使得△PAD≌△PBC.6、如圖,AC平分∠DAB,要使△ABC≌△ADC,需要增加的一個條件是____.7、如圖,中,已知點D、E、F分別為BC、AD、CE的中點,設的面積為,的面積為,則______.8、在平面直角坐標系中,點B(0,4),點A為x軸上一動點,連接AB.以AB為邊作等腰Rt△ABE,(B、A、E按逆時針方向排列,且∠BAE為直角),連接OE.當OE最小時,點E的縱坐標為______.9、如圖,A、F、C、D在同一條直線上,△ABC≌△DEF,AF=1,F(xiàn)D=3.則線段FC的長為_____.10、如圖,△ABC是一個等腰直角三角形,∠BAC=90°,BC分別與AF、AG相交于點D、E.不添加輔助線,使△ACE與△ABD全等,你所添加的條件是____.(填一個即可)三、解答題(6小題,每小題10分,共計60分)1、已知三角形的兩邊長分別是4cm和9cm,如果第三邊長是奇數(shù),求第三邊的長2、如圖,AB⊥CB,DC⊥CB,E、F在BC上,∠A=∠D,BE=CF,求證:AF=DE.3、已知AMCN,點B在直線AM、CN之間,AB⊥BC于點B.(1)如圖1,請直接寫出∠A和∠C之間的數(shù)量關系:.(2)如圖2,∠A和∠C滿足怎樣的數(shù)量關系?請說明理由.(3)如圖3,AE平分∠MAB,CH平分∠NCB,AE與CH交于點G,則∠AGH的度數(shù)為.4、某中學八年級學生進行課外實踐活動,要測池塘兩端A,B的距離,因無法直接測量,經(jīng)小組討論決定,先在地上取一個可以直接到達A,B兩點的點O,連接AO并延長到點C,使AO=CO;連接BO并延長到點D,使BO=DO,連接CD并測出它的長度.(1)根據(jù)題中描述,畫出圖形;(2)CD的長度就是A,B兩點之間的距離,請說明理由.5、探究與發(fā)現(xiàn):如圖①,在△ABC中,∠B=∠C=45°,點D在BC邊上,點E在AC邊上,且∠ADE=∠AED,連接DE.(1)當∠BAD=60°時,求∠CDE的度數(shù);(2)當點D在BC(點B、C除外)邊上運動時,試猜想∠BAD與∠CDE的數(shù)量關系,并說明理由.(3)深入探究:如圖②,若∠B=∠C,但∠C≠45°,其他條件不變,試探究∠BAD與∠CDE的數(shù)量關系.6、平行線是平面幾何中最基本、也是非常重要的圖形.在解決某些幾何問題時,若能根據(jù)問題的需要,添加適當?shù)钠叫芯€,往往能使證明順暢、簡潔.請根據(jù)上述思想解決問題:(1)如圖(1),ABCD,試判斷∠B,∠D與∠E的關系;(2)如圖(2),已知ABCD,在∠ACD的角平分線上取兩個點M、N,使得∠AMN=∠ANM,求證:∠CAM=∠BAN.-參考答案-一、單選題1、A【分析】根據(jù)題意可得,,△ABD和△BCD的周長差為線段的差,即可求解.【詳解】解:根據(jù)題意可得,△ABD的周長為,△BCD的周長為△ABD和△BCD的周長差為故選:A【點睛】本題考查了三角形中線的性質(zhì)及三角形周長的計算,熟練掌握三角形中線的性質(zhì)是解答本題的關鍵.2、B【分析】添加AC=AD,利用SAS即可得到兩三角形全等;添加∠D=∠C,利用AAS即可得到兩三角形全等,添加∠CBE=∠DBE,利用ASA即可得到兩三角形全等.【詳解】解:A、添加AC=AD,利用SAS即可得到兩三角形全等,故此選項不符合題意;B、添加BC=BD,不能判定兩三角形全等,故此選項符合題意;C、添加∠D=∠C,利用AAS即可得到兩三角形全等,故此選項不符合題意;D、添加∠CBE=∠DBE,利用ASA即可得到兩三角形全等,故此選項不符合題意;故選:B.【點睛】此題考查了全等三角形的判定,熟練掌握全等三角形的判定方法是解本題的關鍵.3、D【分析】根據(jù)三角形的內(nèi)角和定理、鄰補角的性質(zhì)即可得.【詳解】解:如圖,,,又,,即三角形的外角和是,故選:D.【點睛】本題考查了三角形的內(nèi)角和定理、鄰補角的性質(zhì),熟練掌握三角形的內(nèi)角和定理是解題關鍵.4、D【分析】設交于點,過點作,根據(jù)平行線的性質(zhì)可得,根據(jù)三角形的外角性質(zhì)可得,進而即可求得【詳解】解:設交于點,過點作,如圖,∵∴∠E+∠F=85°故選D【點睛】本題考查了平行線的性質(zhì),三角形的外角性質(zhì),平角的定義,掌握三角形的外角性質(zhì)是解題的關鍵.5、C【分析】根據(jù)全等三角形的判定逐項判斷即可.【詳解】解:∵直線EF經(jīng)過AC的中點O,∴OA=OC,A、∵OA=OC,∠A=∠C,∠AOE=∠COF,∴△AOE≌△COF(ASA),此選項不符合題意;B、∵AB∥CD,∴∠A=∠C,又∵OA=OC,∠AOE=∠COF,∴△AOE≌△COF(ASA),此選項不符合題意;C、由OA=OC,AE=CF,∠AOE=∠COF,不能證明△AOE≌△COF,符合題意;D、∵OA=OC,∠AOE=∠COF,OE=OF,∴△AOE≌△COF(SAS),此選項不符合題意,故選:C.【點睛】本題考查全等三角形的判定、對頂角相等,熟練掌握全等三角形的判定條件是解答的關鍵.6、A【分析】根據(jù)兩個三角形全等的判定定理,有AAS、SSS、ASA、SAS四種.逐條驗證.【詳解】解:A、根據(jù)條件AM=CN,MB=ND,∠MBA=∠NDC,不能判定△ABM≌△CDN,故A選項符合題意;B、AM∥CN,得出∠MAB=∠NCD,符合AAS,能判定△ABM≌△CDN,故B選項不符合題意;C、AB=CD,符合SAS,能判定△ABM≌△CDN,故C選項不符合題意;D、∠M=∠N,符合ASA,能判定△ABM≌△CDN,故D選項不符合題意.故選:A.【點睛】本題重點考查了三角形全等的判定定理,兩個三角形全等共有四個定理,即AAS、ASA、SAS、SSS,直角三角形可用HL定理,本題是一道較為簡單的題目.7、A【分析】三角形的任意兩條之和大于第三邊,任意兩邊之差小于第三邊,根據(jù)原理再分別計算每組線段當中較短的兩條線段之和,再與最長的線段進行比較,若和大于最長的線段的長度,則三條線段能構成三角形,否則,不能構成三角形,從而可得答案.【詳解】解:所以以3cm,4cm,5cm為邊能構成三角形,故A符合題意;所以以3cm,3cm,6cm為邊不能構成三角形,故B不符合題意;所以以5cm,10cm,4cm為邊不能構成三角形,故C不符合題意;所以以1cm,2cm,3cm為邊不能構成三角形,故D不符合題意;故選A【點睛】本題考查的是三角形的三邊之間的關系,掌握“利用三角形三邊之間的關系判定三條線段能否組成三角形”是解本題的關鍵.8、D【分析】已知條件AB=AC,還有公共角∠A,然后再結合選項所給條件和全等三角形的判定定理進行分析即可.【詳解】解:A、添加BD=CE可得AD=AE,可利用利用SAS定理判定△ABE≌△ACD,故此選項不合題意;B、添加∠ADC=∠AEB可利用AAS定理判定△ABE≌△ACD,故此選項不合題意;C、添加∠B=∠C可利用ASA定理判定△ABE≌△ACD,故此選項不合題意;D、添加BE=CD不能判定△ABE≌△ACD,故此選項符合題意;故選:D.【點睛】本題考查三角形全等的判定方法,判定兩個三角形全等的一般方法有:SSS、SAS、ASA、AAS、HL(直角三角形),掌握三角形全等的判定方法是解題關鍵.9、B【分析】由已知條件知可得:∠A=∠D,AB=DE,再結合全等三角形的判定定理進行解答即可.【詳解】解:已知條件知:∠A=∠D,AB=DEA、當添加AC=DF時,根據(jù)SAS能判,故本選項不符合題意;B、當添加BC=EF時則BC=EF,根據(jù)SSA不能判定,故本選項符合題意;C、當添加時,根據(jù)ASA能判定,故本選項不符合題意;D、當添加時,根據(jù)AAS能判定,故本選項不符合題意.故選:B.【點睛】本題主要考查了全等三角形的判定定理,理解SSA不能判定三角形全等成為解答本題的關鍵.10、A【分析】由題意易得,然后可證,則有,進而問題可求解.【詳解】解:∵,∴,∵,,∴,∴,∵,∴;故選A.【點睛】本題主要考查全等三角形的性質(zhì)與判定,熟練掌握全等三角形的性質(zhì)與判定是解題的關鍵.二、填空題1、①②③⑤【分析】①由于△ABC和△CDE是等邊三角形,可知AC=BC,CD=CE,∠ACB=∠DCE=60°,從而證出△ACD≌△BCE,可推知AD=BE;③由△ACD≌△BCE得∠CBE=∠DAC,加之∠ACB=∠DCE=60°,AC=BC,得到△ACP≌△BCQ(ASA),所以AP=BQ;故③正確;②根據(jù)③△CQB≌△CPA(ASA),再根據(jù)∠PCQ=60°推出△PCQ為等邊三角形,又由∠PQC=∠DCE,根據(jù)內(nèi)錯角相等,兩直線平行,可知②正確;④根據(jù)∠DQE=∠ECQ+∠CEQ=60°+∠CEQ,∠CDE=60°,可知∠DQE≠∠CDE,可知④錯誤;⑤利用等邊三角形的性質(zhì),BC∥DE,再根據(jù)平行線的性質(zhì)得到∠CBE=∠DEO,于是∠AOB=∠DAC+∠BEC=∠BEC+∠DEO=∠DEC=60°,可知⑤正確.【詳解】解:①∵等邊△ABC和等邊△DCE,∴BC=AC,DE=DC=CE,∠DEC=∠BCA=∠DCE=60°,∴∠ACD=∠BCE,在△ACD和△BCE中,,∴△ACD≌△BCE(SAS),∴AD=BE;故①正確;③∵△ACD≌△BCE(已證),∴∠CAD=∠CBE,∵∠ACB=∠ECD=60°(已證),∴∠BCQ=180°﹣60°×2=60°,∴∠ACB=∠BCQ=60°,在△ACP與△BCQ中,,∴△ACP≌△BCQ(ASA),∴AP=BQ;故③正確;②∵△ACP≌△BCQ,∴PC=QC,∴△PCQ是等邊三角形,∴∠CPQ=60°,∴∠ACB=∠CPQ,∴PQ∥AE;故②正確;④∵AD=BE,AP=BQ,∴AD﹣AP=BE﹣BQ,即DP=QE,∠DQE=∠ECQ+∠CEQ=60°+∠CEQ,∠CDE=60°,∴∠DQE≠∠CDE,∴DE≠Q(mào)E,∴DP≠DE;故④錯誤;⑤∵∠ACB=∠DCE=60°,∴∠BCD=60°,∵等邊△DCE,∠EDC=60°=∠BCD,∴BC∥DE,∴∠CBE=∠DEO,∴∠AOB=∠DAC+∠BEC=∠BEC+∠DEO=∠DEC=60°.故⑤正確;綜上所述,正確的結論有:①②③⑤.故答案為:①②③⑤.【點睛】本題綜合考查等邊三角形判定與性質(zhì)、全等三角形的判定與性質(zhì)、平行線的判定與性質(zhì)等知識點的運用.要求學生具備運用這些定理進行推理的能力.2、##【分析】先利用線段和差求EF=BE﹣BF=a-b,根據(jù)全等三角形的性質(zhì)BC=EF,再結合線段和差求出FC可得答案.【詳解】解:∵BE=,BF=,∴EF=BE﹣BF=,∵△ABC≌△DEF,∴BC=EF=,∴CF=BC﹣BF=,故答案為:.【點睛】本題考查全等三角形的性質(zhì),線段和差,解題的關鍵是根據(jù)全等三角形的性質(zhì)得出BC=EF.3、【分析】由三角形的外角的性質(zhì)可得代入數(shù)據(jù)即可得到答案.【詳解】解:故答案為:【點睛】本題考查的是三角形的外角的性質(zhì),掌握“三角形的外角等于與它不相鄰的兩個內(nèi)角之和”是解本題的關鍵.4、110°【分析】延長BD交AC于點E,根據(jù)三角形的外角性質(zhì)計算,得到答案.【詳解】延長BD交AC于點E,∵∠DEC是△ABE的外角,∠A=60°,∠B=20°,∴∠DEC=∠A+∠B=80°,則∠BDC=∠DEC+∠C=110°,故答案為:110°.【點睛】本題考查了三角形外角的性質(zhì),三角形的一個外角等于與它不相鄰的兩個內(nèi)角的和,作輔助線DE是解題的關鍵.5、∠D=∠C或∠PAD=∠PBC或∠DBC=∠CAD或PD=PC或AC=BD.【分析】已有∠P是公共角和邊PA=PB,根據(jù)全等三角全等的條件,利用AAS需要添加∠D=∠C,根據(jù)ASA需要添加∠PAD=∠PBC或∠DBC=∠CAD,根據(jù)邊角邊需要添加PD=PC或PC=PD.填入一個即可.【詳解】解:∵PA=PB,∠P是公共角,∴根據(jù)AAS可以添加∠D=∠C,,在△PAD和△PBC中,∵PA=PB,∠P是公共角,∠D=∠C,∴△PAD≌△PBC(AAS).根據(jù)ASA可以添加∠PAD=∠PBC,在△PAD和△PBC中,∵PA=PB,∠P是公共角,∠PAD=∠PBC,∴△PAD≌△PBC(ASA).根據(jù)ASA可以添加∠DBC=∠CAD,∴180°-∠DBC=180°-∠CAD,即∠PAD=∠PBC,在△PAD和△PBC中,∵PA=PB,∠P是公共角,∠PAD=∠PBC,∴△PAD≌△PBC(ASA).根據(jù)SAS可添加PD=PC在△PAD和△PBC中,∵PA=PB,∠P是公共角,PD=PC,∴△PAD≌△PBC(SAS).根據(jù)SAS可添加BD=AC,∵PA=PB,BD=AC,∴PA+AC=PB+BD即PC=PD,在△PAD和△PBC中,∵PA=PB,∠P是公共角,PD=PC,∴△PAD≌△PBC(SAS).故答案為:∠D=∠C或∠PAD=∠PBC或∠DBC=∠CAD或PD=PC或AC=BD.【點睛】本題考查三角形全等添加條件,掌握三角形全等判定方法與定理是解題關鍵.6、AB=AD(答案不唯一)【分析】根據(jù)SAS即可證明△ABC≌△ADC.【詳解】添加AB=AD,∵AC平分∠DAB,∴∠BAC=∠DAC又AC=AC∴△ABC≌△ADC(SAS)故答案為:AB=AD(答案不唯一).【點睛】此題主要考查全等三角形的判定,解題的關鍵是熟知全等三角形的判定定理.7、4【分析】利用三角形的中線的性質(zhì)證明再證明從而可得答案.【詳解】解:點F為CE的中點,點E為AD的中點,故答案為:【點睛】本題考查的是與三角形的中線有關的面積的計算,掌握“三角形的中線把一個三角形的面積分為相等的兩部分”是解本題的關鍵.8、-2【分析】過E作EF⊥x軸于F,由三垂直模型,得EF=OA,AF=OB,設A(a,0),可求得E(a+4,a),點E在直線y=x-4上,當OE⊥CD時,OE最小,據(jù)此求出坐標即可.【詳解】解:如圖,過E作EF⊥x軸于F,∵∠AOB=∠EFA=∠BAE=90°,∴∠ABO+∠OAB=90°,∠EAF+∠OAB=90°,∴∠ABO=∠EAF,∵AB=AE,∴△ABO≌△EAF,∴EF=OA,AF=OB=4,取點C(4,0),點D(0,-4),∴∠OCD=45°,∵CF=4-OF,OA=4-OF,∴CF=OA=EF,∴∠ECF=45°,∴點E在直線CD上,當OE⊥CD時,OE最小,此時△EFO和△ECO為等腰Rt△,∴OF=EF=2,此時點E的坐標為:(2,-2).故答案為:-2【點睛】本題考查了全等三角形的判定與性質(zhì),解題關鍵是確定點E運動的軌跡,確定點E的位置.9、【分析】根據(jù)全等三角形的性質(zhì)得出AC=FD=3,再求出FC即可.【詳解】解:∵△ABC≌△DEF,F(xiàn)D=3,∴AC=FD=3,∵AF=1,∴FC=AC﹣AF=3﹣1=2,故答案為:2.【點睛】本題主要是考查了全等三角形的性質(zhì),熟練應用全等三角形的性質(zhì),找到對應相等的邊,是求解該問題的關鍵.10、CD=BE(答案不唯一)【分析】△ABC是一個等腰直角三角形,可知,,使△ACE與△ABD全等,只需填加一組對應角相等或的另一組邊相等即可.【詳解】解:①若所添加的條件是CD=BE,∵CD=BE,∴,∵△ABC是一個等腰直角三角形,∴,,在△ACE和△ABD中,,∴(SAS)故答案為:CD=BE,(答案不唯一)【點睛】本題主要考查了全等三角形的判定,掌握全等三角形判定方法并靈活運用是解題關鍵.三、解答題1、第三邊長為7cm或9cm或11cm【分析】設三角形的第三邊長為xcm,根據(jù)三角形的三邊關系確定x的范圍,然后根據(jù)題意可求解.【詳解】解:設三角形的第三邊長為xcm,由三角形的兩邊長分別是4cm和9cm可得:,即為,∵第三邊長是奇數(shù),∴或9或11.【點睛】本題主要考查三角形的三邊關系,熟練掌握三角形的三邊關系是解題的關鍵.2、見解析【分析】由題意可得∠B=∠C=90°,BF=CE,由“AAS”可證△ABF≌△DCE,可得AF=DE.【詳解】證明:∵AB⊥CB,DC⊥CB,∴∠B=∠C=90°,∵BE=CF,∴BF=CE,且∠A=∠D,∠B=∠C=90°,∴△ABF≌△DCE(AAS),∴AF=DE,【點睛】本題考查了全等三角形的判定和性質(zhì),熟練運用全等三角形的判定是本題的關鍵.3、(1)∠A+∠C=90°;(2)∠C﹣∠A=90°,見解析;(3)45°【分析】(1)過點B作BE∥AM,利用平行線的性質(zhì)即可求得結論;(2)過點B作BE∥AM,利用平行線的性質(zhì)即可求得結論;(3)利用(2)的結論和三角形的外角等于和它不相鄰的兩個內(nèi)角的和即可求得結論.【詳解】(1)過點B作BE∥AM,如圖,∵BE∥AM,∴∠A=∠ABE,∵BE∥AM,AM∥CN,∴BE∥CN,∴∠C=∠CBE,∵AB⊥BC,∴∠ABC=90°,∴∠A+∠C=∠ABE+∠CBE=∠ABC=90°.故答案為:∠A+∠C=90°;(2)∠A和∠C滿足:∠C﹣∠A=90°.理由:過點B作BE∥AM,如圖,∵BE∥AM,∴∠A=∠ABE,∵BE∥AM,AM∥CN,∴BE∥CN,∴∠C+∠CBE=180°,∴∠CBE=180°﹣∠C,∵AB⊥BC,∴∠ABC=90°,∴∠ABE+∠CBE=90°,∴∠A+180°﹣∠C=90°,∴∠C﹣∠A=90°;(3)設CH與AB交于點F,如圖,∵AE平分∠MAB,∴∠GAF=∠MAB,∵CH平分∠NCB,∴∠BCF=∠BCN,∵∠B=90°,∴∠BFC=90°﹣∠BCF,∵∠AFG=∠BFC,∴∠AFG=90°﹣∠BCF.∵∠AGH=∠GAF+∠AFG,∴∠AGH=∠MAB+90°﹣∠BCN=90°﹣(∠BCN﹣∠MAB).由(2)知:∠BCN﹣∠MAB=90°,∴∠AGH=90°﹣45°=45°.故答案為:45°.【點睛】本題考查平行線的性質(zhì)以及三角形外角的性質(zhì),由題作出輔助線是解題的關鍵.4、(1)見解析;(2)見解析【分析】(1)根據(jù)要求作出圖形即可;(2)利用全等三角形的性質(zhì)解決問題即可.【詳解】解:(1)圖形如圖所示:(2)連接AB.在△AOB和△COD中,,∴△AOB≌△COD(SAS),∴AB=CD,∴CD的長度就是A,B兩點之間的距離.【點睛】本題考查作圖﹣應用與設計作圖,全等三角形的判定和性質(zhì)等知識,解題的關鍵是學會利用全等三角形的性質(zhì)解決問題.5、(1)30°;(2)∠
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經(jīng)權益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
- 6. 下載文件中如有侵權或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- java程序設計課程設計的代碼
- dsp原理及應用課程設計
- 2025湖南株洲市茶陵縣茶陵湘劇保護傳承中心公開招聘工作人員5人筆試重點試題及答案解析
- 2026連南農(nóng)商銀行校園招聘參考筆試題庫附答案解析
- 2025廣西玉林師范學院公開招聘第二批工作人員49人備考核心題庫及答案解析
- 安徽房地產(chǎn)估價課程設計
- 2025南昌農(nóng)商銀行中層管理崗位人員招聘5人考試重點試題及答案解析
- 2025年農(nóng)產(chǎn)品品牌營銷趨勢五年報告
- 《學前教育專業(yè)實踐教學體系中的兒童科學教育與探索精神培養(yǎng)研究》教學研究課題報告
- 激光切割設備五年技術升級行業(yè)報告2025年
- 《馬克思主義政治經(jīng)濟學》教案
- 小小小廚師幼兒健康食譜烹飪
- 2023歷史新課標培訓心得
- 國家開放大學期末機考理工英語3
- 《貪污賄賂罪新》課件
- 《斯大林格勒保衛(wèi)戰(zhàn)》課件
- 清華大學《工程倫理》網(wǎng)課習題及期末考試答案
- 2023年運動康復期末復習-體適能理論與訓練(運動康復專業(yè))考試上岸題庫歷年考點含答案
- 中國紀錄片發(fā)展歷程
- 班組工程進度款申請表
- 四年級閱讀訓練概括文章主要內(nèi)容(完美)
評論
0/150
提交評論