考點解析-江蘇省揚中市中考數學真題分類(平行線的證明)匯編綜合練習練習題(詳解)_第1頁
考點解析-江蘇省揚中市中考數學真題分類(平行線的證明)匯編綜合練習練習題(詳解)_第2頁
考點解析-江蘇省揚中市中考數學真題分類(平行線的證明)匯編綜合練習練習題(詳解)_第3頁
考點解析-江蘇省揚中市中考數學真題分類(平行線的證明)匯編綜合練習練習題(詳解)_第4頁
考點解析-江蘇省揚中市中考數學真題分類(平行線的證明)匯編綜合練習練習題(詳解)_第5頁
已閱讀5頁,還剩24頁未讀 繼續(xù)免費閱讀

下載本文檔

版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領

文檔簡介

江蘇省揚中市中考數學真題分類(平行線的證明)匯編綜合練習考試時間:90分鐘;命題人:教研組考生注意:1、本卷分第I卷(選擇題)和第Ⅱ卷(非選擇題)兩部分,滿分100分,考試時間90分鐘2、答卷前,考生務必用0.5毫米黑色簽字筆將自己的姓名、班級填寫在試卷規(guī)定位置上3、答案必須寫在試卷各個題目指定區(qū)域內相應的位置,如需改動,先劃掉原來的答案,然后再寫上新的答案;不準使用涂改液、膠帶紙、修正帶,不按以上要求作答的答案無效。第I卷(選擇題16分)一、單選題(8小題,每小題2分,共計16分)1、如圖,已知在△ABC中,∠C=90°,BE平分∠ABC,且BE∥AD,∠BAD=20°,則∠AEB的度數為()A.100° B.110° C.120° D.130°2、如圖,已知△ABC中,BD、CE分別是邊AC、AB上的高,BD與CE交于O點,如果設∠BAC=n°,那么用含n的代數式表示∠BOC的度數是()A.45°+n° B.90°﹣n° C.90°+n° D.180°﹣n°3、如圖,將△ABC紙片沿DE折疊,點A的對應點為A’,若∠B=60°,∠C=80°,則∠1+∠2等于(

)A.40° B.60° C.80° D.140°4、如圖所示,下列推理及括號中所注明的推理依據錯誤的是(

)A.,(內錯角相等,兩直線平行)B.,(兩直線平行,同旁內角互補)C.,(兩直線平行,同旁內角互補)D.,(同位角相等,兩直線平行)5、在中,若一個內角等于另外兩個角的差,則(

)A.必有一個角等于 B.必有一個角等于C.必有一個角等于 D.必有一個角等于6、已知,在中,,點在線段的延長線上,過點作,垂足為,若,則的度數為(

)A.76° B.65° C.56° D.54°7、如圖,直線l1∥l2,線段AB交l1,l2于D,B兩點,過點A作AC⊥AB,交直線l1于點C,若∠1=15,則∠2=()A.95 B.105 C.115 D.1258、若△ABC三個角的大小滿足條件∠A:∠B:∠C=1:3:4,則∠C的大小為(

)A.22.5° B.45° C.67.5° D.90°第Ⅱ卷(非選擇題84分)二、填空題(7小題,每小題2分,共計14分)1、如圖,給出下列條件:①;②;③;④;⑤.其中,一定能判定∥的條件有_____________(填寫所有正確的序號).2、如圖,△ABC的外角∠DBC、∠ECB的角平分線交于點M,∠ACB的角平分線與BM的反向延長線交于點N,若在△CMN中存在一個內角等于另一個內角的2倍,則∠A的度數為_______3、如圖,將分別含有、角的一副三角板重疊,使直角頂點重合,若兩直角重疊形成的角為,則圖中角的度數為_______.4、如圖,射線AB與射線CD平行,點F為射線AB上的一定點,連接CF,點P是射線CD上的一個動點(不包括端點C),將沿PF折疊,使點C落在點E處.若,當點E到點A的距離最大時,_____.5、如圖,在△ABC中,AD平分∠BAC,如果∠B=80°,∠C=40°,那么∠ADC的度數等于_____.6、如圖,在ΔABC中,E、F分別是AB、AC上的兩點,∠1+∠2=235°,則∠A=____度.7、用一組整數a,b,c的值說明命題“若a>b>c,則a+b>c”是錯誤的,這組值可以是a=__,b=__,c=__.三、解答題(7小題,每小題10分,共計70分)1、如圖,已知直線AB∥DF,∠D+∠B=180°.(1)試說明DE∥BC;(2)若∠AMD=75°,求∠AGC的度數.2、如圖,平分,與相交于F,,求證:.3、如圖,已知,垂足為點N,與交于點M.求證:.(用反證法證明)4、如圖,點、、、在一條直線上,與交于點,,,求證:5、如圖,在△ABC中,CD⊥AB,垂足為D,點E在BC上,EF⊥AB,垂足為F.(1)CD與EF平行嗎?為什么?(2)如果∠1=∠2,且∠3=115°,求∠ACB的度數.6、如圖,在△ABC中,∠ABC的平分線BD交∠ACB的平分線CE于點O.(1)求證:.(2)如圖1,若∠A=60°,請直接寫出BE,CD,BC的數量關系.(3)如圖2,∠A=90°,F是ED的中點,連接FO.①求證:BC?BE?CD=2OF.②延長FO交BC于點G,若OF=2,△DEO的面積為10,直接寫出OG的長.7、如圖,在△ABC中,D是BC邊上的一點,AB=DB,BE平分∠ABC,交AC邊于點E,連接DE.(1)求證:△ABE≌△DBE,(2)若∠A=100°,∠C=50°,求∠AEB的度數.-參考答案-一、單選題1、B【解析】【分析】根據兩直線平行,可得∠BAD=∠ABE=20°,因為BE平分∠ABC,所以∠ABE=∠EBC=20°,所以得到∠ABC=40°,從而求出∠EAB=50°,根據三角形內角和即可得到∠AEB的度數.【詳解】解:∵BE∥AD∴∠BAD=∠ABE=20°∵BE平分∠ABC∴∠ABE=∠EBC=20°∴∠ABC=40°∵∠C=90°∴∠EAB=50°∴∠AEB=180°-∠EAB-∠ABE=180°-50°-20°=110°故選B.【考點】本題考查了平行線的性質,角平分線和三角形內角和,能夠找出內錯角以及熟悉三角形內角和為180°是解決本題的關鍵.2、D【解析】【分析】由垂直的定義得到∠ADB=∠BDC=90,再根據三角形內角和定理得∠ABD=180﹣∠ADB﹣∠A=90﹣n,然后根據三角形的外角性質有∠BOC=∠EBD+∠BEO,計算即可得到∠BOC的度數.【詳解】解:∵BD、CE分別是邊AC,AB上的高,∴∠ADB=∠BDC=90,又∵∠BAC=n,∴∠ABD=180°﹣∠ADB﹣∠A=180﹣90﹣n=90﹣n,∴∠BOC=∠EBD+∠BEO=90°﹣n+90°=180﹣n.故選:D.【考點】本題考查了三角形的外角性質,垂直的定義以及三角形內角和定理,掌握以上性質定理是解答本題的關鍵.3、C【解析】【分析】根據平角定義和折疊的性質,得,再利用三角形的內角和定理進行轉換,得從而解題.【詳解】解:根據平角的定義和折疊的性質,得.又,,,∴,故選:C【考點】此題綜合運用了平角的定義、折疊的性質和三角形的內角和定理.4、C【解析】【分析】依據內錯角相等,兩直線平行;兩直線平行,內錯角相等;兩直線平行,同旁內角互補;同位角相等,兩直線平行進行判斷即可.【詳解】解:.,(內錯角相等,兩直線平行),正確;.,(兩直線平行,同旁內角互補),正確;.,(兩直線平行,同旁內角互補),故選項錯誤;.,(同位角相等,兩直線平行),正確;故選:C.【考點】本題主要考查了平行線的性質與判定,平行線的判定是由角的數量關系判斷兩直線的位置關系,平行線的性質是由平行關系來尋找角的數量關系.5、D【解析】【分析】先設三角形的兩個內角分別為x,y,則可得第三個角(180°-x-y),再分三種情況討論,即可得到答案.【詳解】設三角形的一個內角為x,另一個角為y,則第三個角為(180°-x-y),則有三種情況:①②③綜上所述,必有一個角等于90°故選D.【考點】本題考查三角形內角和的性質,解題的關鍵是熟練掌握三角形內角和的性質,分情況討論.6、D【解析】【分析】根據三角形的內角和是,即可求解.【詳解】,,在中,,,在中,,,故選:D.【考點】本題考查了垂直的性質和三角形的內角和,熟練掌握相關的性質是解題的關鍵.7、B【解析】【分析】利用垂直定義和三角形內角和定理計算出∠ADC的度數,再利用平行線的性質可得∠3的度數,再根據鄰補角的性質可得答案.【詳解】解:∵AC⊥AB,∴∠A=90,∵∠1=15,∴∠ADC=180-90-15=75,∵l1∥l2,∴∠3=∠ADC=75,∴∠2=180-75=105,故選:B.【考點】此題主要運用垂直定義、三角形內角和定理以及平行線的性質,解決角之間的關系,本題關鍵是掌握兩直線平行,同位角相等.8、D【解析】【分析】先用∠A表示出∠B、∠C,再根據三角形的內角和定理求出∠A、∠C得結論.【詳解】解:∵∠A:∠B:∠C=1:3:4,∴∠B=3∠A,∠C=4∠A.∵∠A+∠B+∠C=180,∴∠A+3∠A+4∠A=180.∴∠A=22.5.∴∠C=4∠A=4×22.5=90.故選:D.【考點】本題考查了三角形的內角和定理,掌握“三角形的內角和等于180”是解決本題的關鍵.二、填空題1、①③④【解析】【分析】根據平行線的判定方法對各小題判斷即可解答.【詳解】①∵,∴∥(同旁內角互補,兩直線平行),正確;②∵,∴∥,錯誤;③∵,∴∥(內錯角相等,兩直線平行),正確;④∵,∴∥(同位角相等,兩直線平行),正確;⑤不能證明∥,錯誤,故答案為:①③④.【考點】本題考查了平行線的判定,熟練掌握平行線的判定方法是解答的關鍵.2、或或【解析】【分析】根據,的角平分線交于點,可求得,延長至,根據為的外角的角平分線,可得是的外角的平分線,根據平分,得到,則有,可得,可求得;再根據,分四種情況:①;②;③;④,分別討論求解即可.【詳解】解:外角,的角平分線交于點,∴;如圖示,延長至,為的外角的角平分線,是的外角的平分線,,平分,,,,即,又,∴,即;;如果中,存在一個內角等于另一個內角的2倍,那么分四種情況:①,則,;②,則,,;③,則,解得;④,則,解得.綜上所述,的度數是或或.【考點】本題是三角形綜合題,考查了三角形內角和定理、外角的性質,角平分線定義等知識;靈活運用三角形的內角和定理、外角的性質進行分類討論是解題的關鍵.3、##140度【解析】【分析】如圖,首先標注字母,利用三角形的內角和求解,再利用對頂角的相等,三角形的外角的性質可得答案.【詳解】解:如圖,標注字母,由題意得:故答案為:【考點】本題考查的是三角形的內角和定理,三角形的外角的性質,掌握以上知識是解題的關鍵.4、##59度【解析】【分析】利用三角形三邊關系可知:當E落在AB上時,AE距離最大,利用且,得到,再根據折疊性質可知:,利用補角可知,進一步可求出.【詳解】解:利用兩邊之和大于第三邊可知:當E落在AB上時,AE距離最大,如圖:∵且,∴,∵折疊得到,∴,∵,∴.故答案為:【考點】本題考查三角形的三邊關系,平行線的性質,折疊的性質,補角,角平分線,解題的關鍵是找出:當E落在AB上時,AE距離最大,再解答即可.5、110°##110度【解析】【分析】由三角形的內角和可求得∠BAC=60°,再由角平分線的定義得∠BAD=30°,利用三角形的外角性質即可求∠ADC的度數.【詳解】解:∵∠B=80°,∠C=40°,∴∠BAC=180°﹣∠B﹣∠C=60°,∵AD平分∠BAC,∴∠BAD=∠BAC=30°,∴∠ADC=∠B+∠BAD=110°.故答案為:110°.【考點】本題主要考查三角形的外角性質,三角形的內角和定理,角平分線的定義,解答的關鍵是對相應的知識的掌握.6、55【解析】【分析】根據三角形內角和定理可知,要求∠A只要求出∠AEF+∠AFE的度數即可.【詳解】∵∠1+∠AEF=180°,∠2+∠AFE=180°,∴∠1+∠AEF+∠2+∠AFE=360°,∵∠1+∠2=235°,∴∠AEF+∠AFE=360°?235°=125°,∵在△AEF中:∠A+∠AEF+∠AFE=180°(三角形內角和定理)∴∠A=180°?125°=55°,故答案為:55°【考點】本題是有關三角形角的計算問題.主要考察三角形內角和定理的應用和計算,找到∠A所在的三角形是關鍵.7、

-2

-3

-4【解析】【分析】根據題意選擇a、b、c的值,即可得出答案,答案不唯一.【詳解】解:當a=﹣2,b=﹣3,c=﹣4時,﹣2>﹣3>﹣4,則(﹣2)+(﹣3)<(﹣4),∴命題若a>b>c,則a+b>c”是錯誤的;故答案為:﹣2,﹣3,﹣4.【考點】本題考查了命題與定理,要說明一個命題的正確性,一般需要推理、論證,而判斷一個命題是假命題,只需舉出一個反例即可.三、解答題1、(1)證明見解析;(2)105°.【解析】【詳解】(1)根據平行線的性質得出∠D+∠BHD=180°,等量代換得出∠B=∠DHB,根據平行線的判定得出即可;(2)根據平行線的性質求出∠AGB=∠AMD=75°,再根據鄰補角的定義即可求出∠AGC的度數.(1)證明:∵AB∥DF,

∴∠D+∠BHD=180°,∵∠D+∠B=180°,∴∠B=∠DHB,∴DE∥BC.(2)解:∵DE∥BC,∠AMD=75°,∴∠AGB=∠AMD=75°,∴∠AGC=180°﹣∠AGB=180°﹣75°=105°.【考點】本題涉及的知識點是平行線的判定及性質.熟練掌握平行線的性質及判定并能準確識圖是解題的關鍵.2、見解析【解析】【分析】由AB∥CD,可知∠1=∠CFE;由AE平分∠BAD,得到∠1=∠2,再由已知可得∠2=∠E,即可證明AD∥BC.【詳解】解:∵AB∥CD,∴∠1=∠CFE,∵AE平分∠BAD,∴∠1=∠2,∵∠CFE=∠E,∴∠2=∠E,∴AD∥BC.【考點】本題考查角平分線的性質以及平行線的判定定理.關鍵是利用平行線的性質以及角平分線的性質解答.3、見解析.【解析】【分析】假設與不垂直,則,而,,則,這與相矛盾,由此即可證明.【詳解】證明:假設與不垂直,則,∵,∴,∴,這與相矛盾,∴.【考點】本題主要考查了反證法和平行線的性質,垂線的性質,解題的關鍵在于能夠熟練掌握相關知識進行求解.4、證明見解析【解析】【分析】根據同位角相等,兩直線平行可得AE//BF,進而可得∠E=∠2,由CE//DF可得∠F=∠2,最后根據等量代換即可證明結論.【詳解】∵,∴,∴.∵CE//DF,∴.∴.【考點】本題考查了平行線的判定與性質,熟練掌握平行線的判定定理與性質定理是解題的關鍵.5、(1)平行;(2)115°.【解析】【分析】(1)先根據垂直的定義得到∠CDB=∠EFB=90°,然后根據同位角相等,兩直線平行可判斷EF∥CD;(2)由EF∥CD,根據平行線的性質得∠2=∠BCD,而∠1=∠2,所以∠1=∠BCD,根據內錯角相等,兩直線平行得到DG∥BC,所以∠ACB=∠3=115°.【詳解】解:(1)CD與EF平行.理由如下:CD⊥AB,EF⊥AB,∴∠CDB=∠EFB=90°∴EF∥CD(2)如圖:EF∥CD,∴∠2=∠BCD又∠1=∠2,∴∠1=∠BCD∴DG∥BC,∴∠ACB=∠3=115°.【考點】本題考查了平行線的判定與性質:同位角相等,兩直線平行;內錯角相等,兩直線平行;兩直線平行,同位角相等.6、(1)見解析(2)BE+CD=BC,(3)①見解析;②【解析】【分析】(1)先根據三角形內角和得:∠BOC=180°?(∠OBC+∠OCB),由角平分線定義得:∠OBC=∠ABC,∠OCB=∠ACB,最后由三角形內角和可得結論;(2)在BC上截取BM=BE,證明△BOE≌△BOM,推出∠BOE=∠BOM=60°,再證明△DCO≌△MCO可得結論;(3)①延長OF到點M,使MF=OF,證明△ODF≌△MEF(SAS),推出OD=EM.過點O作CE,BD的垂線,證明△OBE≌△OBK(AAS)和△ODC≌△OHC,推出EO=OK,OD=OH=EM,BE=BK,CD=CH.據此即可證明結論;②利用①的結論以及三角形面積公式即可求解.(1)證明:∵BD平分∠ABC,CE平分∠ACB,∴∠OBC=∠ABC,∠OCB=∠ACB,∴∠BOC=180°?(∠OBC+∠OCB)=180°?(∠ABC+∠ACB)=180°?(180°?∠A)=∠A+90°;(2)解:BE+CD=BC.在BC上截取BM=BE,連接OM,如圖:∵∠BOC=∠A+90°=120°,∴∠BOE=60°,∵BD平分∠ABC,∴∠EBO=∠MBO,∴△BOE≌△BOM,∴∠BOE=∠BOM=60°,∴∠MOC=∠DOC=60°,∵OC為∠DCM的角平分線,∴∠DCO=∠MCO,在△DCO與△MCO中,,∴△DCO≌△MCO(ASA),∴CM=CD,∴BC=BM+CM=BE+CD;(3)①證明:如圖,延長OF到點M,使MF=OF,連接EM,∴OM=2OF.∵F是ED的中點,∴EF=DF,∵∠DFO=∠EFM,∴△ODF≌△MEF(SAS),∴OD=EM.過點O

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯系上傳者。文件的所有權益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經權益所有人同意不得將文件中的內容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
  • 6. 下載文件中如有侵權或不適當內容,請與我們聯系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論