解析卷-吉林省樺甸市中考數(shù)學(xué)真題分類(平行線的證明)匯編難點解析練習(xí)題(解析版)_第1頁
解析卷-吉林省樺甸市中考數(shù)學(xué)真題分類(平行線的證明)匯編難點解析練習(xí)題(解析版)_第2頁
解析卷-吉林省樺甸市中考數(shù)學(xué)真題分類(平行線的證明)匯編難點解析練習(xí)題(解析版)_第3頁
解析卷-吉林省樺甸市中考數(shù)學(xué)真題分類(平行線的證明)匯編難點解析練習(xí)題(解析版)_第4頁
解析卷-吉林省樺甸市中考數(shù)學(xué)真題分類(平行線的證明)匯編難點解析練習(xí)題(解析版)_第5頁
已閱讀5頁,還剩23頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)

文檔簡介

吉林省樺甸市中考數(shù)學(xué)真題分類(平行線的證明)匯編難點解析考試時間:90分鐘;命題人:教研組考生注意:1、本卷分第I卷(選擇題)和第Ⅱ卷(非選擇題)兩部分,滿分100分,考試時間90分鐘2、答卷前,考生務(wù)必用0.5毫米黑色簽字筆將自己的姓名、班級填寫在試卷規(guī)定位置上3、答案必須寫在試卷各個題目指定區(qū)域內(nèi)相應(yīng)的位置,如需改動,先劃掉原來的答案,然后再寫上新的答案;不準使用涂改液、膠帶紙、修正帶,不按以上要求作答的答案無效。第I卷(選擇題16分)一、單選題(8小題,每小題2分,共計16分)1、用反證法證明命題“三角形中必有一個內(nèi)角小于或等于60°”時,首先應(yīng)該假設(shè)這個三角形中()A.有一個內(nèi)角小于60° B.每一個內(nèi)角都小于60°C.有一個內(nèi)角大于60° D.每一個內(nèi)角都大于60°2、將一副三角板()按如圖所示方式擺放,使得,則等于()A. B. C. D.3、如圖,將沿著平行于的直線折疊,點落在點處,若,則的度數(shù)是(

)A.108° B.104° C.96° D.92°4、下列命題中,是真命題的有(

)①兩條直線被第三條直線所截,同位角的平分線平行;②垂直于同一條直線的兩條直線互相平行;③過一點有且只有一條直線與已知直線平行;④對頂角相等,鄰補角互補.A.1個 B.2個 C.3個 D.4個5、如圖,在△ABC中,∠A=90°,BE,CD分別平分∠ABC和∠ACB,且相交于F,,于點G,則下列結(jié)論①∠CEG=2∠DCA;②CA平分∠BCG;③∠ADC=∠GCD;④∠DFB=∠A;⑤∠DFE=135°,其中正確的結(jié)論是(

)A.①②③ B.①③④ C.①③④⑤ D.①②③④6、如圖,直線l1∥l2,線段AB交l1,l2于D,B兩點,過點A作AC⊥AB,交直線l1于點C,若∠1=15,則∠2=()A.95 B.105 C.115 D.1257、如圖,、是的外角角平分線,若,則的大小為(

)A. B. C. D.8、如圖,把沿線段折疊,使點落在點處;若,,,則的度數(shù)為(

)A. B. C. D.第Ⅱ卷(非選擇題84分)二、填空題(7小題,每小題2分,共計14分)1、如圖所示,請你填寫一個適當(dāng)?shù)臈l件:_____,使AD∥BC.2、命題“全等三角形的對應(yīng)角相等”的逆命題是_____命題.(填“真”或“假”)3、在△ABC中,將∠B、∠C按如圖方式折疊,點B、C均落于邊BC上一點G處,線段MN、EF為折痕.若∠A=80°,則∠MGE=_____°.4、如圖,在四邊形ABCD中,∠BCD=50°,∠B=∠D=90°,在BC、CD上分別取一點M、N,使△AMN的周長最小,則∠MAN=_____°.5、如圖,一副三角板按如圖放置,則∠DOC的度數(shù)為______.6、如圖,將直角三角形紙片ABC進行折疊,使直角頂點A落在斜邊BC上的點E處,并使折痕經(jīng)過點C,得到折痕CD.若∠CDE=70°,則∠B=______°.7、如圖,在中,,將沿直線m翻折,點B落在點D的位置,則__________.三、解答題(7小題,每小題10分,共計70分)1、如圖,AB⊥BC于點B,DC⊥BC于點C,DE平分∠ADC交BC于點E,點F為線段CD延長線上一點,∠BAF=∠EDF(1)求證:∠DAF=∠F;(2)在不添加任何輔助線的情況下,請直接寫出所有與∠CED互余的角.2、已知:如圖,EF∥CD,.(1)判斷與的位置關(guān)系,并說明理由.(2)若平分,平分,且,求的度數(shù).3、問題情景:如圖1,在同一平面內(nèi),點和點分別位于一塊直角三角板的兩條直角邊,上,點與點在直線的同側(cè),若點在內(nèi)部,試問,與的大小是否滿足某種確定的數(shù)量關(guān)系?(1)特殊探究:若,則_________度,________度,_________度;(2)類比探索:請猜想與的關(guān)系,并說明理由;(3)類比延伸:改變點的位置,使點在外,其它條件都不變,判斷(2)中的結(jié)論是否仍然成立?若成立,請說明理由;若不成立,請直接寫出,與滿足的數(shù)量關(guān)系式.4、如圖,在△ABC中,∠A=∠DBC=36°,∠C=72°.求∠1,∠2的度數(shù).5、【教材呈現(xiàn)】如圖是華師版七年級下冊數(shù)學(xué)教材第76頁的部分內(nèi)容.請根據(jù)教材提示,結(jié)合圖①,將證明過程補充完整.【結(jié)論應(yīng)用】(1)如圖②,在△中,∠=60°,平分∠,平分∠,求∠的度數(shù).(2)如圖③,將△的∠折疊,使點落在△外的點處,折痕為.若∠=,∠=,∠=,則、、滿足的等量關(guān)系為(用、、的代數(shù)式表示).6、(1)如圖(a),BD平分,CD平分.試確定和的數(shù)量關(guān)系.(2)如圖(b),BE平分,CE平分外角.試確定和的數(shù)量關(guān)系.(3)如圖(c),BF平分外角,CF平分外角.試確定和的數(shù)量關(guān)系.7、如圖,已知∠1+∠2=180°,∠DEF=∠A,求證:∠ACB=∠DEB.-參考答案-一、單選題1、D【解析】【分析】根據(jù)反證法的證明步驟解答即可.【詳解】解:用反證法證明“三角形中必有一個內(nèi)角小于或等于60°”時,應(yīng)先假設(shè)三角形中每一個內(nèi)角都不小于或等于60°,即每一個內(nèi)角都大于60°.故選:D.【考點】本題考查反證法,熟知反證法的證明步驟,正確得出原結(jié)論的反面是解答的關(guān)鍵.2、A【解析】【分析】根據(jù)平行線的性質(zhì)和三角形外角的性質(zhì)進行計算,即可得到答案.【詳解】解:,.,.故選.【考點】本題考查平行線的性質(zhì)和三角形外角的性質(zhì),解題的關(guān)鍵是掌握平行線的性質(zhì)和三角形外角的性質(zhì).3、D【解析】【分析】根據(jù)兩直線平行,同位角相等可得∠ADE=∠B,再根據(jù)翻折變換的性質(zhì)可得∠A′DE=∠ADE,然后根據(jù)平角等于180°列式計算即可得解.【詳解】解:∵,∴∠ADE=∠B=44°,∵△ABC沿著平行于BC的直線折疊,點A落到點A′,∴∠A′DE=∠ADE=44°,∴∠A′DB=180°﹣44°﹣44°=92°.故選:D.【考點】本題考查了平行線的性質(zhì),翻折變換的性質(zhì),三角形的內(nèi)角和定理,熟記性質(zhì)并準確識圖理清圖中各角度之間的關(guān)系是解題的關(guān)鍵.4、A【解析】【分析】根據(jù)平行線的性質(zhì)及基本事實,對頂角及鄰補角的性質(zhì)進行判斷.【詳解】兩條平行線被第三條直線所截,同位角的平分線平行,故①是假命題;在同一平面內(nèi),垂直于同一條直線的兩條直線互相平行,故②是假命題;過直線外一點有且只有一條直線與已知直線平行,故③是假命題;對頂角相等,鄰補角互補,故④是真命題.故選A.【考點】本題考查命題的真假判斷,熟練掌握平行線的性質(zhì),對頂角及鄰補角的性質(zhì)是解題的關(guān)鍵.5、C【解析】【分析】根據(jù)平行線的性質(zhì)與角平分線的定義即可判斷①;只需要證明∠ADC+∠ACD=90°,∠GCD+∠BCD=90°,即可判斷③;根據(jù)角平分線的定義和三角形內(nèi)角和定理先推出,即可判斷④⑤;根據(jù)現(xiàn)有條件無法推出②.【詳解】解:∵CD平分∠ACB,∴∠ACB=2∠DCA,∠ACD=∠BCD∵,∴∠CEG=∠ACB=2∠DCA,故①正確;∵∠A=90°,CG⊥EG,,∴∠ADC+∠ACD=90°,CG⊥BC,即∠BCG=90°,∴∠GCD+∠BCD=90°,又∵∠BCD=∠ACD,∴∠ADC=∠GDC,故③正確;∵∠A=90°,∴∠ABC+∠ACB=90°,∵BE,CD分別平分∠ABC,∠ACB,∴,∴,∴∠DFB=180°-∠BFC=45°,∴,故④正確;∵∠BFC=135°,∴∠DFE=∠BFC=135°,故⑤正確;根據(jù)現(xiàn)有條件,無法推出CA平分∠BCG,故②錯誤;故選C.【考點】本題主要考查了平行線的性質(zhì),角平分線的定義,三角形內(nèi)角和定理,熟知平行線的性質(zhì),角平分線的定義是解題的關(guān)鍵.6、B【解析】【分析】利用垂直定義和三角形內(nèi)角和定理計算出∠ADC的度數(shù),再利用平行線的性質(zhì)可得∠3的度數(shù),再根據(jù)鄰補角的性質(zhì)可得答案.【詳解】解:∵AC⊥AB,∴∠A=90,∵∠1=15,∴∠ADC=180-90-15=75,∵l1∥l2,∴∠3=∠ADC=75,∴∠2=180-75=105,故選:B.【考點】此題主要運用垂直定義、三角形內(nèi)角和定理以及平行線的性質(zhì),解決角之間的關(guān)系,本題關(guān)鍵是掌握兩直線平行,同位角相等.7、B【解析】【分析】首先根據(jù)三角形內(nèi)角和與∠P得出∠PBC+∠PCB,然后根據(jù)角平分線的性質(zhì)得出∠ABC和∠ACB的外角和,進而得出∠ABC+∠ACB,即可得解.【詳解】∵∴∠PBC+∠PCB=180°-∠P=180°-60°=120°∵、是的外角角平分線∴∠DBC+∠ECB=2(∠PBC+∠PCB)=240°∴∠ABC+∠ACB=180°-∠DBC+180°-∠ECB=360°-240°=120°∴∠A=60°故選:B.【考點】此題主要考查角平分線以及三角形內(nèi)角和的運用,熟練掌握,即可解題.8、C【解析】【分析】由于折疊,可得三角形全等,運用三角形全等得出,利用平行線的性質(zhì)可得出則即可求.【詳解】解:∵沿線段折疊,使點落在點處,∴,∴,∵,,∴,∵,∴,∴,故選:C.【考點】本題考查了全等三角形的性質(zhì)及三角形內(nèi)角和定理、平行線的性質(zhì);解題的關(guān)鍵是,理解折疊就是得到全等的三角形,根據(jù)全等三角形的對應(yīng)角相等就可以解決.二、填空題1、∠FAD=∠FBC(答案不唯一)【解析】【詳解】根據(jù)同位角相等,兩直線平行,可填∠FAD=∠FBC;根據(jù)內(nèi)錯角相等,兩直線平行,可填∠ADB=∠DBC;根據(jù)同旁內(nèi)角互補,兩直線平行,可填∠DAB+∠ABC=180°.故答案為:∠FAD=∠FBC;或∠ADB=∠DBC;或∠DAB+∠ABC=180°.2、假【解析】【分析】首先分清題設(shè)是:兩個三角形全等,結(jié)論是:對應(yīng)角相等,把題設(shè)與結(jié)論互換即可得到逆命題,然后判斷正誤即可.【詳解】解:“全等三角形的對應(yīng)角相等”的題設(shè)是:兩個三角形全等,結(jié)論是:對應(yīng)角相等,因而逆命題是:對應(yīng)角相等的三角形全等.是一個假命題.故答案為:假.【考點】本題考查了互逆命題的知識,兩個命題中,如果第一個命題的條件是第二個命題的結(jié)論,而第一個命題的結(jié)論又是第二個命題的條件,那么這兩個命題叫做互逆命題.其中一個命題稱為另一個命題的逆命題.命題的真假判斷,正確的命題叫真命題,錯誤的命題叫做假命題.判斷命題的真假關(guān)鍵是要熟悉課本中的性質(zhì)定理.3、80【解析】【分析】由折疊的性質(zhì)可知:∠B=∠MGB,∠C=∠EGC,根據(jù)三角形的內(nèi)角和為180°,可求出∠B+∠C的度數(shù),進而得到∠MGB+∠EGC的度數(shù),問題得解.【詳解】解:∵線段MN、EF為折痕,∴∠B=∠MGB,∠C=∠EGC,∵∠A=80°,∴∠B+∠C=180°﹣80°=100°,∴∠MGB+∠EGC=∠B+∠C=100°,∴∠MGE=180°﹣100°=80°,故答案為:80.【考點】本題考查了折疊的性質(zhì):折疊是一種對稱變換,它屬于軸對稱,折疊前后圖形的形狀和大小不變,位置變化,對應(yīng)邊和對應(yīng)角相等,解題的關(guān)鍵是利用整體思想得到∠MGB+∠EGC的度數(shù).4、80【解析】【分析】作點A關(guān)于BC、CD的對稱點A1、A2,根據(jù)軸對稱確定最短路線問題,連接A1、A2分別交BC、DC于點M、N,利用三角形的內(nèi)角和定理列式求出∠A1+∠A2,再根據(jù)軸對稱的性質(zhì)和角的和差關(guān)系即可得∠MAN.【詳解】如圖,作點A關(guān)于BC、CD的對稱點A1、A2,連接A1、A2分別交BC、DC于點M、N,連接AM、AN,則此時△AMN的周長最小,∵∠BCD=50°,∠B=∠D=90°,∴∠BAD=360°﹣90°﹣90°﹣50°=130°,∴∠A1+∠A2=180°﹣130°=50°,∵點A關(guān)于BC、CD的對稱點為A1、A2,∴NA=NA2,MA=MA1,∴∠A2=∠NAD,∠A1=∠MAB,∴∠NAD+∠MAB=∠A1+∠A2=50°,∴∠MAN=∠BAD﹣(∠NAD+∠MAB)=130°﹣50°=80°,故答案為:80.【考點】本題考查了軸對稱的最短路徑問題,利用軸對稱將三角形周長問題轉(zhuǎn)化為兩點間線段最短問題是解決本題的關(guān)鍵.5、【解析】【分析】根據(jù)題意得:∠ACB=30°,∠ACD=45°,∠D=90°,從而得到∠OCD=15°,再由再由直角三角形兩銳角互余,即可求解.【詳解】解:根據(jù)題意得:∠ACB=30°,∠ACD=45°,∠D=90°,∴∠OCD=∠ACD-∠ACB=15°,∴∠DOC=90°-∠OCD=75°.故答案為:75°【考點】本題主要考查了直角三角形的性質(zhì),根據(jù)題意得到∠ACB=30°,∠ACD=45°,∠D=90°是解題的關(guān)鍵.6、50【解析】【分析】根據(jù)折疊的性質(zhì)求得∠CDE=∠CDA=70°,得到∠BDE=40°,再利用余角的性質(zhì)即可求解.【詳解】解:根據(jù)折疊的性質(zhì)得:∠CDE=∠CDA=70°,∠CED=∠A=90°,∴∠BDE=180°-70°-70°=40°,∠BED=180°-90°=90°,∴∠B=180°-90°-40°=50°,故答案為:50.【考點】本題考查翻折變換,三角形內(nèi)角和定理等知識,關(guān)鍵是根據(jù)翻折前后對應(yīng)角相等,利用三角形內(nèi)角和定理求解即可.7、【解析】【分析】根據(jù)折疊得出∠D=∠B=28°,根據(jù)三角形的外角性質(zhì)得出∠1=∠B+∠BEF,∠BEF=∠2+∠D,求出∠1=∠B+∠2+∠D即可.【詳解】解:如圖,∵∠B=28°,將△ABC沿直線m翻折,點B落在點D的位置,∴∠D=∠B=28°,∵∠1=∠B+∠BEF,∠BEF=∠2+∠D,∴∠1=∠B+∠2+∠D,∴∠1-∠2=∠B+∠D=28°+28°=56°,故答案為:.【考點】本題考查了三角形的外角性質(zhì)和折疊的性質(zhì),能熟記三角形的外角性質(zhì)是解此題的關(guān)鍵,注意:三角形的一個外角等于與它不相鄰的兩個內(nèi)角的和.三、解答題1、(1)證明見解析;(2)與∠CED互余的角有∠ADE,∠CDE,∠F,∠FAD.【解析】【分析】(1)依據(jù)AB⊥BC于點B,DC⊥BC于點C,即可得到AB∥CF,進而得出∠BAF+∠F=180°,再根據(jù)∠BAF=∠EDF,即可得出ED∥AF,依據(jù)三角形外角性質(zhì)以及角平分線的定義,即可得到∠DAF=∠F;(2)結(jié)合圖形,根據(jù)余角的概念,即可得到所有與∠CED互余的角.【詳解】解:(1)∵AB⊥BC于點B,DC⊥BC于點C,∴∠B+∠C=180°,∴AB∥CF,∴∠BAF+∠F=180°,又∵∠BAF=∠EDF,∴∠EDF+∠F=180°,∴ED∥AF,∴∠ADE=∠DAF,∠EDC=∠F,∵DE平分∠ADC,∴∠ADE=∠CDE,∴∠DAF=∠F;(2)∵∠C=90°,∴∠CED+∠CDE=90°,∴∠CED與∠CDE互余,又∵∠ADE=∠DAF=∠EDC=∠F,∴與∠CED互余的角有∠ADE,∠CDE,∠F,∠FAD.【考點】本題主要考查了平行線的判定與性質(zhì)、余角的概念,平行線的判定是由角的數(shù)量關(guān)系判斷兩直線的位置關(guān)系,平行線的性質(zhì)是由平行關(guān)系來尋找角的數(shù)量關(guān)系.2、(1)平行,理由見解析;(2)80°【解析】【分析】(1)根據(jù)可得,再由可得由此即可證明;(2)由平行線的性質(zhì)可得,再由角平分線的定義可得,則,由此即可得到答案.【詳解】解:(1).理由:,,又,,;(2),,平分,,∴,平分,.【考點】本題主要考查了平行線的性質(zhì)與判定,角平分線的定義,解題的關(guān)鍵在于能夠熟練掌握平行線的性質(zhì)與判定條件以及角平分線的定義.3、(1)125,90,35;(2)∠ABP+∠ACP=90°-∠A,證明見解析;(3)結(jié)論不成立.∠ABP-∠ACP=90°-∠A,∠ABP+∠ACP=∠A-90°或∠ACP-∠ABP=90°-∠A.【解析】【分析】(1)根據(jù)三角形內(nèi)角和即可得出∠ABC+∠ACB,∠PBC+∠PCB,然后即可得出∠ABP+∠ACP;(2)根據(jù)三角形內(nèi)角和定理進行等量轉(zhuǎn)換,即可得出∠ABP+∠ACP=90°-∠A;(3)按照(2)中同樣的方法進行等量轉(zhuǎn)換,求解即可判定.【詳解】(1)∠ABC+∠ACB=180°-∠A=180°-55°=125度,∠PBC+∠PCB=180°-∠P=180°-90°=90度,∠ABP+∠ACP=∠ABC+∠ACB-(∠PBC+∠PCB)=125°-90°=35度;

(2)猜想:∠ABP+∠ACP=90°-∠A;

證明:在△ABC中,∠ABC+∠ACB=180°-∠A,∵∠ABC=∠ABP+∠PBC,∠ACB=∠ACP+∠PCB,∴(∠ABP+∠PBC)+(∠ACP+∠PCB)=180°-∠A,∴(∠ABP+∠ACP)+(∠PBC+∠PCB)=180°-∠A,又∵在Rt△PBC中,∠P=90°,∴∠PBC+∠PCB=90°,∴(∠ABP+∠ACP)+90°=180°-∠A,∴∠ABP+∠ACP=90°-∠A.

(3)判斷:(2)中的結(jié)論不成立.

證明:在△ABC中,∠ABC+∠ACB=180°-∠A,∵∠ABC=∠PBC-∠ABP,∠ACB=∠PCB-∠ACP,∴(∠PBC+∠PCB)-(∠ABP+∠ACP)=180°-∠A,又∵在Rt△PBC中,∠P=90°,∴∠PBC+∠PCB=90°,∴∠ABP-∠ACP=90°-∠A,∠ABP+∠ACP=∠A-90°或∠ACP-∠ABP=90°-∠A.【考點】此題主要考查利用三角形內(nèi)角和定理進行等角轉(zhuǎn)換,熟練掌握,即可解題.4、∠1=36°,∠2=72°.【解析】【分析】在△ABC和△BDC中,根據(jù)三角形內(nèi)角和定理,即可得出結(jié)論.【詳解】在△ABC中,∠ABC=180°﹣∠A﹣∠C=180°-36°-72°=72°,∴∠1=∠ABC﹣∠DBC=72°-36°=36°;在△BCD中,∠2=180°﹣∠DBC﹣∠C=180°-36°-72°=72°.【考點】本題考查了三角形的內(nèi)角和定理,注意掌握數(shù)形

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

最新文檔

評論

0/150

提交評論