2026屆安徽省皖南八校聯盟高三數學第一學期期末綜合測試模擬試題_第1頁
2026屆安徽省皖南八校聯盟高三數學第一學期期末綜合測試模擬試題_第2頁
2026屆安徽省皖南八校聯盟高三數學第一學期期末綜合測試模擬試題_第3頁
2026屆安徽省皖南八校聯盟高三數學第一學期期末綜合測試模擬試題_第4頁
2026屆安徽省皖南八校聯盟高三數學第一學期期末綜合測試模擬試題_第5頁
已閱讀5頁,還剩15頁未讀, 繼續(xù)免費閱讀

付費下載

下載本文檔

版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領

文檔簡介

2026屆安徽省”皖南八校“聯盟高三數學第一學期期末綜合測試模擬試題注意事項:1.答題前,考生先將自己的姓名、準考證號填寫清楚,將條形碼準確粘貼在考生信息條形碼粘貼區(qū)。2.選擇題必須使用2B鉛筆填涂;非選擇題必須使用0.5毫米黑色字跡的簽字筆書寫,字體工整、筆跡清楚。3.請按照題號順序在各題目的答題區(qū)域內作答,超出答題區(qū)域書寫的答案無效;在草稿紙、試題卷上答題無效。4.保持卡面清潔,不要折疊,不要弄破、弄皺,不準使用涂改液、修正帶、刮紙刀。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.已知中內角所對應的邊依次為,若,則的面積為()A. B. C. D.2.若圓錐軸截面面積為,母線與底面所成角為60°,則體積為()A. B. C. D.3.已知正三角形的邊長為2,為邊的中點,、分別為邊、上的動點,并滿足,則的取值范圍是()A. B. C. D.4.已知平面向量,滿足且,若對每一個確定的向量,記的最小值為,則當變化時,的最大值為()A. B. C. D.15.方程的實數根叫作函數的“新駐點”,如果函數的“新駐點”為,那么滿足()A. B. C. D.6.如圖,矩形ABCD中,,,E是AD的中點,將沿BE折起至,記二面角的平面角為,直線與平面BCDE所成的角為,與BC所成的角為,有如下兩個命題:①對滿足題意的任意的的位置,;②對滿足題意的任意的的位置,,則()A.命題①和命題②都成立 B.命題①和命題②都不成立C.命題①成立,命題②不成立 D.命題①不成立,命題②成立7.如圖,網格紙上小正方形的邊長為,粗實線畫出的是某幾何體的三視圖,則該幾何體的體積為()A. B. C. D.8.已知α,β表示兩個不同的平面,l為α內的一條直線,則“α∥β是“l(fā)∥β”的()A.充分不必要條件B.必要不充分條件C.充要條件D.既不充分也不必要條件9.函數f(x)=的圖象大致為()A. B.C. D.10.設i為虛數單位,若復數,則復數z等于()A. B. C. D.011.設集合,,則().A. B.C. D.12.設實數x,y滿足條件x+y-2?02x-y+3?0x-y?0則A.1 B.2 C.3 D.4二、填空題:本題共4小題,每小題5分,共20分。13.農歷五月初五是端午節(jié),民間有吃粽子的習慣,粽子又稱粽籺,俗稱“粽子”,古稱“角黍”,是端午節(jié)大家都會品嘗的食品,傳說這是為了紀念戰(zhàn)國時期楚國大臣、愛國主義詩人屈原.如圖,平行四邊形形狀的紙片是由六個邊長為1的正三角形構成的,將它沿虛線折起來,可以得到如圖所示粽子形狀的六面體,則該六面體的體積為____;若該六面體內有一球,則該球體積的最大值為____.14.已知函數在定義域R上的導函數為,若函數沒有零點,且,當在上與在R上的單調性相同時,則實數k的取值范圍是______.15.(5分)已知為實數,向量,,且,則____________.16.若,則的最小值為________.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17.(12分)如圖所示,直角梯形中,,,,四邊形為矩形,.(1)求證:平面平面;(2)在線段上是否存在點,使得直線與平面所成角的正弦值為,若存在,求出線段的長,若不存在,請說明理由.18.(12分)以平面直角坐標系的原點為極點,軸的正半軸為極軸,且在兩種坐標系中取相同的長度單位,建立極坐標系,已知曲線,曲線(為參數),求曲線交點的直角坐標.19.(12分)已知函數是減函數.(1)試確定a的值;(2)已知數列,求證:.20.(12分)設數列,的各項都是正數,為數列的前n項和,且對任意,都有,,,(e是自然對數的底數).(1)求數列,的通項公式;(2)求數列的前n項和.21.(12分)已知函數.(1)若對任意x0,f(x)0恒成立,求實數a的取值范圍;(2)若函數f(x)有兩個不同的零點x1,x2(x1x2),證明:.22.(10分)小麗在同一城市開的2家店鋪各有2名員工.節(jié)假日期間的某一天,每名員工休假的概率都是,且是否休假互不影響,若一家店鋪的員工全部休假,而另一家無人休假,則調劑1人到該店維持營業(yè),否則該店就停業(yè).(1)求發(fā)生調劑現象的概率;(2)設營業(yè)店鋪數為X,求X的分布列和數學期望.

參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.A【解析】

由余弦定理可得,結合可得a,b,再利用面積公式計算即可.【詳解】由余弦定理,得,由,解得,所以,.故選:A.本題考查利用余弦定理解三角形,考查學生的基本計算能力,是一道容易題.2.D【解析】

設圓錐底面圓的半徑為,由軸截面面積為可得半徑,再利用圓錐體積公式計算即可.【詳解】設圓錐底面圓的半徑為,由已知,,解得,所以圓錐的體積.故選:D本題考查圓錐的體積的計算,涉及到圓錐的定義,是一道容易題.3.A【解析】

建立平面直角坐標系,求出直線,設出點,通過,找出與的關系.通過數量積的坐標表示,將表示成與的關系式,消元,轉化成或的二次函數,利用二次函數的相關知識,求出其值域,即為的取值范圍.【詳解】以D為原點,BC所在直線為軸,AD所在直線為軸建系,設,則直線,設點,所以由得,即,所以,由及,解得,由二次函數的圖像知,,所以的取值范圍是.故選A.本題主要考查解析法在向量中的應用,以及轉化與化歸思想的運用.4.B【解析】

根據題意,建立平面直角坐標系.令.為中點.由即可求得點的軌跡方程.將變形,結合及平面向量基本定理可知三點共線.由圓切線的性質可知的最小值即為到直線的距離最小值,且當與圓相切時,有最大值.利用圓的切線性質及點到直線距離公式即可求得直線方程,進而求得原點到直線的距離,即為的最大值.【詳解】根據題意,設,則由代入可得即點的軌跡方程為又因為,變形可得,即,且所以由平面向量基本定理可知三點共線,如下圖所示:所以的最小值即為到直線的距離最小值根據圓的切線性質可知,當與圓相切時,有最大值設切線的方程為,化簡可得由切線性質及點到直線距離公式可得,化簡可得即所以切線方程為或所以當變化時,到直線的最大值為即的最大值為故選:B本題考查了平面向量的坐標應用,平面向量基本定理的應用,圓的軌跡方程問題,圓的切線性質及點到直線距離公式的應用,綜合性強,屬于難題.5.D【解析】

由題設中所給的定義,方程的實數根叫做函數的“新駐點”,根據零點存在定理即可求出的大致范圍【詳解】解:由題意方程的實數根叫做函數的“新駐點”,對于函數,由于,,設,該函數在為增函數,,,在上有零點,故函數的“新駐點”為,那么故選:.本題是一個新定義的題,理解定義,分別建立方程解出存在范圍是解題的關鍵,本題考查了推理判斷的能力,屬于基礎題..6.A【解析】

作出二面角的補角、線面角、線線角的補角,由此判斷出兩個命題的正確性.【詳解】①如圖所示,過作平面,垂足為,連接,作,連接.由圖可知,,所以,所以①正確.②由于,所以與所成角,所以,所以②正確.綜上所述,①②都正確.故選:A本題考查了折疊問題、空間角、數形結合方法,考查了推理能力與計算能力,屬于中檔題.7.D【解析】

根據三視圖判斷出幾何體是由一個三棱錐和一個三棱柱構成,利用錐體和柱體的體積公式計算出體積并相加求得幾何體的體積.【詳解】由三視圖可知該幾何體的直觀圖是由一個三棱錐和三棱柱構成,該多面體體積為.故選D.本小題主要考查三視圖還原為原圖,考查柱體和錐體的體積公式,屬于基礎題.8.A【解析】試題分析:利用面面平行和線面平行的定義和性質,結合充分條件和必要條件的定義進行判斷.解:根據題意,由于α,β表示兩個不同的平面,l為α內的一條直線,由于“α∥β,則根據面面平行的性質定理可知,則必然α中任何一條直線平行于另一個平面,條件可以推出結論,反之不成立,∴“α∥β是“l(fā)∥β”的充分不必要條件.故選A.考點:必要條件、充分條件與充要條件的判斷;平面與平面平行的判定.9.D【解析】

根據函數為非偶函數可排除兩個選項,再根據特殊值可區(qū)分剩余兩個選項.【詳解】因為f(-x)=≠f(x)知f(x)的圖象不關于y軸對稱,排除選項B,C.又f(2)==-<0.排除A,故選D.本題主要考查了函數圖象的對稱性及特值法區(qū)分函數圖象,屬于中檔題.10.B【解析】

根據復數除法的運算法則,即可求解.【詳解】.故選:B.本題考查復數的代數運算,屬于基礎題.11.D【解析】

根據題意,求出集合A,進而求出集合和,分析選項即可得到答案.【詳解】根據題意,則故選:D此題考查集合的交并集運算,屬于簡單題目,12.C【解析】

畫出可行域和目標函數,根據目標函數的幾何意義平移得到答案.【詳解】如圖所示:畫出可行域和目標函數,z=x+y+1,即y=-x+z-1,z表示直線在y軸的截距加上1,根據圖像知,當x+y=2時,且x∈-13,1時,故選:C.本題考查了線性規(guī)劃問題,畫出圖像是解題的關鍵.二、填空題:本題共4小題,每小題5分,共20分。13.【解析】

(1)先算出正四面體的體積,六面體的體積是正四面體體積的倍,即可得出該六面體的體積;(2)由圖形的對稱性得,小球的體積要達到最大,即球與六個面都相切時,求出球的半徑,再代入球的體積公式可得答案.【詳解】(1)每個三角形面積是,由對稱性可知該六面是由兩個正四面合成的,可求出該四面體的高為,故四面體體積為,因此該六面體體積是正四面體的2倍,所以六面體體積是;(2)由圖形的對稱性得,小球的體積要達到最大,即球與六個面都相切時,由于圖像的對稱性,內部的小球要是體積最大,就是球要和六個面相切,連接球心和五個頂點,把六面體分成了六個三棱錐設球的半徑為,所以,所以球的體積.故答案為:;.本題考查由平面圖形折成空間幾何體、考查空間幾何體的的表面積、體積計算,考查邏輯推理能力和空間想象能力求解球的體積關鍵是判斷在什么情況下,其體積達到最大,考查運算求解能力.14.【解析】

由題意可知:為上的單調函數,則為定值,由指數函數的性質可知為上的增函數,則在,單調遞增,求導,則恒成立,則,根據函數的正弦函數的性質即可求得的取值范圍.【詳解】若方程無解,則或恒成立,所以為上的單調函數,都有,則為定值,設,則,易知為上的增函數,,,又與的單調性相同,在上單調遞增,則當,,恒成立,當,時,,,,,,此時,故答案為:本題考查導數的綜合應用,考查利用導數求函數的單調性,正弦函數的性質,輔助角公式,考查計算能力,屬于中檔題.15.5【解析】

由,,且,得,解得,則,則.16.【解析】

由基本不等式,可得到,然后利用,可得到最小值,要注意等號取得的條件?!驹斀狻坑深}意,,當且僅當時等號成立,所以,當且僅當時取等號,所以當時,取得最小值.利用基本不等式求最值必須具備三個條件:①各項都是正數;②和(或積)為定值;③等號取得的條件。三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17.(1)見解析;(2)存在,長【解析】

(1)先證面,又因為面,所以平面平面.(2)根據題意建立空間直角坐標系.列出各點的坐標表示,設,則可得出向量,求出平面的法向量為,利用直線與平面所成角的正弦公式列方程求出或,從而求出線段的長.【詳解】解:(1)證明:因為四邊形為矩形,∴.∵∴∴∴面∴面又∵面∴平面平面(2)取為原點,所在直線為軸,所在直線為軸建立空間直角坐標系.如圖所示:則,,,,,設,;∴,,設平面的法向量為,∴,不防設.∴,化簡得,解得或;當時,,∴;當時,,∴;綜上存在這樣的點,線段的長.本題考查平面與平面垂直的判定定理的應用,考查利用線面所成角求參數問題,是幾何綜合題,考查空間想象力以及計算能力.18.【解析】

利用極坐標方程與普通方程、參數方程間的互化公式化簡即可.【詳解】因為,所以,所以曲線的直角坐標方程為.由,得,所以曲線的普通方程為.由,得,所以(舍),所以,所以曲線的交點坐標為.本題考查極坐標方程與普通方程,參數方程與普通方程間的互化,考查學生的計算能力,是一道容易題.19.(Ⅰ)(Ⅱ)見證明【解析】

(Ⅰ)求導得,由是減函數得,對任意的,都有恒成立,構造函數,通過求導判斷它的單調性,令其最大值小于等于0,即可求出;(Ⅱ)由是減函數,且可得,當時,,則,即,兩邊同除以得,,即,從而,兩邊取對數,然后再證明恒成立即可,構造函數,,通過求導證明即可.【詳解】解:(Ⅰ)的定義域為,.由是減函數得,對任意的,都有恒成立.設.∵,由知,∴當時,;當時,,∴在上單調遞增,在上單調遞減,∴在時取得最大值.又∵,∴對任意的,恒成立,即的最大值為.∴,解得.(Ⅱ)由是減函數,且可得,當時,,∴,即.兩邊同除以得,,即.從而,所以①.下面證;記,.∴,∵在上單調遞增,∴在上單調遞減,而,∴當時,恒成立,∴在上單調遞減,即時,,∴當時,.∵,∴當時,,即②.綜上①②可得,.本題考查了導數與函數的單調性的關系,考查了函數的最值,考查了構造函數的能力,考查了邏輯推理能力與計算求解能力,屬于難題.,20.(1),(2)【解析】

(1)當時,,與作差可得,即可得到數列是首項為1,公差為1的等差數列,即可求解;對取自然對數,則,即是以1為首項,以2為公比的等比數列,即可求解;(2)由(1)可得,再利用錯位相減法求解即可.【詳解】解:(1)因為,,①當時,,解得;當時,有,②由①②得,,

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯系上傳者。文件的所有權益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經權益所有人同意不得將文件中的內容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
  • 6. 下載文件中如有侵權或不適當內容,請與我們聯系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論