版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領
文檔簡介
浙江省奉化市中考數(shù)學真題分類(勾股定理)匯編章節(jié)練習考試時間:90分鐘;命題人:教研組考生注意:1、本卷分第I卷(選擇題)和第Ⅱ卷(非選擇題)兩部分,滿分100分,考試時間90分鐘2、答卷前,考生務必用0.5毫米黑色簽字筆將自己的姓名、班級填寫在試卷規(guī)定位置上3、答案必須寫在試卷各個題目指定區(qū)域內相應的位置,如需改動,先劃掉原來的答案,然后再寫上新的答案;不準使用涂改液、膠帶紙、修正帶,不按以上要求作答的答案無效。第I卷(選擇題14分)一、單選題(7小題,每小題2分,共計14分)1、我國古代數(shù)學名著《算法統(tǒng)宗》有一道“蕩秋千”的問題:“平地秋千未起,踏板一尺離地.送行二步與人齊,5尺人高曾記,仕女家人爭蹴.良工高士素好奇,算出索長有幾?”此問題可理解為:“如圖,有一架秋千,當它靜止時,踏板離地距離的長為尺,將它向前水平推送尺時,即尺,秋千踏板離地的距離和身高尺的人一樣高,秋千的繩索始終拉得很直,試問繩索有多長?”,設秋千的繩索長為尺,根據(jù)題意可列方程為(
)A. B.C. D.2、如圖,正方形ABCD中,AB=12,將△ADE沿AE對折至△AEF,延長EF交BC于點G,G剛好是BC邊的中點,則ED的長是()A.2 B.3 C.4 D.53、如圖,正方形的邊長為10,,,連接,則線段的長為(
)A. B. C. D.4、如圖,長方形紙片ABCD中,AB=3cm,AD=9cm,將此長方形紙片折疊,使點D與點B重合,點C落在點H的位置,折痕為EF,則△ABE的面積為(
)A.6cm2 B.8cm2 C.10cm2 D.12cm25、如圖,有一只小鳥從小樹頂飛到大樹頂上,它飛行的最短路程是()A.13米 B.12米 C.5米 D.米6、已知直角三角形紙片的兩條直角邊長分別為m和n(m<n),過銳角頂點把該紙片剪成兩個三角形,若這兩個三角形都為等腰三角形,則()A.m2+2mn+n2=0 B.m2﹣2mn+n2=0 C.m2+2mn﹣n2=0 D.m2﹣2mn﹣n2=07、“趙爽弦圖”巧妙地利用面積關系證明了勾股定理,是我國古代數(shù)學的驕傲.如圖所示的“趙爽弦圖”是由四個全等的直角三角形和一個小正方形拼成的一個大正方形.設直角三角形較長直角邊長為a,較短直角邊長為b.若ab=8,大正方形的面積為25,則小正方形的邊長為A.9 B.6 C.4 D.3第Ⅱ卷(非選擇題86分)二、填空題(8小題,每小題2分,共計16分)1、如圖,在中,,,,現(xiàn)將沿進行翻折,使點剛好落在上,則__________.2、如圖,點在正方形的邊上,若,,那么正方形的面積為_.3、如圖,已知,那么數(shù)軸上點所表示的數(shù)是________.4、在Rt△ABC中,∠C=90°,AC=9,AB=15,則點C到AB的距離是_______.5、如圖,在Rt△ABC中,∠ACB=90°,AC=3,BC=4,點D在AB上,AD=AC,AF⊥CD交CD于點E,交CB于點F,則CF的長是________________.6、如圖,臺階A處的螞蟻要爬到B處搬運食物,它爬的最短距離是_____.7、公元三世紀,我國漢代數(shù)學家趙爽在注解《周髀算經》時給出的“趙爽弦圖”,它由四個全等的直角三角形與中間的小正方形拼成的一個大正方形,如果小正方形面積是49,直角三角形中較小銳角θ的正切為,那么大正方形的面積是_____.8、如圖,Rt△ABC中,∠C=90°,在△ABC外取點D,E,使AD=AB,AE=AC,且α+β=∠B,連結DE.若AB=4,AC=3,則DE=__.三、解答題(7小題,每小題10分,共計70分)1、如圖,點是內一點,把繞點順時針旋轉得到,且,,.(1)判斷的形狀,并說明理由;(2)求的度數(shù).2、如圖,點是正方形內一點,將繞點順時針旋轉到的位置,若,求的度數(shù).3、臺風是一種自然災害,它以臺風中心為圓心在周圍上千米的范圍內形成極端氣候,有極強的破壞力,有一臺風中心沿東西方向AB由點A行駛向點B,已知點C為一海港,且點C與直線AB上兩點A、B的距離分別為300km和400km,又AB=500km,以臺風中心為圓心周圍250km以內為受影響區(qū)域.(1)海港C會受臺風影響嗎?為什么?(2)若臺風的速度為20km/h,臺風影響該海港持續(xù)的時間有多長?4、如圖所示,△ABC的兩條高AD,BE相交于點F,AC=BC.(1)求證:△ADC≌△BEC.(2)若CD=1,BE=2,求線段AC的長.5、如圖,高速公路上有A,B兩點相距10km,C,D為兩村莊,已知DA=4km,CB=6km,DA⊥AB于點A,CB⊥AB于B,現(xiàn)要在AB上建一個服務站E,使得C,D兩村莊到E站的距離相等,求BE的長.6、一個25米長的梯子,斜靠在一豎直的墻上,這時的距離為24米,如果梯子的頂端A沿墻下滑4米,那么梯子底端B外移多少米?7、如圖,AD是△ABC的中線,DE⊥AC于點E,DF是△ABD的中線,且CE=2,DE=4,AE=8.(1)求證:;(2)求DF的長.-參考答案-一、單選題1、C【解析】【分析】根據(jù)勾股定理列方程即可得出結論.【詳解】解:由題意知:OC=x-(5-1),P'C=10,OP'=x,在Rt△OCP'中,由勾股定理得:[x-(5-1)]2+102=x2.即.故選:C.【考點】本題主要考查了勾股定理的應用,讀懂題意是解題的關鍵.2、C【解析】【分析】連接AG,證明△ABG≌△AFG,得到FG=BG,△ADE沿AE對折至△AEF,則EF=DE,設DE=x,則EF=x,EC=12-x,則Rt△EGC中根據(jù)勾股定理列方程可求出DE的值.【詳解】如圖,連接AG,∵四邊形ABCD是正方形,∴∠A=∠B=∠C=∠D=90°,AB=BC=CD=AD=12.∵△ADE沿AE對折至△AEF,∴EF=DE,AF=AD,∵AF=AD,AB=AD,∴AF=AB,又AG是公共邊,∴△ABG≌△AFG(HL),∵G剛好是BC邊的中點,∴BG=FG=,設DE=x,則EF=x,EC=12-x,在Rt△EGC中,根據(jù)勾股定理列方程:62+(12-x)2=(x+6)2解得:x=4.所以ED的長是4,答案選C.【考點】本題考查了正方形和全等三角形的綜合知識,根據(jù)勾股定理列方程是本題的解題關鍵.3、B【解析】【分析】延長DH交AG于點E,利用SSS證出△AGB≌△CHD,然后利用ASA證出△ADE≌△DCH,根據(jù)全等三角形的性質求出EG、HE和∠HEG,最后利用勾股定理即可求出HG.【詳解】解:延長DH交AG于點E∵四邊形ABCD為正方形∴AD=DC=BA=10,∠ADC=∠BAD=90°在△AGB和△CHD中∴△AGB≌△CHD∴∠BAG=∠DCH∵∠BAG+∠DAE=90°∴∠DCH+∠DAE=90°∴CH2+DH2=82+62=100=DC2∴△CHD為直角三角形,∠CHD=90°∴∠DCH+∠CDH=90°∴∠DAE=∠CDH,∵∠CDH+∠ADE=90°∴∠ADE=∠DCH在△ADE和△DCH中∴△ADE≌△DCH∴AE=DH=6,DE=CH=8,∠AED=∠DHC=90°∴EG=AG-AE=2,HE=DE-DH=2,∠GEH=180°-∠AED=90°在Rt△GEH中,GH=故選B.【考點】此題考查是正方形的性質、全等三角形的判定及性質和勾股定理,掌握正方形的性質、全等三角形的判定及性質和利用勾股定理解直角三角形是解決此題的關鍵.4、A【解析】【分析】根據(jù)折疊的條件可得:,在中,利用勾股定理就可以求解.【詳解】將此長方形折疊,使點與點重合,,,根據(jù)勾股定理得:,解得:..故選:A.【考點】本題考查了利用勾股定理解直角三角形,掌握直角三角形兩直角邊的平方和等于斜邊的平方是解題的關鍵.5、A【解析】【分析】根據(jù)題意,畫出圖形,構造直角三角形,用勾股定理求解即可.【詳解】如圖所示,過D點作DE⊥AB,垂足為E,∵AB=13,CD=8,又∵BE=CD,DE=BC,∴AE=AB?BE=AB?CD=13?8=5,∴在Rt△ADE中,DE=BC=12,∴∴AD=13(負值舍去),故小鳥飛行的最短路程為13m,故選A.【考點】考查勾股定理,畫出示意圖,數(shù)形結合是解題的關鍵.6、C【解析】【分析】如圖,根據(jù)等腰三角形的性質和勾股定理可得m2+m2=(n-m)2,整理即可求解【詳解】m2+m2=(n﹣m)2,2m2=n2﹣2mn+m2,m2+2mn﹣n2=0.故選C.7、D【解析】【分析】由題意可知:中間小正方形的邊長為:,根據(jù)勾股定理以及題目給出的已知數(shù)據(jù)即可求出小正方形的邊長.【詳解】解:由題意可知:中間小正方形的邊長為:,每一個直角三角形的面積為:,,,或(舍去),故選:D.【考點】本題考查勾股定理,解題的關鍵是熟練運用勾股定理以及完全平方公式,本題屬于基礎題型.二、填空題1、【解析】【詳解】解:設CD=x,則AD=A′D=4-x.在直角三角形ABC中,BC==5.則A′C=BC-AB=BC-A′B=5-3=2.在直角三角形A′DC中:AD2+AC2=CD2.即:(4-x)2+22=x2.解得:x=.故答案為:2.52、.【解析】【分析】根據(jù)勾股定理求出BC,根據(jù)正方形的面積公式計算即可.【詳解】解:由勾股定理得,,正方形的面積,故答案為.【考點】本題考查了勾股定理,如果直角三角形的兩條直角邊長分別是a,b,斜邊長為c,那么a2+b2=c2.3、【解析】【分析】首先根據(jù)勾股定理得:OB=.即OA=.又點A在數(shù)軸的負半軸上,則點A對應的數(shù)是-.【詳解】解:由圖可知,OC=2,作BC⊥OC,垂足為C,取BC=1,故,∵A在x的負半軸上,∴數(shù)軸上點A所表示的數(shù)是-.故答案為:-.【考點】此題主要考查了實數(shù)與數(shù)軸,勾股富士蝗應用,熟練運用勾股定理,同時注意根據(jù)點的位置以確定數(shù)的符號.4、【解析】【分析】首先根據(jù)勾股定理求出直角邊BC的長,再根據(jù)三角形的面積為定值即可求出則點C到AB的距離【詳解】在Rt△ABC中,∠C=90°,則有AC2+BC2=AB2∵AC=9,BC=12,∴AB=在Rt△ABC中,∠C=90°,則有AC2+BC2=AB2,∵AC=9,AB=15,∴BC==12,∵S△ABC=AC?BC=AB?h,∴h==故答案為【考點】本題考查了勾股定理,熟知在任何一個直角三角形中,兩條直角邊長的平方之和一定等于斜邊長的平方是解題的關鍵5、1.5【解析】【分析】連接DF,由勾股定理求出AB=5,由等腰三角形的性質得出∠CAF=∠DAF,由SAS證明△ADF≌△ACF,得出CF=DF,∠ADF=∠ACF=∠BDF=90°,設CF=DF=x,則BF=4-x,在Rt△BDF中,由勾股定理得出方程,解方程即可.【詳解】連接DF,如圖所示:在Rt△ABC中,∠ACB=90°,AC=3,BC=4,由勾股定理求得AB=5,∵AD=AC=3,AF⊥CD,∴∠CAF=∠DAF,BD=AB-AD=2,在△ADF和△ACF中,∴△ADF≌△ACF(SAS),∴∠ADF=∠ACF=90°,CF=DF,∴∠BDF=90°,設CF=DF=x,則BF=4-x,在Rt△BDF中,由勾股定理得:DF2+BD2=BF2,即x2+22=(4-x)2,解得:x=1.5;∴CF=1.5;故答案為1.5.【考點】本題考查了勾股定理、全等三角形的判定與性質、等腰三角形的性質,證明△ADF≌△ACF得到CF=DF,在Rt△BDF中利用勾股定理列方程是解決問題的關鍵.6、25【解析】【分析】先將圖形平面展開,再用勾股定理根據(jù)兩點之間線段最短進行解答.【詳解】解:如圖所示:臺階平面展開圖為長方形,根據(jù)題意得:,,則螞蟻沿臺階面爬行到B點最短路程是此長方形的對角線長.由勾股定理得:,即,∴,故答案為:25.【考點】本題主要考查了平面展開圖—最短路徑問題,用到臺階的平面展開圖,只要根據(jù)題意判斷出長方形的長和寬即可解答.7、169.【解析】【分析】由題意知小正方形的邊長為7.設直角三角形中較小邊長為a,較長的邊為b,運用正切函數(shù)定義求解.【詳解】解:由題意知,小正方形的邊長為7,設直角三角形中較小邊長為a,較長的邊為b,則tanθ=短邊:長邊=a:b=5:12.所以b=a,①又以為b=a+7,②聯(lián)立①②,得a=5,b=12.所以大正方形的面積是:a2+b2=25+144=169.故答案是:169.【考點】本題主要考查了解直角三角形、勾股定理的證明和正方形的面積,掌握解直角三角形、勾股定理的證明和正方形的面積是解題的關鍵.8、5【解析】【分析】根據(jù)角度轉換,得到三角形ADE是直角三角形,然后運用勾股定理計算出DE的長.【詳解】∵∠B+∠C+∠BAC=180°,∠C=90°,∴∠B+∠BAC=90°.∵α+β=∠B,∴∠DAE=α+β+∠BAC==∠B+∠BAC=90°.∴△ADE是直角三角形.∴DE===5.【考點】本題主要考查到運用勾股定理求長度,說明三角形ADE是直角三角形是解題的關鍵.三、解答題1、(1)是直角三角形,理由見解析;(2)150°.【解析】【分析】(1)求出DE,CE,CD長,根據(jù)勾股逆定理可知的形狀;(2)由等邊三角形角的性質和全等三角形角的性質可知的度數(shù)【詳解】解:(1)是直角三角形理由如下:繞點順時針旋轉得到,,,,是等邊三角形,,又,,是直角三角形.(2)由(1)得,,是等邊三角形,,,.【考點】本題是三角形綜合題,主要考查了全等三角形的證明和性質、等邊三角形的性質和判定、勾股逆定理,熟練應用等邊三角形的性質求線段長及角度是解題的關鍵.2、【解析】【分析】連接EE`,如圖,根據(jù)旋轉的性質得BE=BE'=2,AE=CE'=1,∠EBE`=90°,則可判斷△BEE`為等腰直角三角形,根據(jù)等腰直角三角形的性質得EE`=BE=2,∠BE`E=45°,在△CEE'中,由于CE`+EE'=CE,根據(jù)勾股定理的逆定理得到△CEE`為直角三角形,即∠EE`C=90°,然后利用∠BE'C=∠BE'E+∠CE'E求解【詳解】連接EE`,如圖,∵△ABE繞點B順時針旋轉90°得到△CBE`∴BE=BE'=2,AE=CE'=1,∠EBE'=90°∴△BEE'為等腰直角三角形∴EE'=BE=2,∠BE'E=45°在△CEE`中,CE=3,CE'=1,EE'=2,∵1+(2)=3∴CE+EE'=CE∴△CEE'為直角三角形∴∠EE'C=90°∴∠BE'C=∠BE'E+∠CE'E=135°【考點】此題考查了等腰直角三角形,勾股定理的逆定理,正方形的性質和旋轉的性質,利用勾股定理證明三角形是直角三角形是解題關鍵3、(1)會,理由見解析;(2)7h【解析】【分析】(1)利用勾股定理的逆定理得出△ABC是直角三角形,進而利用三角形面積得出CD的長,從而判斷出海港C是否受臺風影響;(2)利用勾股定理得出ED以及EF的長,進而得出臺風影響該海港持續(xù)的時間.【詳解】解:(1)如圖所示,過點C作CD⊥AB于D點,∵AC=300km,BC=400km,AB=500km,∴,∴△ABC為直角三角形,∴,∴,∴,∵以臺風中心為圓心周圍250km以內為受影響區(qū)域,∴海港C會受到臺風影響;(2)由(1)得CD=240km,如圖所示,當EC=FC=250km時,即臺風經過EF段時,正好影響到海港C,此時△ECF為等腰三角形,∵,∴EF=140km,∵臺風的速度為20km/h,∴140÷20=7h,∴臺風影響該海港持續(xù)的時間有7h.【考點】本題考查的是勾股定理在實際生活中的運用,解答此類題目的關鍵是構造出直角三角形,再利用勾股定理解答.4、(1)見解析(2)【解析】【分析】(1)由AD⊥BC,BE⊥AC得∠BEC=∠ADC=90°,可證∠DAC=∠CBE,根據(jù)AAS可證△ADC≌△BEC;(2)由△ADC≌△BEC,得CD=CE=1,根據(jù)勾股定理可求.(1)證明:∵AD⊥BC,BE⊥AC,∴∠BEC=∠ADC=90°∴∠C+∠DAC=90°=∠C+∠CBE,∴∠DAC=∠CBE在△ADC和△BEC中,∴△ADC≌△BEC(AAS);(2)解:∵△ADC≌△BEC,∴CD=CE=1,∴BC===,∴AC=BC=【考點】本題考查了全等三角形的判定與性質,勾股定理,熟練掌握全等三角形的判定與性質是解題的關鍵.5、4km【解析】【分析】根據(jù)題意設出BE的長為xkm,再由勾股定理列出方程求解即可.【詳解】解:設BE=xkm,則AE=(10﹣x)km,由勾股定理得:在Rt△AD
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經權益所有人同意不得將文件中的內容挪作商業(yè)或盈利用途。
- 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
- 6. 下載文件中如有侵權或不適當內容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 2026年海洋能發(fā)電公司辦公用品庫存管理制度
- 2026江蘇南京大學化學學院助理招聘備考題庫附參考答案詳解(綜合卷)
- 2025年工廠稅務試題帶答案
- 2025年建筑結構抗震設計要點試題及答案
- (2025年)食品生產許可證審查員考試全考點試題帶答案
- 2026江蘇南京大學化學學院博士后招聘備考題庫含答案詳解(輕巧奪冠)
- 2026江蘇南京大學化學學院科研人員招聘備考題庫含答案詳解(達標題)
- 2026江蘇南京大學化學學院科研人員招聘備考題庫附答案詳解(奪分金卷)
- 2026年叉車年檢考試題庫及參考答案一套
- 2026年叉車技能鑒定考核試題庫及參考答案一套
- 反向呼吸訓練方法圖解
- 肉雞采食量影響因素分析與調控研究進展
- T-CCTAS 237-2025 城市軌道交通市域快線車輛運營技術規(guī)范
- 軟件系統(tǒng)上線測試與驗收報告
- 冬季交通安全測試題及答案解析
- 2025年國家能源局系統(tǒng)公務員面試模擬題及備考指南
- (2025年標準)圈內認主協(xié)議書
- 2025年安徽省中考化學真題及答案
- 2025年軍隊文職人員統(tǒng)一招聘面試( 臨床醫(yī)學)題庫附答案
- 海馬體核磁掃描課件
- 某電力股份企業(yè)同熱三期2×100萬千瓦項目環(huán)評報告書
評論
0/150
提交評論