考點解析北師大版9年級數(shù)學上冊期末試卷含答案詳解【培優(yōu)B卷】_第1頁
考點解析北師大版9年級數(shù)學上冊期末試卷含答案詳解【培優(yōu)B卷】_第2頁
考點解析北師大版9年級數(shù)學上冊期末試卷含答案詳解【培優(yōu)B卷】_第3頁
考點解析北師大版9年級數(shù)學上冊期末試卷含答案詳解【培優(yōu)B卷】_第4頁
考點解析北師大版9年級數(shù)學上冊期末試卷含答案詳解【培優(yōu)B卷】_第5頁
已閱讀5頁,還剩32頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領

文檔簡介

北師大版9年級數(shù)學上冊期末試卷考試時間:90分鐘;命題人:教研組考生注意:1、本卷分第I卷(選擇題)和第Ⅱ卷(非選擇題)兩部分,滿分100分,考試時間90分鐘2、答卷前,考生務必用0.5毫米黑色簽字筆將自己的姓名、班級填寫在試卷規(guī)定位置上3、答案必須寫在試卷各個題目指定區(qū)域內相應的位置,如需改動,先劃掉原來的答案,然后再寫上新的答案;不準使用涂改液、膠帶紙、修正帶,不按以上要求作答的答案無效。第I卷(選擇題24分)一、單選題(6小題,每小題2分,共計12分)1、圖,在△ABC中,AB=AC,四邊形ADEF為菱形,O為AE,DF的交點,S△ABC=8,則S菱形ADEF=()A.4 B.4 C.4 D.42、如圖,在矩形ABCD中,E,F(xiàn)分別是AD,BC的中點,連結AF,BE,CE,DF分別交于點M,N,則四邊形EMFN是()A.梯形 B.菱形C.矩形 D.無法確定3、將一元二次方程化成(a,b為常數(shù))的形式,則a,b的值分別是(

)A.,21 B.,11 C.4,21 D.,694、如圖,ABC是等邊三角形,點D、E分別在BC、AC上,且∠ADE=60°,AB=9,BD=3,則CE的長等于()A.1 B. C. D.25、神奇的自然界處處蘊含著數(shù)學知識.動物學家在鸚鵡螺外殼上發(fā)現(xiàn),其每圈螺紋的直徑與相鄰螺紋直徑的比約為0.618.這體現(xiàn)了數(shù)學中的(

)A.平移 B.旋轉 C.軸對稱 D.黃金分割6、一個圓柱體鋼塊,正中央被挖去了一個長方體孔,其俯視圖如圖所示.則此圓柱體鋼塊的主視圖可能是下列選項中的(

)A. B. C. D.二、多選題(6小題,每小題2分,共計12分)1、如圖,在2×3的方格中,畫有格點△ABC,下列選項的方格中所畫格點三角形(陰影部分)與△ABC不相似的是()A. B. C. D.2、下列關于x的方程的說法正確的是()A.一定有兩個實數(shù)根 B.可能只有一個實數(shù)根C.可能無實數(shù)根 D.當時,方程有兩個負實數(shù)根3、在直角坐標系中,已知點A(6,﹣3),以原點O為位似中心,相似比為,把線段OA縮小為OA′,則點A′的坐標為(

)A.(﹣2,﹣1) B.(﹣2,1) C.(2,1) D.(2,﹣1)4、如圖,四邊形ABCD為菱形,BFAC,DF交AC的延長線于點E,交BF于點5、如圖,在△ABC中,點P為AB上一點,給出下列四個條件中能滿足△APC和△ACB相似的條件是(

)A.∠ACP=∠B B.∠APC=∠ACB C.AC2=AP·AB D.AB·CP=AP·CB6、如圖,△ABC中,D在AB上,E在AC上,下列條件中,不能判定DE∥BC的是(

).A. B.C. D.第Ⅱ卷(非選擇題76分)三、填空題(8小題,每小題2分,共計16分)1、已知,則的值為_____.2、如圖,在中,,,,是斜邊上方一點,連接,點是的中點,垂直平分,交于點,連接,交于點,當為直角三角形時,線段的長為________.3、如圖,點E為矩形ABCD的邊BC長上的一點,作DF⊥AE于點F,且滿足DF=AB.下面結論:①△DEF≌△DEC;②S△ABE=S△ADF;③AF=AB;④BE=AF.其中正確的結論是_____.4、如圖,在長方形中,,在上存在一點、沿直線把折疊,使點恰好落在邊上的點處,若,那么的長為________.5、袋中有五顆球,除顏色外全部相同,其中紅色球三顆,標號分別為1,2,3,綠色球兩顆,標號分別為1,2,若從五顆球中任取兩顆,則兩顆球的標號之和不小于4的概率為__.6、已知方程x2﹣3x+1=0的根是x1和x2,則x1+x2﹣x1x2=___.7、關于的方程有兩個不相等的實數(shù)根,則的取值范圍是________.8、如圖所示,在中,,,.(1)如圖1,四邊形為的內接正方形,則正方形的邊長為_________;(2)如圖2,若內有并排的n個全等的正方形,它們組成的矩形內接于,則正方形的邊長為_________.四、解答題(6小題,每小題10分,共計60分)1、如圖,在△ABC和△DCB中,AB=DC,∠A=∠D,AC、DB交于點M.(1)求證:△ABC≌△DCB;(2)作CN∥BD,BN∥AC,CN交BN于點N,四邊形BNCM是什么四邊形?請證明你的結論.2、如圖,∠1=∠2=∠3,試找出圖中兩對相似三角形,并說明為什么?3、已知:.(1)求代數(shù)式的值;(2)如果,求的值.4、如圖1,在Rt△ABC中,∠C=90°,AC=BC=2,點D、E分別在邊AC、AB上,AD=DE=AB,連接DE.將△ADE繞點A順時針方向旋轉,記旋轉角為θ.(1)[問題發(fā)現(xiàn)]①當θ=0°時,=;②當θ=180°時,=;(2)[拓展研究]試判斷:當0°≤θ<360°時,的大小有無變化?請僅就圖2的情形給出證明;(3)[問題解決]在旋轉過程中,BE的最大值為.5、如圖,在△ABC中,D,E分別是AC,AB上的點,∠ADE=∠B.△ABC的角平分線AF交DE于點G,交BC于點F.(1)求證:△ADG∽△ABF;(2)若,AF=6,求GF的長.6、如圖,是一個豎直放置的釘板,其中,黑色圓面表示釘板上的釘子,分別表示相鄰兩顆釘子之間的空隙,這些空隙大小均相等,從入口處投放一個直徑略小于兩顆釘子之間空隙的圓球,圓球下落過程中,總是碰到空隙正下方的釘子,且沿該釘子左右兩個相鄰空隙繼續(xù)下落的機會相等,直至圓球落入下面的某個槽內.用畫樹狀圖的方法,求圓球落入③號槽內的概率.-參考答案-一、單選題1、C【解析】【分析】根據(jù)菱形的性質,結合AB=AC,得出DF為△ABC的中位線,DF∥BC,,從而得出AE為△ABC的高,得出,再根據(jù)菱形的面積公式,即可得出菱形的面積.【詳解】解:∵四邊形ADEF為菱形,∴EF∥AB,DE∥AC,AF=EF=DE=AD,AE⊥DF,∴,,,,,∴CF=EF,DE=DB,,,∴DF∥BC,,,,,,,即,,故C正確.故選:C.【考點】本題主要考查了菱形的性質,中位線的性質,等腰三角形的性質和判斷,平行線的性質,菱形的面積,三角形面積的計算,根據(jù)菱形的性質和等腰三角形的性質得出DF為△ABC的中位線,是解題的關鍵.2、B【解析】【分析】求出四邊形ABFE為平行四邊形,四邊形BFDE為平行四邊形,根據(jù)平行四邊形的性質得出BE∥FD,即ME∥FN,同理可證EN∥MF,得出四邊形EMFN為平行四邊形,求出ME=MF,根據(jù)菱形的判定得出即可.【詳解】連接EF.∵四邊形ABCD為矩形,∴AD∥BC,AD=BC,又∵E,F(xiàn)分別為AD,BC中點,∴AE∥BF,AE=BF,ED∥CF,DE=CF,∴四邊形ABFE為平行四邊形,四邊形BFDE為平行四邊形,∴BE∥FD,即ME∥FN,同理可證EN∥MF,∴四邊形EMFN為平行四邊形,∵四邊形ABFE為平行四邊形,∠ABC為直角,∴ABFE為矩形,∴AF,BE互相平分于M點,∴ME=MF,∴四邊形EMFN為菱形.故選B.【考點】本題考查了矩形的性質和判定,菱形的判定,平行四邊形的性質和判定的應用,能綜合運用性質進行推理是解此題的關鍵,題目比較好,綜合性比較強.3、A【解析】【分析】根據(jù)配方法步驟解題即可.【詳解】解:移項得,配方得,即,∴a=-4,b=21.故選:A【考點】本題考查了配方法解一元二次方程,解題關鍵是配方:在二次項系數(shù)為1時,方程兩邊同時加上一次項系數(shù)一半的平方.4、D【解析】【分析】通過△ABD∽△DCE,可得,即可求解.【詳解】解:∵△ABC是等邊三角形,∴AB=BC=9,∠ABC=∠ACB=60°,∵BD=3,∴CD=6,∵∠ADC=∠ABC+∠BAD=∠ADE+∠CDE,∴∠BAD=∠CDE,∴△ABD∽△DCE,∴,∴∴CE=2,故選:D.【考點】本題考查了三角形的相似,做題的關鍵是△ABD∽△DCE.5、D【解析】【分析】根據(jù)黃金分割的定義即可求解.【詳解】解:動物學家在鸚鵡螺外殼上發(fā)現(xiàn),其每圈螺紋的直徑與相鄰螺紋直徑的比約為0.618.這體現(xiàn)了數(shù)學中的黃金分割.故選:D【考點】本題考查了黃金分割的定義,黃金分割是指將整體一分為二,較大部分與整體部分的比值等于較小部分與較大部分的比值,其比值為,約等于0.618,這個比例被公認為是最能引起美感的比例,因此被稱為黃金分割.熟知黃金分割的定義是解題關鍵.6、C【解析】【分析】主視圖是從物體正面看所得到的圖形.幾何體看得見部分的輪廓線畫成實線,被其他部分遮擋而看不見的部分的輪廓線化成虛線.【詳解】解:此圓柱體鋼塊的主視圖可能是:故選:C.【考點】本題考查簡單組合體的三視圖,畫三視圖時注意“長對正,寬相等,高平齊”,被其他部分遮擋而看不見的部分的輪廓線化成虛線.二、多選題1、BCD【解析】【分析】先判斷格中所畫格點三角形為直角三角形,利用兩組對應邊的比相等且夾角對應相等的兩個三角形相似,否則不相似,對各選項進行判斷.【詳解】解:由圖知:∠ACB=90°,AC=2,BC=1,AC:BC=2,A選項中,三條線段的長為,因為,此三角形為直角三角形,長直角邊與短直角邊的比為2,所以A選項的方格中所畫格點三角形(陰影部分)與△ABC相似,不符合題意;B選項中,長直角邊與短直角邊的比為3,所以B中格點三角形與△ABC不相似,符合題意;C選項中,三條線段的長為√,因為,此三角形為直角三角形,兩直角邊的比為1,所以C選項的方格中所畫格點三角形(陰影部分)與△ABC不相似,符合題意;D選項中,三角形的兩直角邊的比為1:1.所以D中格點三角形與△ABC不相似,符合題意,故選:BCD.【考點】本題考查相似三角形的判定,能在格點中表示各個線段的長度和掌握相似三角形的判定定理是解決此題的關鍵.2、BD【解析】【分析】直接利用方程根與系數(shù)的關系以及根的判別式分析求出即可.【詳解】解:當a=0時,方程整理為解得,∴選項B正確;故選項A錯誤;當時,方程是一元二次方程,∴∴此時的方程表兩個不相等的實數(shù)根,故選項C錯誤;若時,,∴當時,方程有兩個負實數(shù)根∴選項D正確,故選:BD【考點】此題主要考查了一元二次方程根的判別式和根與系數(shù)的關系,正確把握相關知識是解題關鍵.3、BD【解析】【分析】根據(jù)在平面直角坐標系中,如果位似變換是以原點為位似中心,相似比為k,那么位似圖形對應點的坐標的比等于k或?k解答.【詳解】解:∵點A的坐標為(?6,3),以原點為位似中心將△ABO縮小,位似比為,∴點A的對應點的坐標為:(?6×,3×)或(?6×(?),3×(?)),即(?2,1)或(2,?1),故選:BD.【考點】本題考查的是位似變換的概念和性質,在平面直角坐標系中,如果位似變換是以原點為位似中心,相似比為k,那么位似圖形對應點的坐標的比等于k或?k.4、ABD【解析】【分析】根據(jù)菱形的性質、全等三角形的判定與性質、中線的性質即可依次判斷.【詳解】解:∵四邊形ABCD為菱形,∴AB=AD,∠BAE=∠DAE,∵AE=AE,∴△ABE≌△ADE(SAS);∴BE=DE,∠AEB=∠AED,∵CE=CE,∴△CBE≌△CDE(SAS),A正確;∵BFAC,∴∠FBE=∠AEB,∠AED=∠F,∴∠FBE=∠F,∴BE=EF,∴DE=FE,B正確;連接BD交AC于O,∵AO=CO,∵CE:AC=1:2,∴AO=CO=CE,設S△BCE=m,∴S△ABC=S△ADC=2m,S△BOE=S△DOE=2m,∴S四邊形ABDC=4m,S△BDE=4m,∵E點是DF中點∴S△BEF=S△BDE=4m,∴S△BEF=S四邊形ABCD,故D正確;∵AE與DE不相等,故AE與BE不相等故C錯誤;故選:ABD.【考點】本題考查了全等三角形的判定和性質,菱形的性質,平行線的性質,三角形的面積的計算,正確的識別圖形是解題的關鍵.5、ABC【解析】【分析】根據(jù)相似三角形的判定定理逐項判斷即可.【詳解】解:A、∵∠ACP=∠B,∠A=∠A,∴△APC∽△ACB,故選項A符合題意;B、∵∠APC=∠ACB,∠A=∠A,∴△APC∽△ACB,故選項B符合題意;C、∵AC2=AP·AB,∠A=∠A,∴△APC∽△ACB,故選項C符合題意;D、AB·CP=AP·CB不是兩個對應邊成比例,不能證明△APC和△ACB相似,故選項D不符合條件,故選:ABC.【考點】本題考查相似三角形的判定,熟練掌握相似三角形的判定方法是解答的關鍵.6、BCD【解析】【分析】利用各選項給定的條件,結合再證明,可得,逐一分析各選項,從而可得答案.【詳解】解:A、而則故A不符合題意;B、與不一定相似,則與不一定相等,不一定平行,故B符合題意;C、,而而不一定相等,故不一定平行,故C符合題意;D、與不一定相似,則與不一定相等,不一定平行,故D符合題意;故選:BCD.【考點】本題考查的是相似三角形的判定與性質,平行線的判定,掌握兩邊對應成比例且夾角相等的兩個三角形相似是解題的關鍵.三、填空題1、1【解析】【分析】由比例的性質,設,則,,,然后代入計算,即可得到答案.【詳解】解:根據(jù)題意,設,∴,,,∴,故答案為:1.【考點】本題考查了比例的性質,解題的關鍵是掌握比例的性質進行解題.2、或【解析】【分析】(1)分別在、、中應用含角的直角三角形的性質以及勾股定理求得,,再根據(jù)垂直平分線的性質、等邊三角形的判定和性質、等腰三角形的判定求得,最后利用線段的和差即可求得答案;根據(jù)垂直平分線的性質、全等三角形的判定和性質、分線段成比例定理可證得,然后根據(jù)平行線的性質、相似三角形的判定和性質列出方程,解方程即可求得,最后利用線段的和差即可求得答案.【詳解】解:①當時,如圖1:∵在中,,,∴∴∵,∴∵∴∴在中,設,則∵∴∴∴,∵垂直平分線段∴∵∴是等邊三角形∴∴∴;②當時,連接、交于點,過點作于,如圖2:設,則,∵垂直平分線段,點是的中點∴∵∴∵∵∴垂直平分線段∴∵,∴∴∵∴,∴∴∴∴∴∴∴.∴綜上所述,滿足條件的的值為6或.故答案是:6或【考點】本題考查了垂直平分線的性質和判定、含角的直角三角形的性質、勾股定理、全等三角形的判定和性質、平行線的判定和性質、相似三角形的判定和性質、等邊三角形的判定和性質等,滲透了邏輯推理的核心素養(yǎng)以及分類討論的數(shù)學思想.3、①②④.【解析】【分析】證明Rt△DEF≌Rt△DEC得出①正確;在證明△ABE≌△DFA得出S△ABE=S△ADF;②正確;得出BE=AF,④正確,③不正確;即可得出結論.【詳解】解:四邊形是矩形,,在和中,,①正確在和中,;②正確,④正確,③不正確故答案為:①②④.【考點】本題考查了矩形的性質、全等三角形的判定與性質等知識,熟練掌握矩形的性質,證明三角形全等是解題的關鍵.4、【解析】【分析】由折疊的性質,得DE=EF,AD=AF,然后求出AF=AD=10,則求出FC的長度,再根據(jù)勾股定理建立方程,即可求出答案.【詳解】解:∵四邊形是長方形,由折疊的性質,,∵,又,在中,;故答案為:.【考點】本題考查了:①折疊的性質:折疊是一種對稱變換,它屬于軸對稱,根據(jù)軸對稱的性質,折疊前后圖形的形狀和大小不變,位置變化,對應邊和對應角相等;②矩形的性質,勾股定理求解.5、##0.5【解析】【分析】畫樹狀圖,共有20個等可能的結果,兩顆球的標號之和不小于4的結果有10個,再由概率公式求解即可.【詳解】畫樹狀圖如圖:共有20個等可能的結果,兩顆球的標號之和不小于4的結果有10個,兩顆球的標號之和不小于4的概率為,故答案為:.【考點】本題考查了列表法與樹狀圖法以及概率公式,正確畫出樹狀圖是解題的關鍵.6、2【解析】【分析】根據(jù)根與系數(shù)的關系可得出x1+x2=3、x1x2=1,將其代入x1+x2﹣x1x2中即可求出結論.【詳解】解:∵方程x2﹣3x+1=0的兩個實數(shù)根為x1、x2,∴x1+x2=3、x1x2=1,∴x1+x2﹣x1x2=3﹣1=2,故答案為:2.【考點】本題考查了根與系數(shù)的關系,一元二次方程ax2+bx+c=0(a≠0)的根與系數(shù)的關系為:x1+x2=﹣,x1?x2=.7、且【解析】【分析】若一元二次方程有兩個不相等的實數(shù)根,則△=b2-4ac>0,建立關于k的不等式,求得k的取值范圍,還要使二次項系數(shù)不為0.【詳解】∵方程有兩個不相等的實數(shù)根,∴解得:,又二次項系數(shù)故答案為且【考點】考查一元二次方程根的判別式,當時,方程有兩個不相等的實數(shù)根.當時,方程有兩個相等的實數(shù)根.當時,方程沒有實數(shù)根.8、

【解析】【分析】(1)根據(jù)題意畫出圖形,作CN⊥AB,再根據(jù)GF∥AB,可知△CGF∽△CAB,由相似三角形的性質即可求出正方形的邊長;(2)設正方形的邊長是x,則過點C作CN⊥AB,垂足為N,交GF于點M,易得△CGF∽△CAB,所以,求出x值即可.【詳解】解:(1)在圖1中,作CN⊥AB,交GF于點M,交AB于點N.在Rt△ABC中,∵AC=4,BC=3,∴AB=5,∴AB?CN=BC?AC,∴CN=,∵GF∥AB,∴△CGF∽△CAB,∴CM:CN=GF:AB,設正方形邊長為x,則,解得:,∴正方形DEFG的邊長為;(2)如圖,過點C作CN⊥AB,垂足為N,交GF于點M,設小正方形的邊長為x,∵四邊形GDEF為矩形,∴GF∥AB,CM⊥GF,同理算出CN=,∴,即,∴,即小正方形的邊長是.【考點】本題主要考查了正方形,矩形的性質和相似三角形的性質.會利用三角形相似中的相似比來得到相關的線段之間的等量關系是解題的關鍵.四、解答題1、(1)證明見解析;(2)四邊形BNCM是菱形,證明見解析.【解析】【分析】(1)根據(jù)題意利用AAS可證明出△ABM和△DCM,然后根據(jù)全等三角形的性質得出∠MBC=∠MCB,最后利用AAS即可作出證明;(2)根據(jù)平行線的性質和題意,即可得出△MBC≌△NCB,根據(jù)全等三角形的性質即可作出證明.【詳解】如圖所示(1)在△ABM和△DCM中,,∴△ABM≌△DCM(AAS),∴BM=CM,∴∠MBC=∠MCB,在△ABC和△DCB中,,∴△ABC≌△DCB(AAS)(2)四邊形BNCM是菱形,其理由如下:∵CN∥BD,∴∠MBC=∠NCB,又∵BN∥AC,∴∠MCB=∠NBC,在△MBC和△NCB中,,∴△MBC≌△NCB(ASA),∴BM=CN,MC=NB,又∵BM=CM,∴BM=MC=CN=NB,∴四邊形BNCM是菱形.【考點】本題主要考查了全等三角形的性質和判定和菱形的判定,熟練運用相關的判定與性質是解題的關鍵.2、(2)由(1)同理可得(5﹣x)2x=整理,得x2﹣5x+7=0,因為b2﹣4ac=25﹣28<0,所以,此方程無解.所以△PBQ的面積不可能等于7cm2.【考點】本題主要考查一元二次方程的應用,關鍵在于理解清楚題意,找出等量關系列出方程求解,判斷某個三角形的面積是否等于一個值,只需根據(jù)題意列出方程,判斷該方程是否有解,若有解則存在,否則不存在.7.△AFD∽△EFB,△ABC∽△ADE;理由見解析.【解析】【分析】根據(jù)兩個三角形的兩組角對應相等,那么這兩個三角形互為相似三角形證明即可.【詳解】解:△AFD∽△EFB,△ABC∽△ADE.理由如下:∵∠2=∠3,∠AFD=∠EFB∴△AFD∽△EFB,∴∠B=∠D.∵∠1=∠2,∴,∴∠BAC=∠DAE,∴△ABC∽△ADE.【考點】本題考查相似三角形的判定定理,熟記判定定理,本題用到了兩組角對應相等的兩個三角形互為相似三角形.3、(1)1;(2)【解析】【分析】(1)設a=2k,b=3k,c=5k,代入代數(shù)式,即可求出答案;(2)把a、b、c的值代入,求出即可.【詳解】∵∴設a=2k,b=3k,c=5k,(1);(2)∵∴6k-3k+5k=24,∴k=3,∴a=2×3=6,b=3×3=9,c=5×3=15.【考點】本題考查了比例的性質的應用,主要考查學生的計算能力.4、(1)①;②;(2)當0°≤θ<360°時,的大小沒有變化;證明見解析;(3)4+2.【解析】【分析】(1)①利用等腰三角形的性質判斷出∠A=∠B,∠A=∠AED,進而得出∠B=∠DEA,得出DE∥BC,即可得出結論;②同①的方法,即可得出結論;(2)利用兩邊成比例,夾角相等,判斷出△ADC∽△AEB,即可得出結論;(3)判斷出點E在BA的延

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經權益所有人同意不得將文件中的內容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
  • 6. 下載文件中如有侵權或不適當內容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論