版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)
文檔簡介
人教版8年級數(shù)學(xué)下冊《平行四邊形》重點解析考試時間:90分鐘;命題人:教研組考生注意:1、本卷分第I卷(選擇題)和第Ⅱ卷(非選擇題)兩部分,滿分100分,考試時間90分鐘2、答卷前,考生務(wù)必用0.5毫米黑色簽字筆將自己的姓名、班級填寫在試卷規(guī)定位置上3、答案必須寫在試卷各個題目指定區(qū)域內(nèi)相應(yīng)的位置,如需改動,先劃掉原來的答案,然后再寫上新的答案;不準使用涂改液、膠帶紙、修正帶,不按以上要求作答的答案無效。第I卷(選擇題20分)一、單選題(5小題,每小題4分,共計20分)1、如圖,陰影部分是將一個菱形剪去一個平行四邊形后剩下的,要想知道陰影部分的周長,需要測量一些線段的長,這些線段可以是()A.AF B.AB C.AB與BC D.BC與CD2、在平行四邊形ABCD中,∠A=30°,那么∠B與∠A的度數(shù)之比為()A.4:1 B.5:1 C.6:1 D.7:13、如圖,在?ABCD中,AD=2AB,F(xiàn)是AD的中點,作CE⊥AB于E,在線段AB上,連接EF、CF.則下列結(jié)論:①∠BCD=2∠DCF;②∠ECF=∠CEF;③S△BEC=2S△CEF;④∠DFE=3∠AEF,其中一定正確的是(
)A.②④ B.①②④
C.①②③④
D.②③④4、如圖,已知在正方形ABCD中,厘米,,點E在邊AB上,且厘米,如果點P在線段BC上以2厘米/秒的速度由B點向C點運動,同時,點Q在線段CD上以a厘米/秒的速度由C點向D點運動,設(shè)運動時間為t秒.若存在a與t的值,使與全等時,則t的值為()A.2 B.2或1.5 C.2.5 D.2.5或25、如圖,DE是ABC的中位線,點F在DE上,且∠AFB=90°,若AB=5,BC=8,則EF的長為()A.2.5 B.1.5 C.4 D.5第Ⅱ卷(非選擇題80分)二、填空題(5小題,每小題6分,共計30分)1、如圖,正方形紙片ABCD的邊長為12,E是邊CD上一點,連接AE.折疊該紙片,使點A落在AE上的G點,并使折痕經(jīng)過點B,得到折痕BF,點F在AD上.若,則GE的長為__________.2、如圖,已知在矩形中,,,將沿對角線AC翻折,點B落在點E處,連接,則的長為_________.3、正方形的一條對角線長為4,則這個正方形面積是_________.4、若一個菱形的兩條對角線的長為3和4,則菱形的面積為___________.5、如圖,在矩形ABCD中,AB=2,AD=2,E為BC邊上一動點,F(xiàn)、G為AD邊上兩個動點,且∠FEG=30°,則線段FG的長度最大值為_____.三、解答題(5小題,每小題10分,共計50分)1、如圖,中,.(1)作點A關(guān)于的對稱點C;(要求:尺規(guī)作圖,不寫作法,保留作圖痕跡)(2)在(1)所作的圖中,連接,,連接,交于點O.求證:四邊形是菱形.2、如圖,在中,對角線AC、BD交于點O,AB=10,AD=8,AC⊥BC,求(1)的面積;(2)△AOD的周長.
3、如圖,已知△ABC中,D是AB上一點,AD=AC,AE⊥CD,垂足是E,F(xiàn)是BC的中點,求證:BD=2EF.
4、在平面直角坐標(biāo)系中,過A(0,4)的直線a垂直于y軸,點M(9,4)為直線a上一點,若點P從點M出發(fā),以每秒2cm的速度沿直線a向左移動,點Q從原點同時出發(fā),以每秒1cm的速度沿x軸向右移動,(1)幾秒后PQ平行于y軸?(2)在點P、Q運動的過程中,若線段OQ=2AP,求點P的坐標(biāo).5、如圖,將矩形沿折疊,使點落在邊上的點處;再將矩形沿折疊,使點落在點處且過點.
(1)求證:四邊形是平行四邊形;(2)當(dāng)是多少度時,四邊形為菱形?試說明理由.-參考答案-一、單選題1、A【解析】【分析】如圖,延長,交于點,證明,,再利用菱形的性質(zhì)證明:陰影部分的周長,從而可得答案.【詳解】解:如圖,延長,交于點,四邊形是平行四邊形,,,四邊形是菱形,,陰影部分的周長,故需要測量的長度,故選A.【點睛】本題考查的是平行四邊形的性質(zhì),菱形的性質(zhì),證明陰影部分的周長是解本題的關(guān)鍵.2、B【解析】【分析】根據(jù)平行四邊形的性質(zhì)先求出∠B的度數(shù),即可得到答案.【詳解】解:∵四邊形ABCD是平行四邊形,∴AD∥BC,∴∠B=180°-∠A=150°,∴∠B:∠A=5:1,故選B.【點睛】本題主要考查了平行四邊形的性質(zhì),解題的關(guān)鍵在于能夠熟練掌握平行四邊形鄰角互補.3、B【解析】【分析】根據(jù)易得DF=CD,由平行四邊形的性質(zhì)AD∥BC即可對①作出判斷;延長EF,交CD延長線于M,可證明△AEF≌△DMF,可得EF=FM,由直角三角形斜邊上中線的性質(zhì)即可對②作出判斷;由△AEF≌△DMF可得這兩個三角形的面積相等,再由MC>BE易得S△BEC<2S△EFC,從而③是錯誤的;設(shè)∠FEC=x,由已知及三角形內(nèi)角和可分別計算出∠DFE及∠AEF,從而可判斷④正確與否.【詳解】①∵F是AD的中點,∴AF=FD,∵在?ABCD中,AD=2AB,∴AF=FD=CD,∴∠DFC=∠DCF,∵AD∥BC,∴∠DFC=∠FCB,∴∠DCF=∠BCF,∴∠BCD=2∠DCF,故①正確;②延長EF,交CD延長線于M,∵四邊形ABCD是平行四邊形,∴AB∥CD,∴∠A=∠MDF,∵F為AD中點,∴AF=FD,在△AEF和△DFM中,,∴△AEF≌△DMF(ASA),∴FE=MF,∠AEF=∠M,∵CE⊥AB,∴∠AEC=90°,∴∠AEC=∠ECD=90°,∵FM=EF,∴FC=FE,∴∠ECF=∠CEF,故②正確;③∵EF=FM,∴S△EFC=S△CFM,∵MC>BE,,∴S△BEC<2S△EFC,故S△BEC=2S△CEF,故③錯誤;④設(shè)∠FEC=x,則∠FCE=x,∴∠DCF=∠DFC=90°﹣x,∴∠EFC=180°﹣2x,∴∠EFD=90°﹣x+180°﹣2x=270°﹣3x,∵∠AEF=90°﹣x,∴∠DFE=3∠AEF,故④正確,故選:B.【點睛】本題考查了平行四邊形的性質(zhì),全等三角形的判定與性質(zhì),直角三角形斜邊上中線的性質(zhì),三角形的面積等知識,構(gòu)造輔助線證明三角形全等是本題的關(guān)鍵和難點.4、D【解析】【分析】根據(jù)題意分兩種情況討論若△BPE≌△CQP,則BP=CQ,BE=CP;若△BPE≌△CPQ,則BP=CP=5厘米,BE=CQ=6厘米進行求解即可.【詳解】解:當(dāng),即點Q的運動速度與點P的運動速度都是2厘米/秒,若△BPE≌△CQP,則BP=CQ,BE=CP,∵AB=BC=10厘米,AE=4厘米,∴BE=CP=6厘米,∴BP=10-6=4厘米,∴運動時間t=4÷2=2(秒);當(dāng),即點Q的運動速度與點P的運動速度不相等,∴BP≠CQ,∵∠B=∠C=90°,∴要使△BPE與△OQP全等,只要BP=PC=5厘米,CQ=BE=6厘米,即可.∴點P,Q運動的時間t=(秒).綜上t的值為2.5或2.故選:D.【點睛】本題主要考查正方形的性質(zhì)以及全等三角形的判定,解決問題的關(guān)鍵是掌握正方形的四條邊都相等,四個角都是直角;兩邊及其夾角分別對應(yīng)相等的兩個三角形全等.同時要注意分類思想的運用.5、B【解析】【分析】根據(jù)直角三角形斜邊上的中線等于斜邊的一半可得,再利用三角形中位線定理可得DE=4,進而可得答案.【詳解】解:∵D為AB中點,∠AFB=90°,AB=5,∴,∵DE是△ABC的中位線,BC=8,∴DE=4,∴EF=4﹣2.5=1.5,故選:B.【點睛】此題主要考查了直角三角形的性質(zhì)和三角形中位線定理,三角形的中位線平行于第三邊,并且等于第三邊的一半.二、填空題1、##【解析】【分析】由折疊及軸對稱的性質(zhì)可知,△ABF≌△GBF,BF垂直平分AG,先證△ABF≌△DAE,推出AF的長,再利用勾股定理求出BF的長,最后在Rt△ABF中利用面積法可求出AH的長,可進一步求出AG的長,GE的長.【詳解】解:∵四邊形ABCD為正方形,∴AB=AD=12,∠BAD=∠D=90°,由折疊及軸對稱的性質(zhì)可知,△ABF≌△GBF,BF垂直平分AG,∴BF⊥AE,AH=GH,∴∠BAH+∠ABH=90°,又∵∠FAH+∠BAH=90°,∴∠ABH=∠FAH,∴△ABF≌△DAE(ASA),∴AF=DE=5,在Rt△ABF中,BF==13,S△ABF=AB?AF=BF?AH,∴12×5=13AH,∴AH=,∴AG=2AH=,∵AE=BF=13,∴GE=AE-AG=13-=,故答案為:.【點睛】本題考查了正方形的性質(zhì),軸對稱的性質(zhì),全等三角形的判定與性質(zhì),勾股定理,面積法求線段的長度等,解題關(guān)鍵是能夠靈活運用正方形的性質(zhì)和軸對稱的性質(zhì).2、【解析】【分析】過點E作EF⊥AD于點F,先證明CG=AG,再利用勾股定理列方程,求出AG的值,結(jié)合三角形的面積法和勾股定理,即可求解.【詳解】解:如圖所示:過點E作EF⊥AD于點F,有折疊的性質(zhì)可知:∠ACB=∠ACE,∵AD∥BC,∴∠ACB=∠CAD,∴∠CAD=∠ACE,∴CG=AG,設(shè)CG=x,則DG=8-x,∵在中,,∴x=5,∴AG=5,在中,EG=,EF⊥AD,∠AEG=90°,∴,∵在中,,、∴DF=8-=,∴在中,,故答案是:.【點睛】本題主要考查矩形的性質(zhì),折疊的性質(zhì),勾股定理,等腰三角形的判定定理,添加輔助線構(gòu)造直角三角形,是解題的關(guān)鍵.3、8【解析】【分析】正方形邊長相等設(shè)為,對角線長已知,利用勾股定理求解邊長的平方,即為正方形的面積.【詳解】解:設(shè)邊長為,對角線為故答案為:.【點睛】本題考察了正方形的性質(zhì)以及勾股定理.解題的關(guān)鍵在于求解正方形的邊長.4、6【解析】【分析】由題意直接由菱形的面積等于對角線乘積的一半進行計算即可.【詳解】解:菱形的面積.故答案為:6.【點睛】本題考查菱形的性質(zhì),熟練掌握菱形的面積等于對角線乘積的一半是解題的關(guān)鍵.5、【解析】【分析】如圖所示,在中,F(xiàn)G邊的高為AB=2,∠FEG=30°,為定角定高的三角形,故當(dāng)E與B點或C點重合,G與D點重合或F與A點重合時,F(xiàn)G的長度最大,則由矩形ABCD中,AB=2,AD=2可知,∠ABD=60°,故∠ABF=60°-30°=30°,則AF=,則FG=AD-AF=.【詳解】如圖所示,在中,F(xiàn)G邊的高為AB=2,∠FEG=30°,為定角定高的三角形故當(dāng)E與B點或C點重合,G與D點重合或F與A點重合時,F(xiàn)G的長度最大∵矩形ABCD中,AB=2,AD=2∴∠ABD=60°∴∠ABF=60°-30°=30°∴AF=∴FG=AD-AF=.故答案為:.【點睛】本題考查了四邊形中動點問題,圖解法數(shù)學(xué)思想依據(jù)是數(shù)形結(jié)合思想.它的應(yīng)用能使復(fù)雜問題簡單化、抽象問題具體化.特殊四邊形的幾何問題,很多困難源于問題中的可動點.如何合理運用各動點之間的關(guān)系,同學(xué)們往往缺乏思路,常常導(dǎo)致思維混亂.實際上求解特殊四邊形的動點問題,關(guān)鍵是是利用圖解法抓住它運動中的某一瞬間,尋找合理的代數(shù)關(guān)系式,確定運動變化過程中的數(shù)量關(guān)系,圖形位置關(guān)系,分類畫出符合題設(shè)條件的圖形進行討論,就能找到解決的途徑,有效避免思維混亂.三、解答題1、(1)見解析;(2)見解析【分析】(1)作BD的垂直平分線,再截取即可;(2)先證明三角形全等,然后根據(jù)全等三角形的性質(zhì)可得:,依據(jù)菱形的判定定理即可證明.【詳解】(1)解:如圖所示,作BD的垂直平分線,再截取,點即為所求.(2)證明:如圖所示:∵,,∴,在與中,,∴;∴,又∵,∴四邊形是菱形.【點睛】本題考查了尺規(guī)作圖和菱形的證明,解題關(guān)鍵是熟練運用尺規(guī)作圖方法和菱形的判定定理進行作圖與證明.2、(1)48(2)【分析】(1)利用勾股定理先求出高AC,故可求解面積;(2)根據(jù)平行四邊形的性質(zhì)求出AO,再利用勾股定理求出OB的長,故可求解.【詳解】解:(1)∵四邊形ABCD是平行四邊形,且AD=8
∴BC=AD=8∵AC⊥BC∴∠ACB=90°在Rt△ABC中,由勾股定理得AC2=AB2-BC2∴∴(2)∵四邊形ABCD是平行四邊形,且AC=6∴∵∠ACB=90°,BC=8∴,∴∴.【點睛】此題主要考查平行四邊形的性質(zhì),解題的關(guān)鍵是熟知平行四邊形的性質(zhì)及勾股定理的應(yīng)用.3、見解析.【分析】先證明再證明EF是△CDB的中位線,從而可得結(jié)論.【詳解】證明:∵AD=AC,AE⊥CD∴CE=ED∵F是BC的中點∴EF是△CDB的中位線∴BD=2EF【點睛】本題考查的是等腰三角形的性質(zhì),三角形的中位線的性質(zhì),掌握“三角形的中位線平行于第三邊且等于第三邊的一半”是解題的關(guān)鍵.4、(1)3秒后平行于軸;(2)或.【分析】(1)設(shè)秒后平行于軸,先求出的長,再根據(jù)矩形的判定與性質(zhì)可得,由此建立方程,解方程即可得;(2)分①點在點右側(cè),②點在點左側(cè)兩種情況,分別根據(jù)建立方程,解方程即可得.【詳解】解:(1),,設(shè)秒后平行于軸,,垂直于軸,垂直于軸,平行于軸,四邊形是矩形,,即,解得,即3秒后平行于軸;(2)由題意得:經(jīng)過秒后,,垂直于軸,點在直線上,且點的坐標(biāo)為,點的縱坐標(biāo)為4,①當(dāng)點在點右側(cè)時,,由得:,解得,,此時點的坐標(biāo)為;②當(dāng)點在點左側(cè)時,,由得:,解得,,此時點的坐標(biāo)為;綜上,點的坐標(biāo)為或.【點睛】本題考查了坐標(biāo)與圖形、矩形的判定與性質(zhì)等知識點,較難的是題(2),正確分兩種情況討論是解題關(guān)鍵.5、(1)見解析;(2)當(dāng)∠B1FE=60°時,四邊形EF
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 《GBT 26686-2017 地面數(shù)字電視接收機通 用規(guī)范》專題研究報告
- 《GB-T 32392.4-2015信息技術(shù) 互操作性元模型框架(MFI) 第4部分:模型映射元模型》專題研究報告
- 《GB-T 8576-2010復(fù)混肥料中游離水含量的測定 真空烘箱法》專題研究報告
- 元宇宙場景信息搭建咨詢協(xié)議
- 智能建筑工程師崗位招聘考試試卷及答案
- 種子行業(yè)種子電商運營專員崗位招聘考試試卷及答案
- 2026年學(xué)校教師培訓(xùn)工作計劃(4篇)
- 2026年教師培訓(xùn)工作計劃(3篇)
- 2025年直流傳動礦井提升機合作協(xié)議書
- 2025年儀器儀表及文化、辦公用機械項目發(fā)展計劃
- 鋼板租賃合同條款(2025版)
- 輻射性白內(nèi)障的發(fā)現(xiàn)與研究
- 珠海市產(chǎn)業(yè)和招商扶持政策匯編(2025年版)
- 國開機考 答案2人力資源管理2025-06-21
- 物理●山東卷丨2024年山東省普通高中學(xué)業(yè)水平等級考試物理試卷及答案
- 提升會計職業(yè)素養(yǎng)的試題及答案
- 電動吸盤出租合同協(xié)議
- 胃穿孔的相關(guān)試題及答案
- 制藥行業(yè)清潔生產(chǎn)標(biāo)準
- 教育學(xué)原理知到智慧樹章節(jié)測試課后答案2024年秋浙江師范大學(xué)
- 醫(yī)學(xué)影像技術(shù)技士題庫
評論
0/150
提交評論