解析卷青島版8年級數(shù)學(xué)下冊期末測試卷(有一套)附答案詳解_第1頁
解析卷青島版8年級數(shù)學(xué)下冊期末測試卷(有一套)附答案詳解_第2頁
解析卷青島版8年級數(shù)學(xué)下冊期末測試卷(有一套)附答案詳解_第3頁
解析卷青島版8年級數(shù)學(xué)下冊期末測試卷(有一套)附答案詳解_第4頁
解析卷青島版8年級數(shù)學(xué)下冊期末測試卷(有一套)附答案詳解_第5頁
已閱讀5頁,還剩30頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)

文檔簡介

青島版8年級數(shù)學(xué)下冊期末測試卷考試時間:90分鐘;命題人:教研組考生注意:1、本卷分第I卷(選擇題)和第Ⅱ卷(非選擇題)兩部分,滿分100分,考試時間90分鐘2、答卷前,考生務(wù)必用0.5毫米黑色簽字筆將自己的姓名、班級填寫在試卷規(guī)定位置上3、答案必須寫在試卷各個題目指定區(qū)域內(nèi)相應(yīng)的位置,如需改動,先劃掉原來的答案,然后再寫上新的答案;不準使用涂改液、膠帶紙、修正帶,不按以上要求作答的答案無效。第I卷(選擇題16分)一、單選題(8小題,每小題2分,共計16分)1、下列各式中,與是同類二次根式的是(

)A. B. C. D.252、如圖,在平面直角坐標系中,將正方形OABC繞點O逆時針旋轉(zhuǎn)45°后得到正方形OA1B1C1,依此方式,繞點O連續(xù)旋轉(zhuǎn)2020次得到正方形OA2020B2020C2020,如果點A的坐標為(1,0),那么點B2020的坐標為()A.(﹣1,1) B.(,0) C.(﹣1,﹣1) D.(0,)3、下列計算中,正確的是(

)A. B.C. D.4、若關(guān)于的不等式組有解,且使關(guān)于的分式方程的解為非負數(shù).則滿足條件的所有整數(shù)的和為(

)A.-9 B.-8 C.-5 D.-45、如圖,在中,,點D是AB的中點,連接CD,若,,則CD的長度是(

)A.1.5 B.2 C.2.5 D.56、如圖,在一矩形紙條中,,將紙條沿折疊,點C的對應(yīng)點為,若,則折痕的長為(

)A.2 B. C. D.47、2022年新年賀詞中提到“人不負青山,青山定不負人”,下列四個有關(guān)環(huán)保的圖形中,是軸對稱圖形,但不是中心對稱圖形的是(

)A. B. C. D.8、若一個正比例函數(shù)的圖象經(jīng)過A(2,﹣4),B(m,﹣6)兩點,則m的值為()A.﹣3 B.﹣2 C.3 D.2第Ⅱ卷(非選擇題84分)二、填空題(7小題,每小題2分,共計14分)1、如圖,正方形ABCD的邊長為1,其面積標記為S1,以AB為斜邊向外作等腰直角三角形,再以該等腰直角三角形的一條直角邊為邊向外作正方形,其面積標記為S2,…按照此規(guī)律繼續(xù)下去,則S7的值為_____.2、如圖是小明的身高隨年齡變化的圖像,那么小明自16歲到18歲這兩年間身高一共增高了約___________cm.3、如圖,點A、B在x軸上,點C在y軸的正半軸上,且AC=BC=,OC=1,P為線段AB上一點,則PC2+PA?PB的值為_____.4、如果代數(shù)式意義,那么x的取值范圍是_______.5、小明想測量旗桿的高度,他先將升旗的繩子拉到旗桿底端,并在繩子對應(yīng)旗桿底端的位置上打了一個結(jié),然后將繩子拉到離旗桿底部4m處,繩頭恰好接觸到底面,他發(fā)現(xiàn)此時繩頭距打結(jié)處約1m,小明計算出旗桿的高度為_____m.6、若直線y=(2m+4)x+m-3平行于直線y=-x,則m的值為________.7、已知一次函數(shù)y=﹣2x+4圖象上兩點(﹣1,y1),(3,y2),則y1_______y2(填“>”、“<”或“=”).三、解答題(7小題,每小題10分,共計70分)1、如圖,已知△ABC是銳角三角形(AB>AC).(1)請用無刻度直尺和圓規(guī)作圖:作直線l,使l上的各點到B、C兩點的距離相等;設(shè)直線l與AB、BC分別交于點M、N,在線段MN上找一點O,使點O到邊AB、BC的距離相等;(不寫作法,保留作圖痕跡)(2)在(1)的條件下,若BM=10,BC=12,求ON的長.2、如圖,四邊形ABCD是矩形紙片,,,在上取一點,將紙片沿AE翻折,使點D落在BC邊上的點F處.(1)AF的長=______;(2)BF的長=______;(3)CF的長=______;(4)求DE的長.3、如圖,在△ABC中,∠ACB=90°.(1)在斜邊AB上找一點P,使點P到AC的距離等于BP的長.請用無刻度直尺和圓規(guī)作出點P(不寫畫法,保留作圖痕跡);(2)若BC=4.5,AB=7.5,則AC的長為_______,(1)中BP的長為_______.4、已知:如圖,一次函數(shù)的圖像分別與x軸、y軸相交于點A、B,且與經(jīng)過x軸負半軸上的點C的一次函數(shù)y=kx+b的圖像相交于點D,直線CD與y軸相交于點E,E與B關(guān)于x軸對稱,OA=3OC.(1)直線CD的函數(shù)表達式為______;點D的坐標______;(直接寫出結(jié)果)(2)點P為線段DE上的一個動點,連接BP.①若直線BP將△ACD的面積分為兩部分,試求點P的坐標;②點P是否存在某個位置,將△BPD沿著直線BP翻折,使得點D恰好落在直線AB上方的坐標軸上?若存在,求點P的坐標;若不存在,請說明理由.5、如圖,在△ABC和△CDE中,∠ABC=∠CDE=90°,且AC⊥CE,AC=CE.(1)求證:(2)若AC=13,DE=5,求DB的長.6、如圖,在邊長為1的小正方形組成的網(wǎng)格中,ABC的三個頂點均在格點上,請按要求完成下列各題.(1)畫出ABC關(guān)于直線MN對稱的A1B1C1;(2)求AB1C的面積;(3)試判斷ABC的形狀并說明理由.7、如圖,在平面直角坐標系中,直線l:分別交x軸,y軸于點A、B,將△AOB繞點O順時針旋轉(zhuǎn)90°后得到.(1)求直線的解析式;(2)若直線與直線l相交于點C,求的面積.-參考答案-一、單選題1、B【解析】【分析】先把各選項化成最簡二次根式,然后根據(jù)同類二次根式判斷即可.【詳解】∵,,∴與是同類二次根式的是.故選:B.【點睛】本題考查了最簡二次根式和同類二次根式的定義,把各個選項化簡是解題的關(guān)鍵.2、C【解析】【分析】根據(jù)正方形的性質(zhì)和旋轉(zhuǎn)性質(zhì)可發(fā)現(xiàn)規(guī)律:點B旋轉(zhuǎn)后對應(yīng)的坐標8次一循環(huán),據(jù)此解答即可求解.【詳解】解:連接OB,∵四邊形OABC是正方形,A的坐標為(1,0),∴OA=AB=OC=BC=1,∠OAB=90°,∠AOB=45°,∴B(1,1),由勾股定理得:,由旋轉(zhuǎn)性質(zhì)得:OB=OB1=OB2=OB3=…=,∵將正方形OABC繞點O逆時針連續(xù)旋轉(zhuǎn)45°,相當(dāng)于將OB繞點O逆時針連續(xù)旋轉(zhuǎn)45°,∴依次得到∠AOB=∠BOB1=∠B1OB2=…=45°,∴B1(0,),B2(-1,1),B2(-,0),B4(-1,-1),B5(0,-),B6(1,-1),B7(,0),

B8(1,1),……,發(fā)現(xiàn)規(guī)律:點B旋轉(zhuǎn)后對應(yīng)的坐標8次一循環(huán),∵2020=8×252+4,∴點B2020與點B4重合,∴點B2020的坐標為(-1,-1),故選:C.【點睛】本題考查坐標與旋轉(zhuǎn)規(guī)律問題、正方形的性質(zhì)、旋轉(zhuǎn)的性質(zhì)、勾股定理等知識,熟練掌握正方形的性質(zhì)和旋轉(zhuǎn)性質(zhì),正確得出變化規(guī)律是解答的關(guān)鍵.3、B【解析】【分析】根據(jù)二次根式的混合運算法則可以計算出各個選項中的正確結(jié)果,從而可以判斷哪個選項中的式子是正確的.【詳解】解:A、、不是同類二次根式,不能合并,故該選項錯誤,不符合題意;B、,故該選項正確,符合題意;C、、不是同類二次根式,不能合并,故該選項錯誤,不符合題意;D、,故該選項錯誤,不符合題意;故選:B【點睛】本題考查二次根式的混合運算,熟練掌握運算法則是解答本題的關(guān)鍵.4、A【解析】【分析】先求不等式組的解集,根據(jù)不等式組有解,可得,然后再解出分式方程,再根據(jù)分式方程的解為非負數(shù),可得,即可求解.【詳解】解:,解不等式①,得:,解不等式②,得:,∵不等式組有解,∴,解得:,,去分母得:,∵分式方程的解為非負數(shù),且不等于2∴,即且,∴,且∴滿足條件的所有整數(shù)有-5、-4、-3、-2、0、1、2、3,∴滿足條件的所有整數(shù)的和.故選:B.【點睛】本題主要考查了解一元一次不等式組和分式方程,熟練掌握解一元一次不等式組和分式方程的基本步驟是解題的關(guān)鍵.5、C【解析】【分析】先利用勾股定理可得,再根據(jù)直角三角形斜邊上的中線等于斜邊的一半即可得.【詳解】解:在中,,,,,點是的中點,,故選:C.【點睛】本題考查了勾股定理、直角三角形斜邊上的中線等于斜邊的一半,熟練掌握直角三角形斜邊上的中線等于斜邊的一半是解題關(guān)鍵.6、B【解析】【分析】設(shè)交AD于點H,由四邊形ABCD是矩形,⊥BC得到∠EHF=90°,四邊形ABEH為矩形,得到EH=AB=2,由折疊的性質(zhì)可知∠HEF=∠EFH=∠HEC=45°,得到△HEF為等腰直角三角形,再利用勾股定理得到EF的長.【詳解】解:如圖,設(shè)交AD于點H,∵四邊形ABCD是矩形∴AD∥BC

∠A=∠B=90°∵⊥BC∴⊥AD于點H∠HEC=∠HEB=90°∴∠EHF=90°四邊形ABEH為矩形∵AB=2∴EH=AB=2由折疊的性質(zhì)可知∠HEF=∠EFH=∠HEC=45°在Rt△HEF中,∠HFE=180°-∠HEF-∠EHF=45°∴EH=FH∴△HEF為等腰直角三角形在Rt△HEF中,由勾股定理得EF2=HE2+HF2==8∴EF==2故選:B【點睛】本題考查了圖形的折疊問題,抓住折疊前后相關(guān)位置和數(shù)量關(guān)系的變化是正確解答的關(guān)鍵.7、D【解析】【分析】軸對稱圖形:如果一個平面圖形沿著一條直線折疊后,直線兩旁的部分能夠互相重合,那么這個圖形叫做軸對稱圖形.中心對稱圖形:在平面內(nèi),把一個圖形繞著某個點旋轉(zhuǎn)180°,如果旋轉(zhuǎn)后的圖形與另一個圖形重合,那么就說明這兩個圖形的形狀關(guān)于這個點成中心對稱.根據(jù)軸對稱圖形、和中心對稱圖形的概念,即可完成解題.【詳解】解:根據(jù)軸對稱和中心對稱的概念,選項A、B、C、D中,是軸對稱圖形的是B、D,是中心對稱圖形的是B.故選:B.【點睛】本題主要軸對稱圖形、中心對稱圖形的概念,熟練掌握知識點是解答本題的關(guān)鍵.8、C【解析】【分析】運用待定系數(shù)法求得正比例函數(shù)解析式,把點B的坐標代入所得的函數(shù)解析式,即可求出m的值.【詳解】解:設(shè)正比例函數(shù)解析式為:y=kx,將點A(2,﹣4)代入可得:2k=﹣4,解得:k=﹣2,∴正比例函數(shù)解析式為:y=﹣2x,將B(m,﹣6)代入y=﹣2x,可得:﹣2m=﹣6,解得m=3,故選:C.【點睛】本題考查了一次函數(shù)圖象上點的坐標特征.解題時需靈活運用待定系數(shù)法求出函數(shù)解析式,然后將點的坐標代入解析式,利用方程思想解決問題是解本題的關(guān)鍵.二、填空題1、【解析】【分析】根據(jù)題意求出S2=()1,S3=()2,S4=()3,…,根據(jù)規(guī)律解答.【詳解】解:由題意得:S1=12=1,S2=(1×)2=()1,S3=(×)2==()2,S4=(××)2==()3,…,則Sn=()n-1,∴S7=()6=.故答案為:.【點睛】本題考查了等腰直角三角形的性質(zhì)、勾股定理以及規(guī)律型中數(shù)的變化規(guī)律,解題的關(guān)鍵是找出規(guī)律“Sn=()n-1”.2、【解析】【分析】先求解時對應(yīng)的一次函數(shù)的解析式,可得時的函數(shù)值,再求解時對應(yīng)的函數(shù)解析式,可得時的函數(shù)值,從而可得答案.【詳解】解:當(dāng)時,設(shè)函數(shù)解析式為:解得:所以一次函數(shù)為:當(dāng)時,當(dāng)時,設(shè)函數(shù)解析式為:所以一次函數(shù)的解析式為:當(dāng)時,(cm),故答案為:15【點睛】本題考查的是利用待定系數(shù)法求解一次函數(shù)的解析式,已知自變量的值求解函數(shù)值,掌握“待定系數(shù)法求解解析式的步驟”是解本題的關(guān)鍵.3、5【解析】【分析】由勾股定理可求AO=BO=2,設(shè)點P(x,0),由勾股定理和兩點之間距離公式可求解.【詳解】解:∵AC=BC=,OC=1,∴AO=BO===2,設(shè)點P(x,0),則PA=x+2,PB=2﹣x,PC2=x2+1,∴PC2+PA?PB=x2+1+(x+2)(2﹣x)=5,故答案為:5.【點睛】本題考查了勾股定理,坐標與圖形性質(zhì),利用點的坐標表示線段的長是解題的關(guān)鍵.4、且【解析】【分析】根據(jù)分式的分母不等于零和二次根式的被開方數(shù)是非負數(shù)進行解答.【詳解】解:∵二次根式的被開方數(shù)是非負數(shù),∴,解得.又∵分母不等于零,∴,∴且.故答案是:且.【點睛】本題考查了二次根式有意義的條件和分式有意義的條件,解答本題的關(guān)鍵是分式的分母不等于零和二次根式的被開方數(shù)是非負數(shù).5、7.5【解析】【分析】先根據(jù)勾股定理建構(gòu)直角三角形,利用勾股定理列拓展的一元一次方程,解方程即可.【詳解】解:如圖設(shè)旗桿的高度為xm,則繩長為(x+1)m,根據(jù)勾股定理得:,解方程得x=7.5m,,∴小明計算出旗桿的高度為

7.5m.故答案為7.5.【點睛】本題考查勾股定理,掌握勾股定理構(gòu)圖和勾股定理的應(yīng)用是解題關(guān)鍵.6、【解析】【分析】兩直線平行時,它們的自變量系數(shù)k值相等,即可得出答案.【詳解】解:∵直線y=(2m+4)x+m?3平行于直線y=?x,∴2m+4=?1,解得m=.故答案為:.【點睛】本題考查了兩直線的相交與平行問題,解題的關(guān)鍵是理解兩直線平行時,自變量系數(shù)k值相等.7、【解析】【分析】根據(jù)已知函數(shù)的解析式得出y隨x的增大而減小,即可得出結(jié)論.【詳解】解:∵y=-2x+4中,k=-2<0,∴y隨x的增大而減小,∵-1<3,∴y1>y2,故答案為>.【點睛】本題考查了一次函數(shù)圖象上點的坐標特征,能熟記一次函數(shù)的性質(zhì)是解此題的關(guān)鍵.三、解答題1、(1)作圖見詳解;(2)3.【解析】【分析】(1)根據(jù)要求先作BC的垂直平分線,再作出∠B的角平分線,交點即為O點;(2)過點O作OH⊥AB于點H.利用勾股定理求出MN,證明OH=ON,利用面積法求解即可.(1)解:如圖,直線MN,點O即為所求;(2)過點O作OH⊥AB于點H.∵BO平分∠ABC,ON⊥BC,OH⊥AB,∴ON=OH,∵MN垂直平分線段BC,∴BN=CN=6,∵BM=10,∴MN===8,∵S△BMN=S△BMO+S△BON,∴×6×8=×10×OH+×6×ON,∴ON=OH=3.【點睛】本題考查作圖-復(fù)雜作圖,線段的垂直平分線的性質(zhì),角平分線的定義等知識,解題的關(guān)鍵是理解題意,學(xué)會用面積法解決問題.2、(1)10(2)6(3)4(4)5【解析】【分析】(1)根據(jù)折疊的性質(zhì)即可得;(2)先根據(jù)矩形的性質(zhì)可得,再根據(jù)折疊的性質(zhì)可得,然后在中,利用勾股定理即可得;(3)根據(jù)即可得;(4)先根據(jù)折疊的性質(zhì)可得,設(shè),則,再在中,利用勾股定理即可得.(1)解:由折疊的性質(zhì)得:,故答案為:10.(2)解:四邊形是矩形,,,,由折疊的性質(zhì)得:,,故答案為:6.(3)解:,,故答案為:4.(4)解:由折疊的性質(zhì)得:,四邊形是矩形,,設(shè),則,在中,,即,解得,即的長為5.【點睛】本題考查了矩形與折疊問題、勾股定理等知識點,熟練掌握矩形與折疊的性質(zhì)是解題關(guān)鍵.3、(1)見解析(2)6,【解析】【分析】(1)作的平分線交AC于點Q,作線段BQ的垂直平分線交AB于點P,由角平分線及中垂線的性質(zhì)可得,,得出,根據(jù)平行線的判定可得,,得出PQ為點P到AC的距離,且滿足條件;(2)由勾股定理可得,過Q作QH⊥AB,垂足為H,根據(jù)角平分線的性質(zhì)可得,依據(jù)全等三角形的判定和性質(zhì)可得,,得出,設(shè),則,利用勾股定理得出,設(shè),則,在中,繼續(xù)利用勾股定理求解即可得.(1)解:作的平分線交AC于點Q,作線段BQ的垂直平分線交AB于點P,∴,,∴,∴,∴,且,滿足條件;(2)解:在中,,過Q作QH⊥AB,垂足為H,∵BQ平分,∴,在與中,,∴,∴,∴,設(shè),則,在中,,即,解得:,∴,設(shè),則,在中,,即,解得:,∴BP的長為,故答案為:6;.【點睛】題目主要考查作角平分線、垂直平分線及其性質(zhì),勾股定理,全等三角形的判定和性質(zhì)等,理解題意,作出圖形,綜合運用這些知識點是解題關(guān)鍵.4、(1),(-4,-6)(2)①點坐標為或;②存在,點坐標為或【解析】【分析】(1)由求出與的交點坐標,進而得到E,C兩點坐標,然后代入,求解的值,進而可得直線CD的函數(shù)表達式;D點為直線AB與直線CD的交點,聯(lián)立方程組求解即可.(2)①分情況求解:情況一,如圖1,當(dāng)P在CD上,設(shè),過B作軸交CD于點M,將代入求解得到點M的坐標,根據(jù),求解的值,進而得到點坐標;情況二,如圖2,當(dāng)P在CE上,設(shè)PB與x軸交于G,根據(jù),解得的值,得到點坐標,設(shè)直線的解析式為,將B,G點坐標代入求解的值,得直線的解析式,P為直線與直線CD的交點,聯(lián)立方程組求解即可.②分情況求解:情況一,如圖3,當(dāng)D落在x軸上(記為)時,作DH⊥y軸于點H,BH=OB=3,由翻折可知,,證明,,可得,PB∥x軸,可得P點縱坐標,代入解析式求解即可得點的坐標;情況二,如圖4,當(dāng)D落在y軸上(記為)時,作PM⊥BD,PN⊥OB,由翻折可知:,證明,有PM=PN,由,,,解得的值,將代入中得的值,即可得到點坐標.(1)解:將代入得∴點B的坐標為將代入得,解得∴點A的坐標為∴由題意知點E,C坐標分別為,將E,C兩點坐標代入得解得:∴直線CD的函數(shù)表達式為;聯(lián)立方程組解得∴D點坐標為;故答案為:;.(2)①解:分情況求解,情況一,如圖1,當(dāng)P在CD上,設(shè),過B作軸交CD于點M∴將代入中得解得∴點M的坐標為由題意得∴解得∴點坐標為;情況二,如圖2,當(dāng)P在CE上,設(shè)PB與x軸交于G由題意知:解得∴點坐標為設(shè)直線的解析式為將B,G點坐標代入得解得∴直線的解析式為聯(lián)立方程組解得∴點P的坐標為;綜上所述,點P的坐標為或.②解:分情況求解:情況一,如圖3,當(dāng)D落在x軸上(記為)時,作DH⊥y軸于點H∴BH=OB=3由翻折可得:,∵°在和中∴∴∵∴∴°∴PB∥x軸∴P點縱坐標為將代入中得解得∴點的坐標為;情況二,如圖4,當(dāng)D落在y軸上(記為)時,作PM⊥BD于M,PN⊥OB于N由翻折可得:在和中∴∴PM=PN∵,,∴解得將代入中得解得∴點坐標為;綜上所述,存在點,且點坐標為或.【點睛】本題考查了一次函數(shù)的解析式,翻折的性質(zhì),全等三角形的判定與性質(zhì),解二元一次方程組.解題的關(guān)鍵在于對知識的靈活運用.5、(1)見解析(2)7【解析】【分析】(1)由AC⊥CE,∠ABC=∠CDE=90°,易證∠DCE=∠A.即可利用“AAS”證明△ABC≌△CDE.(2)由全等三角形的性質(zhì)可知BC=DE=5,CE=13.再在中,利用勾股定理即可求出CD的長,從而可求出DB的長.(1)證明:∵AC⊥CE,∠ABC=∠CDE=90°,∴∠B

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論