考點(diǎn)解析滬科版9年級(jí)下冊(cè)期末試卷含答案詳解(模擬題)_第1頁(yè)
考點(diǎn)解析滬科版9年級(jí)下冊(cè)期末試卷含答案詳解(模擬題)_第2頁(yè)
考點(diǎn)解析滬科版9年級(jí)下冊(cè)期末試卷含答案詳解(模擬題)_第3頁(yè)
考點(diǎn)解析滬科版9年級(jí)下冊(cè)期末試卷含答案詳解(模擬題)_第4頁(yè)
考點(diǎn)解析滬科版9年級(jí)下冊(cè)期末試卷含答案詳解(模擬題)_第5頁(yè)
已閱讀5頁(yè),還剩29頁(yè)未讀 繼續(xù)免費(fèi)閱讀

下載本文檔

版權(quán)說(shuō)明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)

文檔簡(jiǎn)介

滬科版9年級(jí)下冊(cè)期末試卷考試時(shí)間:90分鐘;命題人:教研組考生注意:1、本卷分第I卷(選擇題)和第Ⅱ卷(非選擇題)兩部分,滿分100分,考試時(shí)間90分鐘2、答卷前,考生務(wù)必用0.5毫米黑色簽字筆將自己的姓名、班級(jí)填寫在試卷規(guī)定位置上3、答案必須寫在試卷各個(gè)題目指定區(qū)域內(nèi)相應(yīng)的位置,如需改動(dòng),先劃掉原來(lái)的答案,然后再寫上新的答案;不準(zhǔn)使用涂改液、膠帶紙、修正帶,不按以上要求作答的答案無(wú)效。第I卷(選擇題16分)一、單選題(8小題,每小題2分,共計(jì)16分)1、如圖是由5個(gè)相同的小正方體搭成的幾何體,它的左視圖是().A. B. C. D.2、擲一枚質(zhì)地均勻的骰子,向上一面的點(diǎn)數(shù)大于2且小于5的概率是()A. B. C. D.3、中國(guó)有悠久的金石文化,印信是金石文化的代表之一.南北朝時(shí)期的官員獨(dú)孤信的印信是迄今發(fā)現(xiàn)的中國(guó)古代唯一一枚楷書?。谋砻婢烧叫魏偷冗吶切谓M成(如圖1),可以看成圖2所示的幾何體.從正面看該幾何體得到的平面圖形是()A. B. C. D.4、如圖,AB是的直徑,CD是的弦,且,,,則圖中陰影部分的面積為()A. B. C. D.5、如圖,將一個(gè)棱長(zhǎng)為3的正方體表面涂上顏色,把它分割成棱長(zhǎng)為1的小正方體,將它們?nèi)糠湃胍粋€(gè)不透明盒子中搖勻,隨機(jī)取出一個(gè)小正方體,有三個(gè)面被涂色的概率為()A. B. C. D.6、如圖,在中,,,將繞點(diǎn)A順時(shí)針旋轉(zhuǎn)60°得到,此時(shí)點(diǎn)B的對(duì)應(yīng)點(diǎn)D恰好落在BC邊上,則CD的長(zhǎng)為()A.1 B.2 C.3 D.47、如圖,該幾何體的左視圖是()A. B. C. D.8、下列關(guān)于隨機(jī)事件的概率描述正確的是()A.拋擲一枚質(zhì)地均勻的硬幣出現(xiàn)“正面朝上”的概率為0.5,所以拋擲1000次就一定有500次“正面朝上”B.某種彩票的中獎(jiǎng)率為5%,說(shuō)明買100張彩票有5張會(huì)中獎(jiǎng)C.隨機(jī)事件發(fā)生的概率大于或等于0,小于或等于1D.在相同條件下可以通過(guò)大量重復(fù)實(shí)驗(yàn),用一個(gè)隨機(jī)事件的頻率去估計(jì)概率第Ⅱ卷(非選擇題84分)二、填空題(7小題,每小題2分,共計(jì)14分)1、已知⊙A的半徑為5,圓心A(4,3),坐標(biāo)原點(diǎn)O與⊙A的位置關(guān)系是______.2、在平面直角坐標(biāo)系中,將點(diǎn)繞坐標(biāo)原點(diǎn)順時(shí)針旋轉(zhuǎn)后得到點(diǎn)Q,則點(diǎn)Q的坐標(biāo)是___________.3、為了落實(shí)“雙減”政策,朝陽(yáng)區(qū)一些學(xué)校在課后服務(wù)時(shí)段開(kāi)設(shè)了與冬奧會(huì)項(xiàng)目冰壺有關(guān)的選修課.如圖,在冰壺比賽場(chǎng)地的一端畫有一些同心圓作為營(yíng)壘,其中有兩個(gè)圓的半徑分別約為60cm和180cm,小明擲出一球恰好沿著小圓的切線滑行出界,則該球在大圓內(nèi)滑行的路徑MN的長(zhǎng)度為_(kāi)_____cm.4、如圖,在等腰直角中,已知,將繞點(diǎn)逆時(shí)針旋轉(zhuǎn)60°,得到,連接,若,則________.5、在Rt△ABC中,∠ACB=90°,AC=AB,點(diǎn)E、F分別是邊CA、CB的中點(diǎn),已知點(diǎn)P在線段EF上,聯(lián)結(jié)AP,將線段AP繞點(diǎn)P逆時(shí)針旋轉(zhuǎn)90°得到線段DP,如果點(diǎn)P、D、C在同一直線上,那么tan∠CAP=_______.6、不透明的袋子里裝有一個(gè)黑球,兩個(gè)紅球,這些球除顏色外無(wú)其它差別,從袋子中取出一個(gè)球,不放回,再取出一個(gè)球,記下顏色,兩次摸出的球是一紅—黑的概率是________.7、如圖,在平行四邊形中,,,,以點(diǎn)為圓心,為半徑的圓弧交于點(diǎn),連接,則圖中黑色陰影部分的面積為_(kāi)_______.(結(jié)果保留)三、解答題(7小題,每小題0分,共計(jì)0分)1、在△ABC與△DEF中,∠BAC=∠EDF=90°,且AB=AC,DE=DF.(1)如圖1,若點(diǎn)D與A重合,AC與EF交于P,且∠CAE=30°,CE,求EP的長(zhǎng);(2)如圖2,若點(diǎn)D與C重合,EF與BC交于點(diǎn)M,且BM=CM,連接AE,且∠CAE=∠MCE,求證:AE+MF=CE;(3)如圖3,若點(diǎn)D與A重合,連接BE,且∠ABE∠ABC,連接BF,CE,當(dāng)BF+CE最小時(shí),直接出的值.2、如圖,AB是⊙O的直徑,點(diǎn)C是⊙O上一點(diǎn),連接BC,半徑OD弦BC.(1)求證:弧AD=弧CD;(2)連接AC、BD相交于點(diǎn)F,AC與OD相交于點(diǎn)E,連接CD,若⊙O的半徑為5,BC=6,求CD和EF的長(zhǎng).3、如圖,已知在中,,D、E是BC邊上的點(diǎn),將繞點(diǎn)A旋轉(zhuǎn),得到,連接.(1)當(dāng)時(shí),時(shí),求證:;(2)當(dāng)時(shí),與有怎樣的數(shù)量關(guān)系?請(qǐng)寫出,并說(shuō)明理由.(3)在(2)的結(jié)論下,當(dāng),BD與DE滿足怎樣的數(shù)量關(guān)系時(shí),是等腰直角三角形?(直接寫出結(jié)論,不必證明)4、在太原市創(chuàng)建國(guó)家文明城市的過(guò)程中,東東和南南積極參加志愿者活動(dòng),有下列三個(gè)志愿者工作崗位供他們選擇:(每個(gè)工作崗位僅能讓一個(gè)人工作)①2個(gè)清理類崗位:清理花壇衛(wèi)生死角;清理樓道雜物(分別用,表示);②1個(gè)宣傳類崗位:垃圾分類知識(shí)宣傳(用表示).(1)東東從三個(gè)崗位中隨機(jī)選取一個(gè)報(bào)名,恰好選擇清理類崗位的概率為_(kāi)_______.(2)若東東和南南各隨機(jī)從三個(gè)崗位中選取一個(gè)報(bào)名,請(qǐng)你利用畫樹(shù)狀圖法或列表法求出他們恰好都選擇同一類崗位的概率.5、一個(gè)不透明的口袋中有4個(gè)完全相同的小球,把它們分別標(biāo)號(hào)為1,2,3,4隨機(jī)摸取一個(gè)小球后,不放回,再隨機(jī)摸出一個(gè)小球,分別求下列事件的概率:(1)兩次取出的小球標(biāo)號(hào)和為奇數(shù);(2)兩次取出的小球標(biāo)號(hào)和為偶數(shù).6、如圖所示,是⊙的一條弦,,垂足為,交⊙于點(diǎn),點(diǎn)在⊙上.()若,求的度數(shù).()若,,求的長(zhǎng).7、如圖,已知弓形的長(zhǎng),弓高,(,并經(jīng)過(guò)圓心O).(1)請(qǐng)利用尺規(guī)作圖的方法找到圓心O;(2)求弓形所在的半徑的長(zhǎng).-參考答案-一、單選題1、B【分析】找到從左面看所得到的圖形即可,注意所有的看到的棱都應(yīng)表現(xiàn)在左視圖中.【詳解】從左面看,第一層有2個(gè)正方形,第二層左側(cè)有1個(gè)正方形.故選:B.【點(diǎn)睛】本題考查了三視圖的知識(shí),熟知左視圖是從物體的左面看得到的視圖是解答本題的關(guān)鍵.2、C【分析】根據(jù)骰子各面上的數(shù)字得到向上一面的點(diǎn)數(shù)可能是3或4,利用概率公式計(jì)算即可.【詳解】解:一枚質(zhì)地均勻的骰子共有六個(gè)面,點(diǎn)數(shù)分別為1,2,3,4,5,6,∴點(diǎn)數(shù)大于2且小于5的有3或4,∴向上一面的點(diǎn)數(shù)大于2且小于5的概率是=,故選:C.【點(diǎn)睛】此題考查了求簡(jiǎn)單事件的概率,正確掌握概率的計(jì)算公式是解題的關(guān)鍵.3、D【分析】找到從正面看所得到的圖形即可.【詳解】解:從正面看是一個(gè)正六邊形,里面有2個(gè)矩形,故選D.【點(diǎn)睛】本題靈活考查了三種視圖之間的關(guān)系以及視圖和實(shí)物之間的關(guān)系,同時(shí)還考查了對(duì)圖形的想象力,難度適中.4、C【分析】如圖,連接OC,OD,可知是等邊三角形,,,,計(jì)算求解即可.【詳解】解:如圖連接OC,OD∵∴是等邊三角形∴由題意知,故選C.【點(diǎn)睛】本題考查了扇形的面積,等邊三角形等知識(shí).解題的關(guān)鍵在于用扇形表示陰影面積.5、B【分析】直接根據(jù)題意得出恰有三個(gè)面被涂色的有8個(gè),再利用概率公式求出答案.【詳解】解:由題意可得:小立方體一共有27個(gè),恰有三個(gè)面被涂色的為棱長(zhǎng)為3的正方體頂點(diǎn)處的8個(gè)小正方體;故取得的小正方體恰有三個(gè)面被涂色.的概率為.故選:B.【點(diǎn)睛】此題主要考查了概率公式的應(yīng)用,正確得出三個(gè)面被涂色.小立方體的個(gè)數(shù)是解題關(guān)鍵.6、B【分析】由題意以及旋轉(zhuǎn)的性質(zhì)可得為等邊三角形,則BD=2,故CD=BC-BD=2.【詳解】由題意以及旋轉(zhuǎn)的性質(zhì)知AD=AB,∠BAD=60°∴∠ADB=∠ABD∵∠ADB+∠ABD+∠BAD=180°∴∠ADB=∠ABD=60°故為等邊三角形,即AB=AD=BD=2則CD=BC-BD=4-2=2故選:B.【點(diǎn)睛】本題考查了等邊三角形的判定及性質(zhì),等邊三角形的三邊都相等,三個(gè)內(nèi)角都相等,并且每一個(gè)內(nèi)角都等于,等邊三角形判定的方法有:三邊相等的三角形是等邊三角形(定義);三個(gè)內(nèi)角都相等的三角形是等邊三角形;有一個(gè)內(nèi)角是60度的等腰三角形是等邊三角形;兩個(gè)內(nèi)角為60度的三角形是等邊三角形.7、C【分析】根據(jù)從左邊看得到的圖形是左視圖解答即可.【詳解】解:從左邊看是一個(gè)正方形被水平的分成3部分,中間的兩條分線是虛線,故C正確.故選C.【點(diǎn)睛】本題主要考查了簡(jiǎn)單組合體的三視圖,掌握三視圖的定義成為解答本題的關(guān)鍵.8、D【分析】根據(jù)隨機(jī)事件、必然事件以及不可能事件的定義即可作出判斷.【詳解】解:概率反映的是隨機(jī)性的規(guī)律,但每次試驗(yàn)出現(xiàn)的結(jié)果具有不確定,故選項(xiàng)A、B錯(cuò)誤;隨機(jī)事件發(fā)生的概率大于0,小于1,概率等于1的是必然事件,概率等于0的是不可能事件,故選項(xiàng)C錯(cuò)誤;在相同條件下可以通過(guò)大量重復(fù)實(shí)驗(yàn),用一個(gè)隨機(jī)事件的頻率去估計(jì)概率,故選項(xiàng)D正確;故選:D.【點(diǎn)睛】本題考查了隨機(jī)事件、必然事件以及不可能事件的定義,解決本題需要正確理解必然事件、不可能事件、隨機(jī)事件的概念.必然事件指在一定條件下一定發(fā)生的事件.不可能事件是指在一定條件下,一定不發(fā)生的事件.不確定事件即隨機(jī)事件是指在一定條件下,可能發(fā)生也可能不發(fā)生的事件.二、填空題1、在⊙A上【分析】先根據(jù)兩點(diǎn)間的距離公式計(jì)算出OA,然后根據(jù)點(diǎn)與圓的位置關(guān)系的判定方法判斷點(diǎn)O與⊙A的位置關(guān)系.【詳解】解:∵點(diǎn)A的坐標(biāo)為(4,3),∴OA==5,∵半徑為5,∴OA=r,∴點(diǎn)O在⊙A上.故答案為:在⊙A上.【點(diǎn)睛】本題考查了點(diǎn)與圓的位置關(guān)系:點(diǎn)與圓的位置關(guān)系有3種.設(shè)⊙O的半徑為r,點(diǎn)P到圓心的距離OP=d,當(dāng)點(diǎn)P在圓外?d>r;當(dāng)點(diǎn)P在圓上?d=r;當(dāng)點(diǎn)P在圓內(nèi)?d<r.2、【分析】繞坐標(biāo)原點(diǎn)順時(shí)針旋轉(zhuǎn)即關(guān)于原點(diǎn)中心對(duì)稱,找到關(guān)于原點(diǎn)中心對(duì)稱的點(diǎn)的坐標(biāo)即可,根據(jù)關(guān)于原點(diǎn)對(duì)稱的兩個(gè)點(diǎn),橫坐標(biāo)、縱坐標(biāo)分別互為相反數(shù),即可求解.【詳解】解:將點(diǎn)繞坐標(biāo)原點(diǎn)順時(shí)針旋轉(zhuǎn)后得到點(diǎn)Q,則點(diǎn)Q的坐標(biāo)是故答案為:【點(diǎn)睛】本題考查了求一個(gè)點(diǎn)關(guān)于原點(diǎn)中心對(duì)稱的點(diǎn)的坐標(biāo),掌握關(guān)于原點(diǎn)中心對(duì)稱的點(diǎn)的坐標(biāo)特征是解題的關(guān)鍵.關(guān)于原點(diǎn)對(duì)稱的兩個(gè)點(diǎn),橫坐標(biāo)、縱坐標(biāo)分別互為相反數(shù).3、【分析】如圖,設(shè)小圓的切線MN與小圓相切于點(diǎn)D,與大圓交于M、N,連接OD、OM,根據(jù)切線的性質(zhì)定理和垂徑定理求解即可.【詳解】解:如圖,設(shè)小圓的切線MN與小圓相切于點(diǎn)D,與大圓交于M、N,連接OD、OM,則OD⊥MN,∴MD=DN,在Rt△ODM中,OM=180cm,OD=60cm,∴cm,∴cm,即該球在大圓內(nèi)滑行的路徑MN的長(zhǎng)度為cm,故答案為:.【點(diǎn)睛】本題考查切線的性質(zhì)定理、垂徑定理、勾股定理,熟練掌握切線的性質(zhì)和垂徑定理是解答的關(guān)鍵.4、【分析】如圖連接并延長(zhǎng),過(guò)點(diǎn)作交于點(diǎn),,由題意可知為等邊三角形,,,在中;在中計(jì)算求解即可.【詳解】解:如圖連接并延長(zhǎng),過(guò)點(diǎn)作交于點(diǎn),由題意可知,,為等邊三角形在中在中故答案為:.【點(diǎn)睛】本題考查了旋轉(zhuǎn)的性質(zhì),等邊三角形,勾股定理,含的直角三角形等知識(shí).解題的關(guān)鍵在于做輔助線構(gòu)造直角三角形.5、【分析】①如圖1所示,由題意知,EF為△ABC的中位線,∠EFC=∠ABC=45°,∠PAO=45°,∠PAO=∠OFH,∠POA=∠FOH,∠H=∠APO,在Rt△APC中,EA=EC,有PE=EA=EC,∠EPA=∠EAP=∠BAH,∠H=∠BAH,BH=BA,∠ADP=∠BDC=45°,∠ADB=90°,知BD⊥AH,∠DBA=∠DBC=22.5°,∠ADB=∠ACB=90°,有A,D,C,B四點(diǎn)共圓,∠DAC=∠DBC=22.5°,∠DCA=∠ABD=22.5°,∠DAC=∠DCA=22.5°,知DA=DC,設(shè)AD=a,則DC=AD=a,PD=a=AP,tan∠CAP==計(jì)算求解即可;②如圖2所示,當(dāng)點(diǎn)P在線段CD上時(shí),同理可證:DA=DC,設(shè)AD=a,則CD=AD=a,PD=,PC=a﹣a,tan∠CAP=,計(jì)算求解即可,而情形2滿足要求.【詳解】解:①如圖1,當(dāng)點(diǎn)D在線段PC上時(shí),延長(zhǎng)AD交BC的延長(zhǎng)線于H.∵CE=EA,CF=FB,∴EF∥AB,∴∠EFC=∠ABC=45°,∵∠PAO=45°,∴∠PAO=∠OFH,∵∠POA=∠FOH,∴∠H=∠APO,∵∠APC=90°,EA=EC,∴PE=EA=EC,∴∠EPA=∠EAP=∠BAH,∴∠H=∠BAH,∴BH=BA,∵∠ADP=∠BDC=45°,∴∠ADB=90°,∴BD⊥AH,∴∠DBA=∠DBC=22.5°,∵∠ADB=∠ACB=90°,∴A,D,C,B四點(diǎn)共圓,∠DAC=∠DBC=22.5°,∠DCA=∠ABD=22.5°,∴∠DAC=∠DCA=22.5°,∴DA=DC,設(shè)AD=a,則DC=AD=a,PD=a=AP,∴tan∠CAP===+1;②如圖2中,當(dāng)點(diǎn)P在線段CD上時(shí),同理可證:DA=DC,設(shè)AD=a,則CD=AD=a,PD=∴PC=a﹣a,∴tan∠CAP===,∵點(diǎn)P在線段EF上,∴情形1不滿足條件,情形2滿足條件;故答案為:﹣1.【點(diǎn)睛】本題考查了中位線,等腰三角形的判定與性質(zhì),旋轉(zhuǎn),直角三角形斜邊上中線的性質(zhì),正切函數(shù)等知識(shí)點(diǎn).解題的關(guān)鍵在于表示出正切中線段的長(zhǎng)度.6、【分析】根據(jù)題意列出表格,可得6種等可能結(jié)果,其中一紅—黑的有4種,再利用概率公式,即可求解.【詳解】解:根據(jù)題意列出表格如下:黑球紅球1紅球2黑球紅球1、黑球紅球2、黑球紅球1黑球、紅球1紅球2、紅球1紅球2黑球、紅球2紅球1、紅球2得到6種等可能結(jié)果,其中一紅—黑的有4種,所以兩次摸出的球是一紅—黑的概率是.故答案為:【點(diǎn)睛】本題主要考查了求概率,能夠利用畫樹(shù)狀圖或列表格的方法解答是解題的關(guān)鍵.7、【分析】過(guò)點(diǎn)C作于點(diǎn)H,根據(jù)正弦定義解得CH的長(zhǎng),再由扇形面積公式、三角形的面積公式解題即可.【詳解】解:過(guò)點(diǎn)C作于點(diǎn)H,在平行四邊形中,平行四邊形的面積為:,圖中黑色陰影部分的面積為:,故答案為:.【點(diǎn)睛】本題考查平行四邊形的性質(zhì)、扇形面積等知識(shí),是基礎(chǔ)考點(diǎn),掌握相關(guān)知識(shí)是解題關(guān)鍵.三、解答題1、(1);(2)證明見(jiàn)詳解;(3).【分析】(1)過(guò)點(diǎn)P作PG⊥EC于G,根據(jù)等腰直角三角形得出∠B=∠C=45°,根據(jù)PG⊥EC,可取∠GPC=90°-∠C=45°,可得PG=GC,根據(jù)三角形外角性質(zhì)∠EPC=75°,可求∠EPG=30°,根據(jù)30°直角三角形性質(zhì)得出EP=2EG,根據(jù)勾股定理根據(jù)EC=EG+GC=EG+,可求EG=即可;(2)連結(jié)AE,在CE上截取EJ=AE,連結(jié)AJ,根據(jù)∠MAH=45°=∠HEC,可得點(diǎn)A、M、C、E四點(diǎn)共圓,得出∠AEM=∠ACM=45°=∠HEC,∠AME=∠ACE,可得△AEJ為等腰直角三角形,根據(jù)根據(jù)勾股定理AJ=,得出∠CAE=∠MCE,可證∠JAC=∠JCA,可得AJ=JC=,先證△CHM∽△ECM,再證△AEM≌△HEC(AAS),得出EM=EC,再證△AME≌△MCF(AAS),得出AE=MF即可;(3)分兩種情況,當(dāng)BE在∠ABC的平分線上時(shí),與BE在△ABC外部時(shí),當(dāng)BE在∠ABC的平分線上時(shí),作∠ABC的平分線交AC于O,將△AEC逆時(shí)針旋轉(zhuǎn)90°得到△AFC′,過(guò)點(diǎn)O作OP⊥BC于P,則點(diǎn)E在BO上,有∠ABE=∠ABC,先證B、A、C′三點(diǎn)共線,根據(jù)兩點(diǎn)之交線段最短可得BF+CE=BF+C′F≥BC′,當(dāng)點(diǎn)F在BC′上時(shí),BF+CE最短=BC′,此時(shí)點(diǎn)E在AC上與點(diǎn)O重合,然后利用勾股定理EC=,BF=AB+AF=AC+AF=(1+)AF+AF=(2+)AF在Rt△ABE中,根據(jù)勾股定理,當(dāng)BE在△ABC外部時(shí),∠EBA=,將△EAC逆時(shí)針旋轉(zhuǎn)90°得到△FAC′,先證B、A、C′三點(diǎn)共線,根據(jù)兩點(diǎn)之間線段最短可得BF+CE=BF+FC′≥BC′,當(dāng)點(diǎn)F在BC′上時(shí),BF+CE最短=BC′,再證EF=BF,然后根據(jù)勾股定理BF=CE=AE+AC=AF+AB=在Rt△EAB中,根據(jù)勾股定理即可.【詳解】解:(1)過(guò)點(diǎn)P作PG⊥EC于G,∵∠BAC=90°,AB=AC,∴∠B=∠C=45°,∵PG⊥EC,∴∠GPC=90°-∠C=45°,∴PG=GC,∵∠EAC=30°,∠EDF=90°,DE=DF,∴∠DEF=∠F=45°,∴∠EPC=∠AEF+∠EAC=30°+45°=75°,∴∠EPG=∠EPC-∠GPC=75°-45°=30°,∴EP=2EG,在Rt△EPG中,根據(jù)勾股定理∴GC=PG=∴EC=EG+GC=EG+,∴EG=,∴EP=2EG=;(2)連結(jié)AE,在CE上截取EJ=AE,連結(jié)AJ,∵BM=CM,AB=AC,∠BAC=90°,∴AM⊥BC,AM=BM=CM,∴∠MAH=45°=∠HEC,∴點(diǎn)A、M、C、E四點(diǎn)共圓,∴∠AEM=∠ACM=45°=∠HEC,∠AME=∠ACE,∴∠AEJ=∠AEM+∠HEC=45°+45°=90°,∵AE=JE,∴∠EAJ=∠EJA=45°,在Rt△AEJ中,根據(jù)勾股定理AJ=,∵∠CAE=∠MCE,∴∠JAC+45°=∠JCA+45°,∴∠JAC=∠JCA,∴AJ=JC=,∵∠HCM=∠CEM=45°,∠HMC=∠CME,∴△CHM∽△ECM,∴∠MHC=∠MCE,∵∠EHA=∠MHC=∠MCE=∠EAH∴AE=HE,在△AEM和△HEC中,,∴△AEM≌△HEC(AAS),∴EM=EC,∴∠EMC=∠ECM,∵∠AME+∠EMC=∠ECM+∠MCF=90°,∴∠AME=∠MCF,在△AME和△MCF中,∴△AME≌△MCF(AAS),∴AE=MF,∴CE=EJ+JC=MF+AE;(3)分兩種情況,當(dāng)BE在∠ABC的平分線上時(shí),與BE在△ABC外部時(shí),當(dāng)當(dāng)BE在∠ABC的平分線上時(shí),作∠ABC的平分線交AC于O,將△AEC逆時(shí)針旋轉(zhuǎn)90°得到△AFC′,過(guò)點(diǎn)O作OP⊥BC于P,則點(diǎn)E在BO上,有∠ABE=∠ABC,∵△AEC≌△AFC′,∴∠CAE=∠C′AF,∵∠BAC′=∠BAC+∠OAC′=∠BAC+∠FAC′+∠OAF=∠BAC+∠EAC+∠OAF=∠BAC+∠EAF=180°,∴B、A、C′三點(diǎn)共線,∴BF+CE=BF+C′F≥BC′,當(dāng)點(diǎn)F在BC′上時(shí),BF+CE最短=BC′,此時(shí)點(diǎn)E在AC上與點(diǎn)O重合,∵BO為∠ABC的平分線,OA⊥AB,OP⊥BC,∴OP=AO=AF,∵AB=AC,∠BAC=90°,∴∠ABC=∠C=45°,∴∠PEC=180°-∠EPC-∠C=45°,∴PC=EP=AF,∴EC=,∴AC=AE+EC=AF+=(1+)AF,∴BF=AB+AF=AC+AF=(1+)AF+AF=(2+)AF,在Rt△ABE中,根據(jù)勾股定理,∴;當(dāng)BE在△ABC外部時(shí),∠EBA=,將△EAC逆時(shí)針旋轉(zhuǎn)90°得到△FAC′,則△EAC≌△FAC′,∴AC′=AC,EC=FC′,∠EAC=∠FAC′,∵∠FEB+∠EAC=360°-∠EAF-∠BAC=360°-90°-90°=180°,∴∠FAB+∠FAC′=∠FAB+∠EAC=180°,∴B、A、C′三點(diǎn)共線,∴BF+CE=BF+FC′≥BC′,∴點(diǎn)F在BC′上時(shí),BF+CE最短=BC′,∵∠EBA=,∠EFA=45°,∴∠EFA=∠EBA+∠BEF=45°,∴∠BEF=45°-∠EBA=45°-22.5°=22.5°,∴EF=BF,在Rt△EAF中,,∴BF=,∴AB=BF+AF=+AF=,∴CE=AE+AC=AF+AB=,在Rt△EAB中,根據(jù)勾股定理,∴.綜合.【點(diǎn)睛】本題考查等腰直角三角形性質(zhì),三角形外角性質(zhì),30°直角三角形性質(zhì),勾股定理,三角形全等判定與性質(zhì),四點(diǎn)共圓,同弧所對(duì)圓周角性質(zhì),三角形相似判定與性質(zhì),圖形旋轉(zhuǎn)性質(zhì),最短路徑問(wèn)題,角平分線性質(zhì),分類討論思想,本題難度大,應(yīng)用知識(shí)多,是中考?jí)狠S題,利用輔助線作出正確圖形是解題關(guān)鍵.2、(1)見(jiàn)解析;(2)CD=,EF=1.【分析】(1)連接OC,根據(jù)圓的性質(zhì),得到OB=OC;根據(jù)等腰三角形的性質(zhì),得到;根據(jù)平行線的性質(zhì),得到;在同圓和等圓中,根據(jù)相等的圓心解所對(duì)的弧等即得證.(2)根據(jù)直徑所對(duì)的圓周角是直角求出∠ACB=90°,根據(jù)平行線的性質(zhì)求得∠AEO=∠ACB=90°,利用勾股定理求出AC=8,根據(jù)垂徑定理求得EC=AE=4,根據(jù)中位線定理求出OE,在Rt△CDE中,根據(jù)勾股定理求出CD,因?yàn)?,所以△EDF∽△BCF,最后根據(jù)似的性質(zhì),列方程求解即可.【詳解】(1)解:連結(jié)OC.∵∴∠1=∠B∠2=∠C∵OB=OC∴∠B=∠C∴∠1=∠2∴弧AD=弧CD(2)∵AB是的直徑∴∠ACB=90°∵∴∠AEO=∠ACB=90°Rt△ABC中,∠ACB=90°,∵BC=6,AB=10∴AC=8∵半徑OD⊥AC于E∴EC=AE=4OE=∴ED=2由勾股定理得,CD=∵∴△EDF∽△CBF∴設(shè)EF=x,則FC=4-x∴EF=1,經(jīng)檢驗(yàn)符合題意.【點(diǎn)睛】本題考查了圓的綜合題,圓的有關(guān)性質(zhì):圓的半徑相等;同圓或等圓中,相等的圓心角所對(duì)的弧等;直徑所對(duì)的圓周角是直角;垂徑定理;平行線的性質(zhì),勾股定理,三角形中位線定理,三角形相似的判定和性質(zhì)等知識(shí),正確理解圓的相關(guān)性質(zhì)是解題的關(guān)鍵.3、(1)見(jiàn)解析;(2)∠DAE=∠BAC,見(jiàn)解析;(3)DE=BD,見(jiàn)解析【分析】(1)根據(jù)旋轉(zhuǎn)的性質(zhì)可得AD=AD′,∠CAD′=∠BAD,然后求出∠D′AE=60°,從而得到∠DAE=∠D′AE,再利用“邊角邊”證明△ADE和△AD′E全等,根據(jù)全等三角形對(duì)應(yīng)邊相等證明即可;(2)根據(jù)旋轉(zhuǎn)的性質(zhì)可得AD=AD′,再利用“邊邊邊”證明△ADE和△AD′E全等,然后根據(jù)全等三角形對(duì)應(yīng)角相等求出∠DAE=∠D′AE,然后求出∠BAD+∠CAE=∠DAE,從而得解;(3)求出∠D′CE=90°,然后根據(jù)等腰直角三角形斜邊等于直角邊的倍可得D′E=CD′,再根據(jù)旋轉(zhuǎn)的性質(zhì)解答即可.【詳解】(1)證明:∵△ABD繞點(diǎn)A旋轉(zhuǎn)得到△ACD′,∴AD=AD′,∠CAD′=∠BAD,∵∠BAC=120°,∠DAE=60°,∴∠D′AE=∠CAD′+∠CAE=∠BAD+∠CAE=∠BAC?∠DAE=120°?60°=60°,∴∠DAE=∠D′AE,在△ADE和△AD′E中,,∴△ADE≌△AD′E(SAS),∴DE=D′E;(2)解:∠DAE=∠BAC.理由如下:在△ADE和△AD′E中,,∴△ADE≌△AD′E(SSS),∴∠DAE=∠D′AE,∴∠BAD+∠CAE=∠CAD′+∠CAE=∠D′AE=∠DAE,∴∠DAE=∠BAC;(3)解:∵∠BAC=90°,AB=AC,∴∠B=∠ACB=∠ACD′=45°,∴∠D′CE=45°+45°=90°,∵△D′EC是等腰直角三角形,∴D′E=CD′,由(2)DE=D′E,∵△ABD繞點(diǎn)A旋轉(zhuǎn)得到△ACD′,∴BD=

溫馨提示

  • 1. 本站所有資源如無(wú)特殊說(shuō)明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒(méi)有圖紙預(yù)覽就沒(méi)有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。

評(píng)論

0/150

提交評(píng)論