版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領
文檔簡介
2026屆新疆克拉瑪依市第十三中學數(shù)學高三第一學期期末考試模擬試題考生請注意:1.答題前請將考場、試室號、座位號、考生號、姓名寫在試卷密封線內,不得在試卷上作任何標記。2.第一部分選擇題每小題選出答案后,需將答案寫在試卷指定的括號內,第二部分非選擇題答案寫在試卷題目指定的位置上。3.考生必須保證答題卡的整潔??荚嚱Y束后,請將本試卷和答題卡一并交回。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.已知x,,則“”是“”的()A.充分而不必要條件 B.必要而不充分條件C.充分必要條件 D.既不充分也不必要條件2.雙曲線的漸近線方程是()A. B. C. D.3.如圖所示,網(wǎng)格紙上小正方形的邊長為1,粗線畫出的是某幾何體的三視圖,則該幾何體的體積是()A. B. C. D.84.某三棱錐的三視圖如圖所示,則該三棱錐的體積為A. B. C.2 D.5.設i是虛數(shù)單位,若復數(shù)()是純虛數(shù),則m的值為()A. B. C.1 D.36.某裝飾公司制作一種扇形板狀裝飾品,其圓心角為120°,并在扇形弧上正面等距安裝7個發(fā)彩色光的小燈泡且在背面用導線相連(弧的兩端各一個,導線接頭忽略不計),已知扇形的半徑為30厘米,則連接導線最小大致需要的長度為()A.58厘米 B.63厘米 C.69厘米 D.76厘米7.胡夫金字塔是底面為正方形的錐體,四個側面都是相同的等腰三角形.研究發(fā)現(xiàn),該金字塔底面周長除以倍的塔高,恰好為祖沖之發(fā)現(xiàn)的密率.設胡夫金字塔的高為,假如對胡夫金字塔進行亮化,沿其側棱和底邊布設單條燈帶,則需要燈帶的總長度約為A. B.C. D.8.下列說法正確的是()A.“若,則”的否命題是“若,則”B.在中,“”是“”成立的必要不充分條件C.“若,則”是真命題D.存在,使得成立9.正項等比數(shù)列中,,且與的等差中項為4,則的公比是()A.1 B.2 C. D.10.高三珠海一模中,經(jīng)抽樣分析,全市理科數(shù)學成績X近似服從正態(tài)分布,且.從中隨機抽取參加此次考試的學生500名,估計理科數(shù)學成績不低于110分的學生人數(shù)約為()A.40 B.60 C.80 D.10011.設復數(shù)滿足,在復平面內對應的點的坐標為則()A. B.C. D.12.要得到函數(shù)的圖象,只需將函數(shù)的圖象A.向左平移個單位長度B.向右平移個單位長度C.向左平移個單位長度D.向右平移個單位長度二、填空題:本題共4小題,每小題5分,共20分。13.設,滿足約束條件,則的最大值為______.14.已知半徑為4的球面上有兩點A,B,AB=42,球心為O,若球面上的動點C滿足二面角C-AB-O的大小為60°15.已知非零向量,滿足,且,則與的夾角為____________.16.若一組樣本數(shù)據(jù)7,9,,8,10的平均數(shù)為9,則該組樣本數(shù)據(jù)的方差為______.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17.(12分)高鐵和航空的飛速發(fā)展不僅方便了人們的出行,更帶動了我國經(jīng)濟的巨大發(fā)展.據(jù)統(tǒng)計,在2018年這一年內從市到市乘坐高鐵或飛機出行的成年人約為萬人次.為了解乘客出行的滿意度,現(xiàn)從中隨機抽取人次作為樣本,得到下表(單位:人次):滿意度老年人中年人青年人乘坐高鐵乘坐飛機乘坐高鐵乘坐飛機乘坐高鐵乘坐飛機10分(滿意)1212022015分(一般)2362490分(不滿意)106344(1)在樣本中任取個,求這個出行人恰好不是青年人的概率;(2)在2018年從市到市乘坐高鐵的所有成年人中,隨機選取人次,記其中老年人出行的人次為.以頻率作為概率,求的分布列和數(shù)學期望;(3)如果甲將要從市出發(fā)到市,那么根據(jù)表格中的數(shù)據(jù),你建議甲是乘坐高鐵還是飛機?并說明理由.18.(12分)設,函數(shù),其中為自然對數(shù)的底數(shù).(1)設函數(shù).①若,試判斷函數(shù)與的圖像在區(qū)間上是否有交點;②求證:對任意的,直線都不是的切線;(2)設函數(shù),試判斷函數(shù)是否存在極小值,若存在,求出的取值范圍;若不存在,請說明理由.19.(12分)圖1是由矩形ADEB,Rt△ABC和菱形BFGC組成的一個平面圖形,其中AB=1,BE=BF=2,∠FBC=60°,將其沿AB,BC折起使得BE與BF重合,連結DG,如圖2.(1)證明:圖2中的A,C,G,D四點共面,且平面ABC⊥平面BCGE;(2)求圖2中的二面角B?CG?A的大小.20.(12分)已知在中,內角所對的邊分別為,若,,且.(1)求的值;(2)求的面積.21.(12分)已知集合,.(1)若,則;(2)若,求實數(shù)的取值范圍.22.(10分)已知函數(shù).(1)若函數(shù)在上單調遞減,求實數(shù)的取值范圍;(2)若,求的最大值.
參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.D【解析】
,不能得到,成立也不能推出,即可得到答案.【詳解】因為x,,當時,不妨取,,故時,不成立,當時,不妨取,則不成立,綜上可知,“”是“”的既不充分也不必要條件,故選:D本題主要考查了充分條件,必要條件的判定,屬于容易題.2.C【解析】
根據(jù)雙曲線的標準方程即可得出該雙曲線的漸近線方程.【詳解】由題意可知,雙曲線的漸近線方程是.故選:C.本題考查雙曲線的漸近線方程的求法,是基礎題,解題時要認真審題,注意雙曲線的簡單性質的合理運用.3.A【解析】
由三視圖還原出原幾何體,得出幾何體的結構特征,然后計算體積.【詳解】由三視圖知原幾何體是一個四棱錐,四棱錐底面是邊長為2的正方形,高為2,直觀圖如圖所示,.故選:A.本題考查三視圖,考查棱錐的體積公式,掌握基本幾何體的三視圖是解題關鍵.4.A【解析】由給定的三視圖可知,該幾何體表示一個底面為一個直角三角形,且兩直角邊分別為和,所以底面面積為高為的三棱錐,所以三棱錐的體積為,故選A.5.A【解析】
根據(jù)復數(shù)除法運算化簡,結合純虛數(shù)定義即可求得m的值.【詳解】由復數(shù)的除法運算化簡可得,因為是純虛數(shù),所以,∴,故選:A.本題考查了復數(shù)的概念和除法運算,屬于基礎題.6.B【解析】
由于實際問題中扇形弧長較小,可將導線的長視為扇形弧長,利用弧長公式計算即可.【詳解】因為弧長比較短的情況下分成6等分,所以每部分的弦長和弧長相差很小,可以用弧長近似代替弦長,故導線長度約為63(厘米).故選:B.本題主要考查了扇形弧長的計算,屬于容易題.7.D【解析】
設胡夫金字塔的底面邊長為,由題可得,所以,該金字塔的側棱長為,所以需要燈帶的總長度約為,故選D.8.C【解析】
A:否命題既否條件又否結論,故A錯.B:由正弦定理和邊角關系可判斷B錯.C:可判斷其逆否命題的真假,C正確.D:根據(jù)冪函數(shù)的性質判斷D錯.【詳解】解:A:“若,則”的否命題是“若,則”,故A錯.B:在中,,故“”是“”成立的必要充分條件,故B錯.C:“若,則”“若,則”,故C正確.D:由冪函數(shù)在遞減,故D錯.故選:C考查判斷命題的真假,是基礎題.9.D【解析】
設等比數(shù)列的公比為q,,運用等比數(shù)列的性質和通項公式,以及等差數(shù)列的中項性質,解方程可得公比q.【詳解】由題意,正項等比數(shù)列中,,可得,即,與的等差中項為4,即,設公比為q,則,則負的舍去,故選D.本題主要考查了等差數(shù)列的中項性質和等比數(shù)列的通項公式的應用,其中解答中熟記等比數(shù)列通項公式,合理利用等比數(shù)列的性質是解答的關鍵,著重考查了方程思想和運算能力,屬于基礎題.10.D【解析】
由正態(tài)分布的性質,根據(jù)題意,得到,求出概率,再由題中數(shù)據(jù),即可求出結果.【詳解】由題意,成績X近似服從正態(tài)分布,則正態(tài)分布曲線的對稱軸為,根據(jù)正態(tài)分布曲線的對稱性,求得,所以該市某校有500人中,估計該校數(shù)學成績不低于110分的人數(shù)為人,故選:.本題考查正態(tài)分布的圖象和性質,考查學生分析問題的能力,難度容易.11.B【解析】
根據(jù)共軛復數(shù)定義及復數(shù)模的求法,代入化簡即可求解.【詳解】在復平面內對應的點的坐標為,則,,∵,代入可得,解得.故選:B.本題考查復數(shù)對應點坐標的幾何意義,復數(shù)模的求法及共軛復數(shù)的概念,屬于基礎題.12.D【解析】
先將化為,根據(jù)函數(shù)圖像的平移原則,即可得出結果.【詳解】因為,所以只需將的圖象向右平移個單位.本題主要考查三角函數(shù)的平移,熟記函數(shù)平移原則即可,屬于基礎題型.二、填空題:本題共4小題,每小題5分,共20分。13.29【解析】
由約束條件作出可行域,化目標函數(shù)為以原點為圓心的圓,數(shù)形結合得到最優(yōu)解,聯(lián)立方程組求得最優(yōu)解的坐標,代入目標函數(shù)得答案.【詳解】由約束條件作出可行域如圖:聯(lián)立,解得,目標函數(shù)是以原點為圓心,以為半徑的圓,由圖可知,此圓經(jīng)過點A時,半徑最大,此時也最大,最大值為.所以本題答案為29.線性規(guī)劃問題,首先明確可行域對應的是封閉區(qū)域還是開放區(qū)域、分界線是實線還是虛線,其次確定目標函數(shù)的幾何意義,是求直線的截距、兩點間距離的平方、直線的斜率、還是點到直線的距離等等,最后結合圖形確定目標函數(shù)最值取法、值域范圍.14.4【解析】
設△ABC所在截面圓的圓心為O1,AB中點為D,連接OD,易知∠ODO1即為二面角C-AB-O的平面角,可求出OD,?O1D及OO1,然后可判斷出四面體OABC外接球的球心E在直線OO1上,在【詳解】設△ABC所在截面圓的圓心為O1,AB中點為D,連接OD,OA=OB,所以,OD⊥AB,同理O1D⊥AB,所以,∠ODO1即為二面角∠ODO因為OA=OB=4,?AB=42,所以△OAB在Rt△ODO1中,由cos60o=O1D因為O1到A、B、C三的距離相等,所以,四面體OABC外接球的球心E在直線OO設四面體OABC外接球半徑為R,在Rt△O1由勾股定理可得:O1B2+O本題考查了三棱錐的外接球問題,考查了學生的空間想象能力、邏輯推理能力及計算求解能力,屬于中檔題.15.(或寫成)【解析】
設與的夾角為,通過,可得,化簡整理可求出,從而得到答案.【詳解】設與的夾角為可得,故,將代入可得得到,于是與的夾角為.故答案為:.本題主要考查向量的數(shù)量積運算,向量垂直轉化為數(shù)量積為0是解決本題的關鍵,意在考查學生的轉化能力,分析能力及計算能力.16.1【解析】
根據(jù)題意,由平均數(shù)公式可得,解得的值,進而由方差公式計算,可得答案.【詳解】根據(jù)題意,數(shù)據(jù)7,9,,8,10的平均數(shù)為9,則,解得:,則其方差.故答案為:1.本題考平均數(shù)、方差的計算,考查運算求解能力,求解時注意求出的值,屬于基礎題.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17.(1)(2)分布列見解析,數(shù)學期望(3)建議甲乘坐高鐵從市到市.見解析【解析】
(1)根據(jù)分層抽樣的特征可以得知,樣本中出行的老年人、中年人、青年人人次分別為,,,即可按照古典概型的概率計算公式計算得出;(2)依題意可知服從二項分布,先計算出隨機選取人次,此人為老年人概率是,所以,即,即可求出的分布列和數(shù)學期望;(3)可以計算滿意度均值來比較乘坐高鐵還是飛機.【詳解】(1)設事件:“在樣本中任取個,這個出行人恰好不是青年人”為,由表可得:樣本中出行的老年人、中年人、青年人人次分別為,,,所以在樣本中任取個,這個出行人恰好不是青年人的概率.(2)由題意,的所有可能取值為:因為在2018年從市到市乘坐高鐵的所有成年人中,隨機選取人次,此人為老年人概率是,所以,,,所以隨機變量的分布列為:故.(3)答案不唯一,言之有理即可.如可以從滿意度的均值來分析問題,參考答案如下:由表可知,乘坐高鐵的人滿意度均值為:乘坐飛機的人滿意度均值為:因為,所以建議甲乘坐高鐵從市到市.本題主要考查了分層抽樣的應用、古典概型的概率計算、以及離散型隨機變量的分布列和期望的計算,解題關鍵是對題意的理解,概率類型的判斷,屬于中檔題.18.(1)①函數(shù)與的圖象在區(qū)間上有交點;②證明見解析;(2)且;【解析】
(1)①令,結合函數(shù)零點的判定定理判斷即可;②設切點橫坐標為,求出切線方程,得到,根據(jù)函數(shù)的單調性判斷即可;(2)求出的解析式,通過討論的范圍,求出函數(shù)的單調區(qū)間,確定的范圍即可.【詳解】解:(1)①當時,函數(shù),令,,則,,故,又函數(shù)在區(qū)間上的圖象是不間斷曲線,故函數(shù)在區(qū)間上有零點,故函數(shù)與的圖象在區(qū)間上有交點;②證明:假設存在,使得直線是曲線的切線,切點橫坐標為,且,則切線在點切線方程為,即,從而,且,消去,得,故滿足等式,令,所以,故函數(shù)在和上單調遞增,又函數(shù)在時,故方程有唯一解,又,故不存在,即證;(2)由得,,,令,則,,當時,遞減,故當時,,遞增,當時,,遞減,故在處取得極大值,不合題意;時,則在遞減,在,遞增,①當時,,故在遞減,可得當時,,當時,,,易證,令,,令,故,則,故在遞增,則,即時,,故在,內存在,使得,故在,上遞減,在,遞增,故在處取得極小值.②由(1)知,,故在遞減,在遞增,故時,,遞增,不合題意;③當時,,當,時,,遞減,當時,,遞增,故在處取極小值,符合題意,綜上,實數(shù)的范圍是且.本題考查了函數(shù)的單調性,最值問題,考查導數(shù)的應用以及分類討論思想,轉化思想,屬于難題.19.(1)見詳解;(2).【解析】
(1)因為折紙和粘合不改變矩形,和菱形內部的夾角,所以,依然成立,又因和粘在一起,所以得證.因為是平面垂線,所以易證.(2)在圖中找到對應的平面角,再求此平面角即可.于是考慮關于的垂線,發(fā)現(xiàn)此垂足與的連線也垂直于.按照此思路即證.【詳解】(1)證:,,又因為和粘在一起.,A,C,G,D四點共面.又.平面BCGE,平面ABC,平面ABC平面BCGE,得證.(2)過B作延長線于H,連結AH,因為AB平面BCGE,所以而又,故平面,所以.又因為所以是二面角的平面角,而在中,又因為故,所以.而在中,,即二面角的度數(shù)為.很新穎的立體幾何考題.首先是多面體粘合問題,考查考生在粘合過程中哪些量是不變的.再者粘合后的多面體不是直棱柱,建系的向量解法在本題中略顯麻煩,突出考查幾何方法.最后將求二面角轉化為求二面角的平面角問題考查考生的空間想象能力.20.(1);(2)【解析】
(1)將代入等式,結合正弦定理將邊化為角,再將及代入,即可求得的值;(2)根據(jù)(1)中的值可求得和,進而可得,由三角形面積公式即可求解.【詳解】(1)
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經(jīng)權益所有人同意不得將文件中的內容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
- 6. 下載文件中如有侵權或不適當內容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 外墻保溫材料性能檢測方案
- 防腐蝕涂裝系統(tǒng)選擇方案
- 防腐蝕涂層剝落檢測方案
- 2026年危機公關技巧企業(yè)形象維護與輿情應對策略題庫
- 物流協(xié)同發(fā)展與供應鏈新保障
- 2026年生物科技前沿技術與研發(fā)應用題目
- 2026年建筑設計與結構原理分析題及答案
- 2026年金融投資分析師考試題庫
- 2026年電氣工程設計與安裝技術試題庫
- 2026年教育心理學學生心理問題與教育策略題庫
- 風電項目質量管理
- 靜脈輸液操作規(guī)范與并發(fā)癥預防指南
- 臨床正確標本采集規(guī)范
- 福建省福州市福清市2024-2025學年二年級上學期期末考試語文試卷
- 2025年CAR-NK細胞治療臨床前數(shù)據(jù)
- 班團活動設計
- 基金通道業(yè)務合同協(xié)議
- 黨參對人體各系統(tǒng)作用的現(xiàn)代藥理研究進展
- 交通銀行理財合同范本
- 林業(yè)結構化面試題庫及答案
- 肺結節(jié)的影像學表現(xiàn)
評論
0/150
提交評論