版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報或認(rèn)領(lǐng)
文檔簡介
人教版8年級數(shù)學(xué)下冊《平行四邊形》達(dá)標(biāo)測試考試時間:90分鐘;命題人:教研組考生注意:1、本卷分第I卷(選擇題)和第Ⅱ卷(非選擇題)兩部分,滿分100分,考試時間90分鐘2、答卷前,考生務(wù)必用0.5毫米黑色簽字筆將自己的姓名、班級填寫在試卷規(guī)定位置上3、答案必須寫在試卷各個題目指定區(qū)域內(nèi)相應(yīng)的位置,如需改動,先劃掉原來的答案,然后再寫上新的答案;不準(zhǔn)使用涂改液、膠帶紙、修正帶,不按以上要求作答的答案無效。第I卷(選擇題20分)一、單選題(5小題,每小題4分,共計20分)1、勾股定理是人類早期發(fā)現(xiàn)并證明的重要數(shù)學(xué)定理之一,是數(shù)形結(jié)合的重要紐帶.?dāng)?shù)學(xué)家歐幾里得利用如圖驗證了勾股定理:以直角三角形ABC的三條邊為邊長向外作正方形ACHI,正方形ABED,正方形BCGF,連接BI,CD,過點C作CJ⊥DE于點J,交AB于點K.設(shè)正方形ACHI的面積為S1,正方形BCGF的面積為S2,長方形AKJD的面積為S3,長方形KJEB的面積為S4,下列結(jié)論:①BI=CD;②2S△ACD=S1;③S1+S4=S2+S3;④+=.其中正確的結(jié)論有()A.1個 B.2個 C.3個 D.4個2、在□ABCD中,AC=24,BD=38,AB=m,則m的取值范圍是()A.24<m<39 B.14<m<62 C.7<m<31 D.7<m<123、如圖,四邊形和四邊形都是矩形.若,則等于()A. B. C. D.4、在銳角△ABC中,∠BAC=60°,BN、CM為高,P為BC的中點,連接MN、MP、NP,則結(jié)論:①NP=MP;②AN:AB=AM:AC;③BN=2AN;④當(dāng)∠ABC=60°時,MN∥BC,一定正確的有()A.①②③ B.②③④ C.①②④ D.①④5、直角三角形的兩條直角邊分別為5和12,那么這個三角形的斜邊上的中線長為()A.6 B.6.5 C.10 D.13第Ⅱ卷(非選擇題80分)二、填空題(5小題,每小題6分,共計30分)1、如圖,在正方形ABCD中,AB=4,E為對角線AC上與A,C不重合的一個動點,過點E作EF⊥AB于點F,EG⊥BC于點G,連接DE,F(xiàn)G,下列結(jié)論:①DE=FG;②DE⊥FG;③∠BFG=∠ADE;④FG的最小值為3.其中正確結(jié)論的序號為__.2、一個三角形三邊長之比為4∶5∶6,三邊中點連線組成的三角形的周長為30cm,則原三角形最大邊長為_________cm.3、如圖,將n個邊長都為1的正方形按如圖所示擺放,點A1,A2,…,An分別是正方形的中心,則n個正方形重疊形成的重疊部分的面積和為_____.4、正方形ABCD的邊長為4,則圖中陰影部分的面積為_____.5、如圖,將矩形ABCD折疊,使點C與點A重合,折痕為EF.若AF=5,BF=3,則AC的長為_____.三、解答題(5小題,每小題10分,共計50分)1、如圖,△ABC為等邊三角形,點D為線段BC上一點,將線段AD以點A為旋轉(zhuǎn)中心順時針旋轉(zhuǎn)60°得到線段AE,連接BE,點D關(guān)于直線BE的對稱點為F,BE與DF交于點G,連接DE,EF.(1)求證:∠BDF=30°(2)若∠EFD=45°,AC=+1,求BD的長;(3)如圖2,在(2)條件下,以點D為頂點作等腰直角△DMN,其中DN=MN=,連接FM,點O為FM的中點,當(dāng)△DMN繞點D旋轉(zhuǎn)時,求證:EO的最大值等于BC.2、如圖,在平行四邊形中,,..點在上由點向點出發(fā),速度為每秒;點在邊上,同時由點向點運動,速度為每秒.當(dāng)點運動到點時,點,同時停止運動.連接,設(shè)運動時間為秒.(1)當(dāng)為何值時,四邊形為平行四邊形?(2)設(shè)四邊形的面積為,求與之間的函數(shù)關(guān)系式.(3)當(dāng)為何值時,四邊形的面積是四邊形的面積的四分之三?求出此時的度數(shù).(4)連接,是否存在某一時刻,使為等腰三角形?若存在,請求出此刻的值;若不存在,請說明理由.3、如圖,是的中位線,延長到,使,連接.求證:.
4、如圖,的對角線與相交于點O,過點B作BPAC,過點C作CPBD,與相交于點P.
(1)試判斷四邊形的形狀,并說明理由;(2)若將改為矩形,且,其他條件不變,求四邊形的面積;(3)要得到矩形,應(yīng)滿足的條件是_________(填上一個即可).5、如圖,將長方形ABCD沿著對角線BD折疊,使點C落在C′處,BC′交AD于點E.(1)試判斷△BDE的形狀,并說明理由;(2)若AB=6,BC=18,求△BDE的面積.-參考答案-一、單選題1、C【解析】【分析】根據(jù)SAS證△ABI≌△ADC即可得證①正確,過點B作BM⊥IA,交IA的延長線于點M,根據(jù)邊的關(guān)系得出S△ABI=S1,即可得出②正確,過點C作CN⊥DA交DA的延長線于點N,證S1=S3即可得證③正確,利用勾股定理可得出S1+S2=S3+S4,即能判斷④不正確.【詳解】解:①∵四邊形ACHI和四邊形ABED都是正方形,∴AI=AC,AB=AD,∠IAC=∠BAD=90°,∴∠IAC+∠CAB=∠BAD+∠CAB,即∠IAB=∠CAD,在△ABI和△ADC中,,∴△ABI≌△ADC(SAS),∴BI=CD,故①正確;②過點B作BM⊥IA,交IA的延長線于點M,∴∠BMA=90°,∵四邊形ACHI是正方形,∴AI=AC,∠IAC=90°,S1=AC2,∴∠CAM=90°,又∵∠ACB=90°,∴∠ACB=∠CAM=∠BMA=90°,∴四邊形AMBC是矩形,∴BM=AC,∵S△ABI=AI?BM=AI?AC=AC2=S1,由①知△ABI≌△ADC,∴S△ACD=S△ABI=S1,即2S△ACD=S1,故②正確;③過點C作CN⊥DA交DA的延長線于點N,∴∠CNA=90°,∵四邊形AKJD是矩形,∴∠KAD=∠AKJ=90°,S3=AD?AK,∴∠NAK=∠AKC=90°,∴∠CNA=∠NAK=∠AKC=90°,∴四邊形AKCN是矩形,∴CN=AK,∴S△ACD=AD?CN=AD?AK=S3,即2S△ACD=S3,由②知2S△ACD=S1,∴S1=S3,在Rt△ACB中,AB2=BC2+AC2,∴S3+S4=S1+S2,又∵S1=S3,∴S1+S4=S2+S3,即③正確;④在Rt△ACB中,BC2+AC2=AB2,∴S3+S4=S1+S2,∴,故④錯誤;綜上,共有3個正確的結(jié)論,故選:C.【點睛】本題主要考查勾股定理,正方形的性質(zhì),矩形性質(zhì),全等三角形的判定和性質(zhì)等知識,熟練掌握勾股定理和全等三角形的判定和性質(zhì)是解題的關(guān)鍵.2、C【解析】【分析】作出平行四邊形,根據(jù)平行四邊形的性質(zhì)可得,,然后在中,利用三角形三邊的關(guān)系即可確定m的取值范圍.【詳解】解:如圖所示:∵四邊形ABCD為平行四邊形,∴,,在中,,∴,即,故選:C.【點睛】題目主要考查平行四邊形的性質(zhì)及三角形三邊的關(guān)系,熟練掌握平行四邊形的性質(zhì)及三角形三邊關(guān)系是解題關(guān)鍵.3、A【解析】【分析】由題意可得∠AGF=∠DAB=90°,由平行線的性質(zhì)可得,即可得∠DGF=70°.【詳解】解:∵四邊形ABCD和四邊形AEFG都是矩形∴∠AGF=∠DAB=90°,DC//AB∴∴故選:A.【點睛】本題考查了矩形的性質(zhì),熟練掌握矩形的性質(zhì)是本題的關(guān)鍵.4、C【解析】【分析】利用直角三角形斜邊上的中線的性質(zhì)即可判定①正確;利用含30度角的直角三角形的性質(zhì)即可判定②正確,由勾股定理即可判定③錯誤;由等邊三角形的判定及性質(zhì)、三角形中位線定理即可判定④正確.【詳解】∵CM、BN分別是高∴△CMB、△BNC均是直角三角形∵點P是BC的中點∴PM、PN分別是兩個直角三角形斜邊BC上的中線∴故①正確∵∠BAC=60゜∴∠ABN=∠ACM=90゜?∠BAC=30゜∴AB=2AN,AC=2AM∴AN:AB=AM:AC=1:2即②正確在Rt△ABN中,由勾股定理得:故③錯誤當(dāng)∠ABC=60゜時,△ABC是等邊三角形∵CM⊥AB,BN⊥AC∴M、N分別是AB、AC的中點∴MN是△ABC的中位線∴MN∥BC故④正確即正確的結(jié)論有①②④故選:C【點睛】本題考查了直角三角形斜邊上中線的性質(zhì),含30度角的直角三角形的性質(zhì),等邊三角形的判定及性質(zhì),勾股定理,三角形中位線定理等知識,掌握這些知識并正確運用是解題的關(guān)鍵.5、B【解析】【分析】根據(jù)勾股定理可求得直角三角形斜邊的長,再根據(jù)直角三角形斜邊上的中線等于斜邊的一半即可求解.【詳解】解:∵直角三角形兩直角邊長為5和12,∴斜邊=,∴此直角三角形斜邊上的中線的長==6.5.故選:B.【點睛】本題主要考查勾股定理及直角三角形斜邊中線定理,熟練掌握勾股定理及直角三角形斜邊中線定理是解題的關(guān)鍵.二、填空題1、①②③【解析】【分析】①連接BE,可得四邊形EFBG為矩形,可得BE=FG;由△AEB≌△AED可得DE=BE,所以DE=FG;②由矩形EFBG可得OF=OB,則∠OBF=∠OFB;由∠OBF=∠ADE,則∠OFB=∠ADE;由四邊形ABCD為正方形可得∠BAD=90°,即∠AHD+∠ADH=90°,所以∠AHD+∠OFH=90°,即∠FMH=90°,可得DE⊥FG;③由②中的結(jié)論可得∠BFG=∠ADE;④由于點E為AC上一動點,當(dāng)DE⊥AC時,根據(jù)垂線段最短可得此時DE最小,最小值為2,由①知FG=DE,所以FG的最小值為2.【詳解】解:①連接BE,交FG于點O,如圖,∵EF⊥AB,EG⊥BC,∴∠EFB=∠EGB=90°.∵∠ABC=90°,∴四邊形EFBG為矩形.∴FG=BE,OB=OF=OE=OG.∵四邊形ABCD為正方形,∴AB=AD,∠BAC=∠DAC=45°.在△ABE和△ADE中,,∴△ABE≌△ADE(SAS).∴BE=DE.∴DE=FG.∴①正確;②延長DE,交FG于M,交FB于點H,∵△ABE≌△ADE,∴∠ABE=∠ADE.由①知:OB=OF,∴∠OFB=∠ABE.∴∠OFB=∠ADE.∵∠BAD=90°,∴∠ADE+∠AHD=90°.∴∠OFB+∠AHD=90°.即:∠FMH=90°,∴DE⊥FG.∴②正確;③由②知:∠OFB=∠ADE.即:∠BFG=∠ADE.∴③正確;④∵點E為AC上一動點,∴根據(jù)垂線段最短,當(dāng)DE⊥AC時,DE最小.∵AD=CD=4,∠ADC=90°,∴AC==4.∴DE=AC=2.由①知:FG=DE,∴FG的最小值為2,∴④錯誤.綜上,正確的結(jié)論為:①②③.故答案為:①②③.【點睛】本題考查了全等三角形的性質(zhì)與判定,正方形的性質(zhì),勾股定理,垂線段最短,掌握正方形的性質(zhì)是解題的關(guān)鍵.2、24【解析】【分析】由三邊長之比得到三角形的三條中位線之比,再由這三條中位線組成的三角形周長求出三中位線長,推出邊長,再比大小判斷即可.【詳解】∵如圖,H、I、J分別為BC,AC,AB的中點∴,,又∵∴∵AB:AC:BC=4:5:6,即BC邊最長∴故填24.【點睛】本題考查了三角形中位線的性質(zhì),即三角形的中位線平行于第三邊且等于第三邊的一半.3、【解析】【分析】根據(jù)題意可得,陰影部分的面積是正方形的面積的,已知兩個正方形可得到一個陰影部分,則n個這樣的正方形重疊部分即為(n-1)個陰影部分的和.【詳解】解:由題意可得一個陰影部分面積等于正方形面積的,即是,n個這樣的正方形重疊部分(陰影部分)的面積和為:.故答案為:.【點睛】本題考查了正方形的性質(zhì),解題的關(guān)鍵是得到n個這樣的正方形重疊部分(陰影部分)的面積和的計算方法,難點是求得一個陰影部分的面積.4、8【解析】【分析】正方形的對角線是它的一條對稱軸,對應(yīng)點到兩邊的都是垂直的,距離也都相等,左邊梯形面積和右邊梯形面積相等,所以圖中陰影部分的面積正好為正方形面積的一半.然后列式進(jìn)行計算即可得解.【詳解】解:由圖形可得:S=×4×4=8,所以陰影部分的面積為8.故答案是:8.【點睛】本題考查正方形的性質(zhì),軸對稱的性質(zhì),將陰影面積轉(zhuǎn)化為三角形面積是解題的關(guān)鍵,學(xué)會于轉(zhuǎn)化的思想思考問題.5、【解析】【分析】根據(jù)矩形的性質(zhì)得到∠B=90°,根據(jù)勾股定理得到,根據(jù)折疊的性質(zhì)得到CF=AF=5,根據(jù)勾股定理即可得到結(jié)論.【詳解】解:∵四邊形ABCD是矩形,∴∠B=90°,∵AF=5,BF=3,∴,∵將矩形ABCD折疊,使點C與點A重合,折痕為EF.∴CF=AF=5,∴BC=BF+CF=8,∴,故答案為:.【點睛】本題主要考查了矩形與折疊問題,勾股定理,解題的關(guān)鍵在于能夠熟練掌握折疊的性質(zhì).三、解答題1、(1)見解析;(2)2;(3)見解析【分析】(1)由△ABC是等邊三角形,可得∠ABC=60°,由D、F關(guān)于直線BE對稱,得到BF=BD,則∠BFD=∠BDF,由三角形外角的性質(zhì)得到∠BFD+∠BDF=∠ABD,則∠BDF=∠BFD=30°;(2)設(shè),由D、F關(guān)于直線BE對稱,得到∠BGD=∠BGF=90°,EF=ED,EG=DG,由含30度角的直角三角形的性質(zhì)和勾股定理得,,證明△EAB≌△DAC得到,再由,得到,由此求解即可;(3)連接OG,先求出,證明OG是三角形DMF的中位線,得到,再根據(jù)兩點之間線段最短可知,則OE的最大值等于BC.【詳解】解:(1)∵△ABC是等邊三角形,∴∠ABC=60°,∵D、F關(guān)于直線BE對稱,∴BF=BD,∴∠BFD=∠BDF,∵∠BFD+∠BDF=∠ABD,∴∠BDF=∠BFD=30°;(2)設(shè),∵D、F關(guān)于直線BE對稱,∴∠BGD=∠BGF=90°,EF=ED,∴∠EDG=EFG=45°,∴EG=DG,∵∠BDG=30°,∴,∴,由旋轉(zhuǎn)的性質(zhì)可得AE=AD,∠EAD=∠BAC=60°,∴∠EAB+∠BAD=∠CAD+∠BAD,即∠EAB=∠DAC,又∵AB=AC,∴△EAB≌△DAC(SAS),∴,∵,∴,∴,∴;(3)如圖所示,連接OG,∵在等腰直角三角形DMN中,,∴,∵D、F關(guān)于直線BE對稱,∴G為DF的中點,又∵O為FM的中點,∴OG是三角形DMF的中位線,∴,由(2)可得,根據(jù)兩點之間線段最短可知,∴OE的最大值等于BC.【點睛】本題主要考查了等邊三角形的性質(zhì),軸對稱的性質(zhì),全等三角形的性質(zhì)與判定,勾股定理,含30度角的直角三角形性質(zhì),三角形中位線定理,兩點之間線段最短等等,解題的關(guān)鍵在于能夠熟練掌握軸對稱的性質(zhì)和等邊三角形的性質(zhì).2、(1);(2)y=S四邊形ABPQ=2t+32(0<t≤8);(3)t=8,;(4)當(dāng)t=4或
或時,為等腰三角形,理由見解析.【分析】(1)利用平行四邊形的對邊相等AQ=BP建立方程求解即可;
(2)先構(gòu)造直角三角形,求出AE,再用梯形的面積公式即可得出結(jié)論;
(3)利用面積關(guān)系求出t,即可求出DQ,進(jìn)而判斷出DQ=PQ,即可得出結(jié)論;
(4)分三種情況,利用等腰三角形的性質(zhì),兩腰相等建立方程求解即可得出結(jié)論.【詳解】解:(1)∵在平行四邊形中,,,由運動知,AQ=16?t,BP=2t,
∵四邊形ABPQ為平行四邊形,
∴AQ=BP,
∴16?t=2t
∴t=,
即:t=s時,四邊形ABPQ是平行四邊形;(2)過點A作AE⊥BC于E,如圖,在Rt△ABE中,∠B=30°,AB=8,
∴AE=4,
由運動知,BP=2t,DQ=t,
∵四邊形ABCD是平行四邊形,
∴AD=BC=16,
∴AQ=16?t,
∴y=S四邊形ABPQ=(BP+AQ)?AE=(2t+16?t)×4=2t+32(0<t≤8);(3)由(2)知,AE=4,
∵BC=16,
∴S四邊形ABCD=16×4=64,
由(2)知,y=S四邊形ABPQ=2t+32(0<t≤8),
∵四邊形ABPQ的面積是四邊形ABCD的面積的四分之三
∴2t+32=×64,
∴t=8;
如圖,當(dāng)t=8時,點P和點C重合,DQ=8,
∵CD=AB=8,
∴DP=DQ,
∴∠DQC=∠DPQ,
∴∠D=∠B=30°,
∴∠DQP=75°;(4)①當(dāng)AB=BP時,BP=8,
即2t=8,t=4;
②當(dāng)AP=BP時,如圖,∵∠B=30°,
過P作PM垂直于AB,垂足為點M,
∴BM=4,,解得:BP=,
∴2t=,
∴t=
③當(dāng)AB=AP時,同(2)的方法得,BP=,
∴2t=,
∴t=
所以,當(dāng)t=4或或時,△ABP為等腰三角形.【點睛】此題是四邊形綜合題,主要考查了平行四邊形的性質(zhì),含30°的直角三角形的性質(zhì),等腰三角形的性質(zhì),解(1)的關(guān)鍵是利用AQ=BP建立方程,解(2)的關(guān)鍵是求出梯形的高,解(3)的關(guān)鍵是求出t,解(4)的關(guān)鍵是分類討論的思想思考問題.3、見解析【分析】由已知條件可得DF=AB及DF∥AB,從而可得四邊形ABFD為平行四邊形,則問題解決.【詳解】∵是的中位線∴DE∥AB,,AD=DC∴DF∥AB∵EF=DE∴DF=AB∴四邊形ABFD為平行四邊形∴AD=BF∴BF=DC【點睛】本題主要考查了平行四邊形的判定與性質(zhì)、三角形中位線的性質(zhì)定理,掌握它們是解答本題的關(guān)鍵.當(dāng)然本題也可以用三角形全等的知識來解決.4、(1)平行四邊形,理由見解析;(2)四邊形的面積為24;(3)AB=BC或AC⊥BD等(答案不唯一)【分析】(1)利用平行四邊形的判定:兩組對邊分別
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 2026年竹溪縣民政局關(guān)于公辦養(yǎng)老機構(gòu)招聘消防設(shè)施操作員的備考題庫及參考答案詳解1套
- 湖北中考?xì)v史三年(2023-2025)真題分類匯編專題06 綜合題(解析版)
- 2026年泰和縣人民法院公開招聘聘任制司法輔助人員備考題庫完整參考答案詳解
- 2025-2030中國膳食纖維行業(yè)運行現(xiàn)狀及發(fā)展趨勢分析研究報告
- 2025至2030中國職業(yè)教育培訓(xùn)市場需求變化與商業(yè)模式分析報告
- 機關(guān)培訓(xùn)教學(xué)
- 2025至2030中國智能電網(wǎng)行業(yè)市場現(xiàn)狀供需分析及投資政策支持研究報告
- 智慧農(nóng)業(yè)技術(shù)推廣障礙及解決方案與投資可行性分析
- 2025-2030中醫(yī)藥產(chǎn)業(yè)發(fā)展特點分析與現(xiàn)代技術(shù)融合路徑探索及中藥材標(biāo)準(zhǔn)化體系建設(shè)研究
- 2026年昭通市永善縣緊密型醫(yī)共體溪洛渡街道衛(wèi)生院分院招聘9人備考題庫有答案詳解
- 反制無人機課件
- 光伏項目后期運營維護(hù)管理方案
- 材料作文(原卷版)-2026年中考語文復(fù)習(xí)試題(浙江專用)
- 衰老標(biāo)志物人工智能數(shù)據(jù)模型建立應(yīng)用指南
- 2025至2030中國球囊膽管導(dǎo)管行業(yè)產(chǎn)業(yè)運行態(tài)勢及投資規(guī)劃深度研究報告
- 生物樣本資源庫建設(shè)計劃及管理工作方案
- 消防安全管理人責(zé)任書范文
- 光伏電站安全事故案例
- 重癥肺炎患者護(hù)理要點回顧查房
- 住院醫(yī)師規(guī)范化培訓(xùn)階段考核(年度考核、出科考核)
- 學(xué)堂在線 雨課堂 學(xué)堂云 中國建筑史-元明清與民居 期末考試答案
評論
0/150
提交評論