版權(quán)說(shuō)明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡(jiǎn)介
人教版8年級(jí)數(shù)學(xué)下冊(cè)《平行四邊形》專項(xiàng)測(cè)試考試時(shí)間:90分鐘;命題人:教研組考生注意:1、本卷分第I卷(選擇題)和第Ⅱ卷(非選擇題)兩部分,滿分100分,考試時(shí)間90分鐘2、答卷前,考生務(wù)必用0.5毫米黑色簽字筆將自己的姓名、班級(jí)填寫(xiě)在試卷規(guī)定位置上3、答案必須寫(xiě)在試卷各個(gè)題目指定區(qū)域內(nèi)相應(yīng)的位置,如需改動(dòng),先劃掉原來(lái)的答案,然后再寫(xiě)上新的答案;不準(zhǔn)使用涂改液、膠帶紙、修正帶,不按以上要求作答的答案無(wú)效。第I卷(選擇題20分)一、單選題(5小題,每小題4分,共計(jì)20分)1、已知菱形的邊長(zhǎng)為6,一個(gè)內(nèi)角為60°,則菱形較長(zhǎng)的對(duì)角線長(zhǎng)是()A. B. C.3 D.62、直角三角形的兩條直角邊分別為5和12,那么這個(gè)三角形的斜邊上的中線長(zhǎng)為()A.6 B.6.5 C.10 D.133、如圖,將矩形ABCD沿對(duì)角線AC翻折,點(diǎn)B落在點(diǎn)F處,F(xiàn)C交AD于點(diǎn)E.若AB=4,BC=8,則圖中陰影部分的面積為()A.8 B.10 C.12.5 D.7.54、如圖,點(diǎn)E是△ABC內(nèi)一點(diǎn),∠AEB=90°,D是邊AB的中點(diǎn),延長(zhǎng)線段DE交邊BC于點(diǎn)F,點(diǎn)F是邊BC的中點(diǎn).若AB=6,EF=1,則線段AC的長(zhǎng)為()A.7 B. C.8 D.95、若一個(gè)直角三角形的周長(zhǎng)為,斜邊上的中線長(zhǎng)為1,則此直角三角形的面積為()A. B. C. D.第Ⅱ卷(非選擇題80分)二、填空題(5小題,每小題6分,共計(jì)30分)1、如圖,平面直角坐標(biāo)系中,有,,三點(diǎn),以A,B,O三點(diǎn)為頂點(diǎn)的平行四邊形的另一個(gè)頂點(diǎn)D的坐標(biāo)為_(kāi)_____.2、在五邊形紙片ABCDE中,AB=2,∠A=120°,將五邊形紙片ABCDE沿BD折疊,點(diǎn)C落在點(diǎn)P處;在AE上取一點(diǎn)Q,將ABQ,EDQ分別沿BQ,DQ折疊,點(diǎn)A,E恰好落在點(diǎn)P處,如圖1.(1)∠BPQ=______°;(2)∠BCD+∠QED=_______°;(3)如圖2,當(dāng)四邊形BCDP是菱形,且Q,P,C三點(diǎn)共線時(shí),BQ=_______.3、正方形ABCD的邊長(zhǎng)為4,則圖中陰影部分的面積為_(kāi)____.4、如圖,在等腰△OAB中,OA=OB=2,∠OAB=90°,以AB為邊向右側(cè)作等腰Rt△ABC,則OC的長(zhǎng)為_(kāi)_________________.5、如圖,正方形ABCD的邊長(zhǎng)為做正方形,使A,B,C,D是正方形各邊的中點(diǎn);做正方形,使是正方形各邊的中點(diǎn)……以此類推,則正方形的邊長(zhǎng)為_(kāi)_________.三、解答題(5小題,每小題10分,共計(jì)50分)1、如圖,等腰△ABC中,AB=AC,∠BAC=90°,BE平分∠ABC交AC于E,過(guò)C作CD⊥BE于D,(1)如圖1,求證:CD=BE(2)如圖2,過(guò)點(diǎn)A作AF⊥BE,寫(xiě)出AF,BD,CD之間的數(shù)量關(guān)系并說(shuō)明理由.2、(3)點(diǎn)P為AC上一動(dòng)點(diǎn),則PE+PF最小值為.3、如圖,四邊形ABCD是菱形,DE⊥AB、DF⊥BC,垂足分別為E、F.求證:BE=BF.4、在中,,斜邊,過(guò)點(diǎn)作,以AB為邊作菱形ABEF,若,求的面積.5、如圖,四邊形ABCD是平行四邊形,E,F(xiàn)是對(duì)角線AC的三等分點(diǎn),連接BE,DF.證明BE=DF.-參考答案-一、單選題1、B【解析】【分析】根據(jù)一個(gè)內(nèi)角為60°可以判斷較短的對(duì)角線與兩鄰邊構(gòu)成等邊三角形,求出較長(zhǎng)的對(duì)角線的一半,再乘以2即可得解.【詳解】解:如圖,菱形ABCD,∠ABC=60°,∴AB=BC,AC⊥BD,OB=OD,∴△ABC是等邊三角形,菱形的邊長(zhǎng)為6,∴AC=6,∴AO=AC=3,在Rt△AOB中,BO===3,∴菱形較長(zhǎng)的對(duì)角線長(zhǎng)BD是:2×3=6.故選:B.【點(diǎn)睛】本題考查了菱形的性質(zhì)和勾股定理,等邊三角形的判定,解題關(guān)鍵是熟練運(yùn)用菱形的性質(zhì)和等邊三角形的判定求出對(duì)角線長(zhǎng).2、B【解析】【分析】根據(jù)勾股定理可求得直角三角形斜邊的長(zhǎng),再根據(jù)直角三角形斜邊上的中線等于斜邊的一半即可求解.【詳解】解:∵直角三角形兩直角邊長(zhǎng)為5和12,∴斜邊=,∴此直角三角形斜邊上的中線的長(zhǎng)==6.5.故選:B.【點(diǎn)睛】本題主要考查勾股定理及直角三角形斜邊中線定理,熟練掌握勾股定理及直角三角形斜邊中線定理是解題的關(guān)鍵.3、B【解析】【分析】利用折疊的性質(zhì)可得∠ACF=∠ACB,由AD∥BC,可得出∠CAD=∠ACB,進(jìn)而可得出AE=CE,根據(jù)矩形性質(zhì)可得AB=CD=4,BC=AD=8,∠D=90°,設(shè)AE=CE=x,則ED=8﹣x,在Rt△CDE中,利用勾股定理可求出x的值,再利用三角形的面積公式即可求出△ACE的面積,則可得出答案.【詳解】解:由折疊的性質(zhì),∠ACF=∠ACB.∵AD∥BC,∴∠CAD=∠ACB,∴∠CAD=∠ACF,∴AE=CE.∵四邊形ABCD為矩形,∴AB=CD=4,BC=AD=8,∠D=90°,設(shè)AE=CE=x,則ED=8﹣x,在Rt△CDE中,根據(jù)勾股定理得,即42+(8﹣x)2=x2,∴x=5,∴圖中陰影部分的面積=S△ACEAE?AB=×5×4=10.故選:B【點(diǎn)睛】本題考查了翻折變換、矩形的性質(zhì)、勾股定理以及三角形的面積,利用勾股定理求出AE的長(zhǎng)是解題的關(guān)鍵.4、C【解析】【分析】根據(jù)直角三角形的性質(zhì)求出DE,由EF=1,得到DF,再根據(jù)三角形中位線定理即可求出線段AC的長(zhǎng).【詳解】解:∵∠AEB=90,D是邊AB的中點(diǎn),AB=6,∴DE=AB=3,∵EF=1,∴DF=DE+EF=3+1=4.∵D是邊AB的中點(diǎn),點(diǎn)F是邊BC的中點(diǎn),∴DF是ABC的中位線,∴AC=2DF=8.故選:C.【點(diǎn)睛】本題考查了直角三角形斜邊上的中線等于斜邊的一半的性質(zhì),三角形中位線定理,求出DF的長(zhǎng)是解題的關(guān)鍵.5、B【解析】【分析】根據(jù)直角三角形斜邊上中線的性質(zhì),可得斜邊為2,然后利用兩直角邊之間的關(guān)系以及勾股定理求出兩直角邊之積,從而確定面積.【詳解】解:根據(jù)直角三角形斜邊上中線的性質(zhì)可知,斜邊上的中線等于斜邊的一半,得AC=2BD=2.∵一個(gè)直角三角形的周長(zhǎng)為3+,∴AB+BC=3+-2=1+.等式兩邊平方得(AB+BC)2=(1+)2,即AB2+BC2+2AB?BC=4+2,∵AB2+BC2=AC2=4,∴2AB?BC=2,AB?BC=,即三角形的面積為×AB?BC=.故選:B.【點(diǎn)睛】本題考查直角三角形斜邊上的中線,勾股定理,三角形的面積等知識(shí)點(diǎn)的理解和掌握,巧妙求出AC?BC的值是解此題的關(guān)鍵,值得學(xué)習(xí)應(yīng)用.二、填空題1、(9,4)、(-3,4)、(3,-4)【解析】【分析】根據(jù)平行四邊形的性質(zhì)得出AD=BO=6,AD∥BO,根據(jù)平行線得出A和D的縱坐標(biāo)相等,根據(jù)B的橫坐標(biāo)和BO的值即可求出D的橫坐標(biāo).【詳解】∵平行四邊形ABCD的頂點(diǎn)A、B、O的坐標(biāo)分別為(3,4)、(6,0)、(0,0),∴AD=BO=6,AD∥BO,∴D的橫坐標(biāo)是3+6=9,縱坐標(biāo)是4,即D的坐標(biāo)是(9,4),同理可得出D的坐標(biāo)還有(-3,4)、(3,-4).故答案為:(9,4)、(-3,4)、(3,-4).【點(diǎn)睛】本題考查了坐標(biāo)與圖形性質(zhì)和平行四邊形的性質(zhì),注意:平行四邊形的對(duì)邊平行且相等.2、120240【解析】【分析】(1)由折疊的性質(zhì)可得∠A=∠BPQ=120°;(2)由周角的性質(zhì)可得∠BPD+∠QPD+∠BPQ=360°,即可求解;(3)由菱形的性質(zhì)可得BQ=QD,QH⊥BD,BH=DH,由“SSS”可證△ABQ≌△EDQ,可得∠AQB=∠BQP=∠EQD=∠PQD=45°,由直角三角形的性質(zhì)可求解.【詳解】解:(1)∵將五邊形紙片ABCDE沿BD折疊,∴∠A=∠BPQ=120°,∠QED=∠QPD,∠BCD=∠BPD,故答案為:120;(2)∵∠BPD+∠QPD+∠BPQ=360°,∴∠BPD+∠QPD=240°,∴∠BCD+∠QED=240°,故答案為:240;(3)如圖,連接PC,交BD于H,∵四邊形BPDC是菱形,∴PC是BD的垂直平分線,BP=PD=BC=CD,∵Q,P,C三點(diǎn)共線,∴QC是BD的垂直平分線,∴BQ=QD,QH⊥BD,BH=DH,由折疊可知:∠A=∠BPQ=120°,AB=BP=2=DE=DP,∠AQB=∠BQP,∠EQD=∠PQD,AQ=QP=QE,∴∠BPH=60°,∴∠PBH=30°,∴PHBP=1,BHPH,在△ABQ和△EDQ中,,∴△ABQ≌△EDQ(SSS),∴∠AQB=∠EQD,∴∠AQB=∠BQP=∠EQD=∠PQD,∵∠AQE=180°,∴∠AQB=∠BQP=∠EQD=∠PQD=45°,∴∠QBH=∠BQP=45°,∴BH=QH,∴BQBH,故答案為:.【點(diǎn)睛】本題考查了翻折變換,菱形的性質(zhì),全等三角形的判定和性質(zhì),直角三角形的性質(zhì)等知識(shí),掌握折疊的性質(zhì)是解題的關(guān)鍵.3、8【解析】【分析】正方形的對(duì)角線是它的一條對(duì)稱軸,對(duì)應(yīng)點(diǎn)到兩邊的都是垂直的,距離也都相等,左邊梯形面積和右邊梯形面積相等,所以圖中陰影部分的面積正好為正方形面積的一半.然后列式進(jìn)行計(jì)算即可得解.【詳解】解:由圖形可得:S=×4×4=8,所以陰影部分的面積為8.故答案是:8.【點(diǎn)睛】本題考查正方形的性質(zhì),軸對(duì)稱的性質(zhì),將陰影面積轉(zhuǎn)化為三角形面積是解題的關(guān)鍵,學(xué)會(huì)于轉(zhuǎn)化的思想思考問(wèn)題.4、2或2##或【解析】【分析】如圖1,以AB為斜邊作等腰Rt△ABC,根據(jù)等腰直角三角形的性質(zhì)得到∠OAB=∠ABO=45°,∠CAB=∠CBA=45°,∠ACB=90°,推出四邊形AOBC是正方形,根據(jù)勾股定理得到OC=AB;如圖2,以AB為直角邊作等腰Rt△ABC,求得∠ABC=45°,根據(jù)等腰直角三角形的性質(zhì)得到∠ABO=45°,根據(jù)勾股定理得到BC,于是得到結(jié)論.【詳解】解:如圖1,以AB為斜邊作等腰Rt△ABC,∵OA=OB=2,∠OAB=90°,∴∠OAB=∠ABO=45°,∵△ABC是等腰直角三角形,∴∠CAB=∠CBA=45°,∠ACB=90°,∴∠AOB=∠OAC=∠ACB=∠CBO=90°,∴四邊形AOBC是正方形,∴OC=AB==2;如圖2,以AB為直角邊作等腰Rt△ABC,∴∠ABC=45°,∵OA=OB=2,∠OAB=90°,∴∠ABO=45°,AB=2,∴∠CBO=90°,∵△ABC是等腰直角三角形,∴BC==4,∴OC=,當(dāng)以AB、BC為直角邊作等腰直角三角形時(shí),與圖2的解法相同;綜上所述,OC的長(zhǎng)為2或2,故答案為:2或2.【點(diǎn)睛】本題考查了勾股定理,等腰直角三角形以及正方形的判定,正確的作出圖形,進(jìn)行分類討論是解題的關(guān)鍵.5、【解析】【分析】利用正方形ABCD的及勾股定理,求出的長(zhǎng),再根據(jù)勾股定理求出和的長(zhǎng),找出規(guī)律,即可得出正方形的邊長(zhǎng).【詳解】解:∵A,B,C,D是正方形各邊的中點(diǎn)∴,∵正方形ABCD的邊長(zhǎng)為,即AB=,∴,解得:,∴==2,同理==2,==4…,∴,∴=,∴的邊長(zhǎng)為故答案為:.【點(diǎn)睛】本題考查了正方形性質(zhì)、勾股定理的應(yīng)用,解此題的關(guān)鍵是能根據(jù)計(jì)算結(jié)果得出規(guī)律,本題具有一定的代表性,是一道比較好的題目.三、解答題1、(1)證明見(jiàn)解析;(2)BD=CD+2AF,理由見(jiàn)解析【分析】(1)延長(zhǎng)BA與CD的延長(zhǎng)線交于點(diǎn)G,先證明△ABE≌△ACG得到BE=CG,由BD是∠ABC的角平分線,得到∠GBD=∠CBD,即可證明△BDG≌△BDC得到CD=GD,則;(2)如圖所示,連接AD,取BE中點(diǎn)H,連接AH,由直角三角形斜邊上的中線等于斜邊的一半可得,,則,再由∠BAC=90°,AB=AC,得到∠ABC=45°,根據(jù)BD平分∠ABC,即可推出∠AHF=∠ABH+∠BAH=45°,從而得到AF=HF,則DH=2AF,由此即可推出BD=BH+HD=BH+2AF=CD+2AF.【詳解】解:(1)如圖所示,延長(zhǎng)BA與CD的延長(zhǎng)線交于點(diǎn)G,∵∠BAC=90°,∴∠CAG=90°,∵CD⊥BE,∴∠EDC=∠GDB=∠BAE=90°,又∵∠AEB=∠DEC,∴∠ABE=∠DCE,在△ABE和△ACG中,,∴△ABE≌△ACG(ASA),∴BE=CG,∵BD是∠ABC的角平分線,∴∠GBD=∠CBD,在△BDG和△BDC中,,∴△BDG≌△BDC(ASA),∴CD=GD,∴;(2)BD=CD+2AF,理由如下:如圖所示,連接AD,取BE中點(diǎn)H,連接AH,由(1)得CD=GD,,∵△BAE和△CAG都是直角三角形,H為BE中點(diǎn),D為CG中點(diǎn),∴,,∴,∴∠ABH=∠BAH,∵∠BAC=90°,AB=AC,∴∠ABC=45°,又∵BD平分∠ABC,∴∠ABH=∠BAH=22.5°,∴∠AHF=∠ABH+∠BAH=45°,∵AF⊥DH,∴HF=DF,∠AFH=90°,∴∠HAF=45°,∴AF=HF,∴DH=2AF,∴BD=BH+HD=BH+2AF=CD+2AF.【點(diǎn)睛】.本題主要考查了全等三角形的性質(zhì)與判定,角平分線的性質(zhì),等腰三角形的性質(zhì)與判定,直角三角形斜邊上的中線,解題的關(guān)鍵在于能夠熟練掌握全等三角形的性質(zhì)與判定條件.2、【分析】(1)根據(jù)折疊的性質(zhì)可得:∠1=∠2,再由矩形的性質(zhì),可得∠2=∠3,從而得到∠1=∠3,即可求解;(2)設(shè)FD=x,則AF=CF=8-x,再由勾股定理,可得DF=3,從而得到CF=5,即可求解;(3)連接PB,根據(jù)折疊的性質(zhì)可得△ECP≌△BCP,從而得到PE=PB,進(jìn)而得到當(dāng)點(diǎn)F、P、B三點(diǎn)共線時(shí),PE+PF最小,最小值為BF的長(zhǎng),再由勾股定理,即可求解.【詳解】(1)解:△ACF是等腰三角形,理由如下:如圖,由折疊可知,∠1=∠2,∵四邊形ABCD是矩形,∴AB∥CD,∴∠2=∠3,∴∠1=∠3,∴AF=CF,∴△ACF是等腰三角形;(2)∵四邊形ABCD是矩形且AB=8,BC=4,∴AD=BC=4,CD=AB=8,∠D=90°,設(shè)FD=x,則AF=CF=8-x,在Rt△AFD中,根據(jù)勾股定理得AD2+DF2=AF2,∴42+x2=(8-x)2,解得x=3,即DF=3,∴CF=8-3=5,∴;(3)如圖,連接PB,根據(jù)折疊得:CE=CB,∠ECP=∠BCP,∵CP=CP,∴△ECP≌△BCP,∴PE=PB,∴PE+PF=PE+PB,∴當(dāng)點(diǎn)F、P、B三點(diǎn)共線時(shí),PE+PF最小,最小值為BF的長(zhǎng),由(2)知:CF=5,∵BC=4,∠BCF=90°,∴,即PE+PF最小值為.【點(diǎn)睛】本題主要考查了矩形與折疊問(wèn)題,等腰三角形的判定,熟練掌握矩形和折疊的性質(zhì)是解題的關(guān)鍵.3、見(jiàn)解析【分析】根據(jù)菱形的性質(zhì),可得AD=DC,AB=BC,∠A=∠C.從而
溫馨提示
- 1. 本站所有資源如無(wú)特殊說(shuō)明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒(méi)有圖紙預(yù)覽就沒(méi)有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。
最新文檔
- 內(nèi)勤培訓(xùn)開(kāi)訓(xùn)
- 廣告門(mén)市活動(dòng)策劃方案(3篇)
- 物流貨車安全管理制度內(nèi)容(3篇)
- 起始年級(jí)學(xué)業(yè)水平管理制度(3篇)
- 銀行活動(dòng)內(nèi)容策劃方案(3篇)
- 《GA 888-2010公安單警裝備 警用裝備包》專題研究報(bào)告
- 《GA 655-2006人毛發(fā)ABO血型檢測(cè)解離法》專題研究報(bào)告
- 獸醫(yī)生物制品技術(shù)
- 2026年及未來(lái)5年市場(chǎng)數(shù)據(jù)中國(guó)背景墻行業(yè)市場(chǎng)全景監(jiān)測(cè)及投資戰(zhàn)略咨詢報(bào)告
- 養(yǎng)老院入住老人財(cái)務(wù)收支審計(jì)制度
- 2025四川眉山市國(guó)有資本投資運(yùn)營(yíng)集團(tuán)有限公司招聘50人筆試參考題庫(kù)附帶答案詳解
- 2024年山東濟(jì)南中考滿分作文《為了這份繁華》
- 2025年鐵嶺衛(wèi)生職業(yè)學(xué)院?jiǎn)握新殬I(yè)傾向性測(cè)試題庫(kù)新版
- 《煤礦安全生產(chǎn)責(zé)任制》培訓(xùn)課件2025
- 項(xiàng)目進(jìn)度跟進(jìn)及完成情況匯報(bào)總結(jié)報(bào)告
- 2025年常州機(jī)電職業(yè)技術(shù)學(xué)院高職單招語(yǔ)文2018-2024歷年參考題庫(kù)頻考點(diǎn)含答案解析
- 民間融資居間合同
- 2024-2025學(xué)年冀教版九年級(jí)數(shù)學(xué)上冊(cè)期末綜合試卷(含答案)
- 《智能網(wǎng)聯(lián)汽車車控操作系統(tǒng)功能安全技術(shù)要求》
- 表面活性劑化學(xué)知識(shí)點(diǎn)
- 公司綠色可持續(xù)發(fā)展規(guī)劃報(bào)告
評(píng)論
0/150
提交評(píng)論