版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)
文檔簡介
吉林省龍井市中考數(shù)學(xué)真題分類(勾股定理)匯編定向攻克考試時間:90分鐘;命題人:教研組考生注意:1、本卷分第I卷(選擇題)和第Ⅱ卷(非選擇題)兩部分,滿分100分,考試時間90分鐘2、答卷前,考生務(wù)必用0.5毫米黑色簽字筆將自己的姓名、班級填寫在試卷規(guī)定位置上3、答案必須寫在試卷各個題目指定區(qū)域內(nèi)相應(yīng)的位置,如需改動,先劃掉原來的答案,然后再寫上新的答案;不準使用涂改液、膠帶紙、修正帶,不按以上要求作答的答案無效。第I卷(選擇題14分)一、單選題(7小題,每小題2分,共計14分)1、有一個面積為1的正方形,經(jīng)過一次“生長”后,在他的左右肩上生出兩個小正方形,其中,三個正方形圍成的三角形是直角三角形,再經(jīng)過一次“生長”后,變成了上圖,如果繼續(xù)“生長”下去,它將變得“枝繁葉茂”,請你算出“生長”了2020次后形成的圖形中所有的正方形的面積和是(
)A.1 B.2021 C.2020 D.20192、“趙爽弦圖”巧妙地利用面積關(guān)系證明了勾股定理,是我國古代數(shù)學(xué)的驕傲,如圖所示的“趙爽弦圖”是由四個全等的直角三角形和一個小正方形拼成的一個大正方形,設(shè)直角三角形較長直角邊長為a,較短直角邊長為b,若,大正方形的面積為13,則小正方形的面積為()A.3 B.4 C.5 D.63、如圖,小巷左右兩側(cè)是豎直的墻,一架梯子斜靠在左墻時,梯子底端到左墻角的距離為0.7米,頂端距離地面2.4米,如果保持梯子底端位置不動,將梯子斜靠在右墻時,頂端距離地面2米,那么小巷的寬度為(
)A.0.7米 B.1.5米 C.2.2米 D.2.4米4、如圖,在2×2的正方形網(wǎng)格中有9個格點,已經(jīng)取定點A和B,在余下的點中任取一點C,使△ABC為直角三角形的概率是(
)A. B. C. D.5、如圖,P是等邊三角形內(nèi)的一點,且,,,以為邊在外作,連接,則以下結(jié)論中不正確的是(
)A. B. C. D.6、如圖,三角形紙片ABC,AB=AC,∠BAC=90°,點E為AB中點,沿過點E的直線折疊,使點B與點A重合,折痕現(xiàn)交于點F,已知EF=,則BC的長是()A. B.3 C.3 D.37、如圖,長方形中,,,將此長方形折疊,使點與點重合,折痕為,則的長為(
)A.12 B.8 C.10 D.13第Ⅱ卷(非選擇題86分)二、填空題(8小題,每小題2分,共計16分)1、我國古代有這樣一道數(shù)學(xué)問題:“枯木一根直立地上,高二丈,周三尺,有葛藤自根纏繞而上,五周而達其頂,問葛藤之長幾何?”題意是:如圖所示,把枯木看作一個圓柱體,因一丈是十尺,則該圓柱的高為20尺,底面周長為3尺,有葛藤自點A處纏繞而上,繞五周后其末端恰好到達點B處,則問題中葛藤的最短長度是_______尺.
2、如圖,在Rt△ABC中,∠ACB=90°,CD⊥AB于D.已知AB=15,Rt△ABC的周長為15+9,則CD的長為_____.3、如圖1,鄰邊長為2和6的矩形分割成①,②,③,④四塊后,拼接成如圖2不重疊、無縫隙的正方形,則圖2中的值為___________,圖1中的長為_______.4、如圖,在一次綜合實踐活動中,小明將一張邊長為10cm的正方形紙片ABCD,沿著BC邊上一點E與點A的連線折疊,點B'是點B的對應(yīng)點,延長EB'交DC于點G,B'G=cm,則△ECG的面積為_____cm2.5、如圖,已知四邊形中,,則四邊形的面積等于________.6、如圖,在離水面高度為8米的岸上,有人用繩子拉船靠岸,開始時繩子BC的長為17米,幾分鐘后船到達點D的位置,此時繩子CD的長為10米,問船向岸邊移動了__米.7、已知一直角三角形的兩條直角邊分別為6cm、8cm,則此直角三角形斜邊上的高為____.8、學(xué)習(xí)完《勾股定理》后,尹老師要求數(shù)學(xué)興趣小組的同學(xué)測量學(xué)校旗桿的高度.同學(xué)們發(fā)現(xiàn)系在旗桿頂端的繩子垂到了地面并多出了一段,但這條繩子的長度未知.如圖,經(jīng)測量,繩子多出的部分長度為1米,將繩子沿地面拉直,繩子底端距離旗桿底端4米,則旗桿的高度為______米.三、解答題(7小題,每小題10分,共計70分)1、若的三邊,,滿足條件,試判斷的形狀.2、如圖,AD是△ABC的中線,DE⊥AC于點E,DF是△ABD的中線,且CE=2,DE=4,AE=8.(1)求證:;(2)求DF的長.3、如圖,在四邊形中,,,于,(1)求證:;(2)若,,求四邊形的面積.4、我方偵查員小王在距離東西向公路400米處偵查,發(fā)現(xiàn)一輛敵方汽車在公路上疾駛.他趕緊拿出紅外線測距儀,測得汽車與他相距400米,10秒后,汽車與他相距500米,你能幫小王計算敵方汽車的速度嗎?5、如圖,一艘船由A港沿北偏東60°方向航行10km至B港,然后再沿北偏西30°方向航行10km至C港.(1)求A,C兩港之間的距離(結(jié)果保留到0.1km,參考數(shù)據(jù):≈1.414,≈1.732);(2)確定C港在A港的什么方向.6、一架梯子長13米,斜靠在一面墻上,梯子底端離墻5米.(1)這個梯子的頂端距地面有多高?(2)如果梯子的頂端下滑了7米到C,那么梯子的底端在水平方向滑動了幾米?7、已知:如圖,四邊形ABCD,∠A=90°,AD=12,AB=16,CD=15,BC=25.(1)求BD的長;(2)求四邊形ABCD的面積.-參考答案-一、單選題1、B【解析】【分析】根據(jù)勾股定理求出“生長”了1次后形成的圖形中所有的正方形的面積和,結(jié)合圖形總結(jié)規(guī)律,根據(jù)規(guī)律解答即可.【詳解】解:由題意得,正方形A的面積為1,由勾股定理得,正方形B的面積+正方形C的面積=1,∴“生長”了1次后形成的圖形中所有的正方形的面積和為2,同理可得,“生長”了2次后形成的圖形中所有的正方形的面積和為3,∴“生長”了3次后形成的圖形中所有的正方形的面積和為4,……∴“生長”了2020次后形成的圖形中所有的正方形的面積和為2021,故選:B.【考點】本題考查了勾股定理,如果直角三角形的兩條直角邊長分別是a,b,斜邊長為c,那么a2+b2=c2.2、C【解析】【詳解】解:如圖所示,∵(a+b)2=21∴a2+2ab+b2=21,∵大正方形的面積為13,即:a2+b2=13,∴2ab=21﹣13=8,∴小正方形的面積為13﹣8=5.故選C.3、C【解析】【分析】在直角三角形中利用勾股定理計算出直角邊,即可求出小巷寬度.【詳解】在Rt△A′BD中,∵∠A′DB=90°,A′D=2米,BD2+A′D2=A′B′2,∴BD2+22=6.25,∴BD2=2.25,∵BD>0,∴BD=1.5米,∴CD=BC+BD=0.7+1.5=2.2米.故選:C.【考點】本題考查勾股定理的運用,利用梯子長度不變找到斜邊是關(guān)鍵.4、C【解析】【分析】找到可以組成直角三角形的點,根據(jù)概率公式解答即可.【詳解】解:如圖,,,,均可與點和組成直角三角形.,故選:C.【考點】本題考查了概率公式,解題的關(guān)鍵是掌握如果一個事件有種可能,而且這些事件的可能性相同,其中事件出現(xiàn)種結(jié)果,那么事件的概率(A).5、C【解析】【分析】根據(jù)△ABC是等邊三角形,得出∠ABC=60°,根據(jù)△BQC≌△BPA,得出∠CBQ=∠ABP,PB=QB=4,PA=QC=3,∠BPA=∠BQC,求出∠PBQ=60°,即可判斷A;根據(jù)勾股定理的逆定理即可判斷B;根據(jù)△BPQ是等邊三角形,△PCQ是直角三角形即可判斷D;求出∠APC=150°-∠QPC,和PC≠2QC,可得∠QPC≠30°,即可判斷C.【詳解】解:∵△ABC是等邊三角形,∴∠ABC=60°,∵△BQC≌△BPA,∴∠CBQ=∠ABP,PB=QB=4,PA=QC=3,∠BPA=∠BQC,∴∠PBQ=∠PBC+∠CBQ=∠PBC+∠ABP=∠ABC=60°,所以A正確,不符合題意;PQ=PB=4,PQ2+QC2=42+32=25,PC2=52=25,∴PQ2+QC2=PC2,∴∠PQC=90°,所以B正確,不符合題意;∵PB=QB=4,∠PBQ=60°,∴△BPQ是等邊三角形,∴∠BPQ=60°,∴∠APB=∠BQC=∠BQP+∠PQC=60°+90°=150°,所以D正確,不符合題意;∠APC=360°-150°-60°-∠QPC=150°-∠QPC,∵PC=5,QC=PA=3,∴PC≠2QC,∵∠PQC=90°,∴∠QPC≠30°,∴∠APC≠120°.所以C不正確,符合題意.故選:C.【考點】本題是三角形綜合題,考查了全等三角形的性質(zhì)、等邊三角形的性質(zhì)、勾股定理的逆定理,解決本題的關(guān)鍵是綜合應(yīng)用以上知識.6、B【解析】【分析】折疊的性質(zhì)主要有:1.重疊部分全等;2.折痕是對稱軸,對稱點的連線被對稱軸垂直平分.由折疊的性質(zhì)可知,所以可求出∠AFB=90°,再直角三角形的性質(zhì)可知,所以,的長可求,再利用勾股定理即可求出BC的長.【詳解】解:AB=AC,,故選B.【考點】本題考查了折疊的性質(zhì)、等腰直角三角形的判斷和性質(zhì)以及勾股定理的運用,求出∠AFB=90°是解題的關(guān)鍵.7、D【解析】【分析】設(shè)BE為x,則AE為25-x,在由勾股定理有,即可求得BE=13.【詳解】設(shè)BE為x,則DE為x,AE為25-x∵四邊形為長方形∴∠EAB=90°∴在中由勾股定理有即化簡得解得故選:D.【考點】本題考查了折疊問題求折痕或其他邊長,主要可根據(jù)折疊前后兩圖形的全等條件,把某個直角三角形的三邊都用同一未知量表示出來,并根據(jù)勾股定理建立方程,進而可以求解.二、填空題1、25.【解析】【詳解】解:這種立體圖形求最短路徑問題,可以展開成為平面內(nèi)的問題解決,展開后可轉(zhuǎn)化下圖,所以是直角三角形求斜邊的問題.根據(jù)勾股定理可求出葛藤長為(尺).故答案為:25.2、6【解析】【分析】由已知條件得出AC+BC=9,由勾股定理得出AC2+BC2=AB2=152=225,求出AC×BC=90,由三角形面積即可得出答案.【詳解】解:∵Rt△ABC的周長為15+9,∠ACB=90°,AB=15,∴AC+BC=9,AC2+BC2=AB2=152=225,∴(AC+BC)2=(9)2,即AC2+2AC×BC+BC2=405,∴2AC×BC=405?225=180,∴AC×BC=90,∵AB×CD=AC×BC,∴CD==6;故答案為:6.【考點】本題考查了勾股定理,三角形的面積公式,完全平方公式,三角形的周長的計算,熟記直角三角形的性質(zhì)是解題的關(guān)鍵.3、
【解析】【分析】由等積法解得正方形的邊長,再利用勾股定理解得圖④的直角邊FH的長,在圖2中,利用正弦的定義解得,接著利用勾股定理解得,據(jù)此解得的值,最后利用解答即可.【詳解】解:矩形的面積為:2×6=12正方形的邊長如圖1,如圖2,設(shè)或(舍去)故答案為:,.【考點】本題考查正方形與矩形、圖形的拼接,涉及勾股定理、正弦、余弦等知識,是重要考點,掌握相關(guān)知識是解題關(guān)鍵.4、【解析】【分析】根據(jù)翻折的性質(zhì)可知△ABE和△AB′E全等,則BE=B′E,連接AG,可證△AB′G≌△ADG,則DG=B′G=cm,CG=10-DG=cm,在Rt△ECG中,設(shè)BE=xcm,根據(jù)勾股定理列出方程,可求出BE的值,從而求出CE,最后由三角形面積公式求出△ECG的面積.【詳解】根據(jù)翻折的性質(zhì)可知△ABE和△AB′E全等,BE=B′E,連接AG,如圖,∵AB′=AD,AG=AG,∴Rt△AB′G≌Rt△ADG,∴DG=B′G=cm,∴CG=10-DG=cm,在Rt△ECG中,設(shè)BE=xcm,則CE=(10-x)cm,EG=B′E+B′G=(x+)cm,根據(jù)勾股定理列出方程,CE2+CG2=EG2,即,解得:x=2,所以BE=2cm,CE=10-2=8(cm),△ECG的面積=(cm2)故答案為:.【考點】本題考查了勾股定理的應(yīng)用,結(jié)合全等的知識找出題中的線段之間的關(guān)系是本題的解題關(guān)鍵.5、36【解析】【分析】連接AC,先根據(jù)勾股定理求出AC的長度,再根據(jù)勾股定理的逆定理判斷出△ACD的形狀,最后利用三角形的面積公式求解即可.【詳解】連接AC,如下圖所示:∵∠ABC=90°,AB=3,BC=4,∴AC=,在△ACD中,AC2+AD2=25+144=169=CD2,∴△ACD是直角三角形,∴S四邊形ABCD=AB?BC+AC?AD=×3×4+×5×12=36.【考點】本題考查了勾股定理及勾股定理的逆定理,正確作出輔助線是解題的關(guān)鍵.6、9.【解析】【分析】在Rt△ABC中,利用勾股定理計算出AB長,再根據(jù)題意可得CD長,然后再次利用勾股定理計算出AD長,再利用BD=AB-AD可得BD長.【詳解】在Rt△ABC中:∵∠CAB=90°,BC=17米,AC=8米,∴AB===15(米),∵CD=10(米),∴AD==6(米),∴BD=AB﹣AD=15﹣6=9(米),答:船向岸邊移動了9米,故答案為:9.【考點】本題考查了勾股定理的應(yīng)用,關(guān)鍵是掌握從題中抽象出勾股定理這一數(shù)學(xué)模型,畫出準確的示意圖.領(lǐng)會數(shù)形結(jié)合的思想的應(yīng)用.7、4.8cm.【解析】【分析】根據(jù)勾股定理可求出斜邊.然后由于同一三角形面積一定,可列方程直接解答.【詳解】∵直角三角形的兩條直角邊分別為6cm,8cm,∴斜邊為=10(cm),設(shè)斜邊上的高為h,則直角三角形的面積為×6×8=×10h,解得:h=4.8cm,這個直角三角形斜邊上的高為4.8cm.故答案為4.8cm.【考點】此題考查勾股定理,解題關(guān)鍵在于列出方程.8、7.5;【解析】【分析】旗桿、拉直的繩子與地面構(gòu)成直角三角形,根據(jù)題中數(shù)據(jù),用勾股定理即可解答.【詳解】解:如圖,設(shè)旗桿的長度為xm,則繩子的長度為:(x+1)m,在Rt△ABC中,由勾股定理得:x2+42=(x+1)2,解得:x=7.5,∴旗桿的高度為7.5m,故答案為7.5.【考點】本題考查的是勾股定理的應(yīng)用,根據(jù)題意得出直角三角形是解答此題的關(guān)鍵.三、解答題1、三角形為直角三角形,理由見解析【解析】【分析】這是一道有關(guān)勾股定理的逆定理、完全平方公式的解答題.把已知條件寫成三個完全平方式的和的形式,再由非負數(shù)的性質(zhì)求得三邊,根據(jù)勾股定理的逆定理即可判斷△ABC的形狀.【詳解】,,即.,,,,,.,,.,,該三角形為直角三角形.【考點】此題主要考查了勾股定理的逆定理、完全平方公式.此題的關(guān)鍵就是靈活掌握完全平方公式的特點,用配方法進行恒等變形,在恒等變形的過程中不要改變式子的值.2、(1)見解析(2)DF的長為5.【解析】【分析】(1)利用勾股定理的逆定理,證明△ADC是直角三角形,即可得出∠ADC是直角;(2)根據(jù)三角形的中線的定義以及直角三角形的性質(zhì)解答即可.(1)證明:∵DE⊥AC于點E,∴∠AED=∠CED=90°,在Rt△ADE中,∠AED=90°,∴AD2=AE2+DE2=82+42=80,同理:CD2=20,∴AD2+CD2=80+20=100,∵AC=AE+CE=8+2=10,∴AC2=100,∴AD2+CD2=AC2,∴△ADC是直角三角形,∴∠ADC=90°;(2)解:∵AD是△ABC的中線,∠ADC=90°,∴AD垂直平分BC,∴AB=AC=10,在Rt△ADB中,∠ADB=90°,∵點F是邊AB的中點,∴DF=AB=5.∴DF的長為5.【考點】本題主要考查了直角三角形的性質(zhì)與判定,垂直平分線的判定和的性質(zhì),熟記勾股定理與逆定理是解答本題的關(guān)鍵.3、(1)詳見解析;(2)S四邊形ABCD=56【解析】【分析】(1)由等角的余角相等可得∠DAC=∠ABE,再根據(jù)題意可得Rt△BAE≌Rt△ADC,即可證;(2)根據(jù)勾股定理算出AC,由全等可得BE=AC,再算出△ACD的面積和△ABC的面積相加即可.【詳解】解:(1)∵BE⊥AC,∴∠ABE+∠BAE=90°,∵BAD=90°,∴∠BAE+∠DAC=90°,∴∠DAC=∠ABE,又∵AB=AD,∠BEA=∠ACD,∴Rt△BAE≌Rt△ADC(AAS),∴BE=AC.(2)∵AB=AD=10,CD=6,∠ACD=90°,∴,∵Rt△BAE≌Rt△ADC,∴BE=AC=8,∴.【考點】本題考查三角形全等的判定和性質(zhì),三角形面積,關(guān)鍵在于牢記基礎(chǔ)知識并靈活使用.4、速度為30米每秒【解析】【分析】根據(jù)勾股定理求得的長度,再根據(jù)速度等于路程除以時間即可求得敵方汽車的速度.【詳解】,,米每秒,答:敵方汽車的速度為30米每秒.【考點】本題考查了勾股定理的應(yīng)用,掌握勾股定理是解題的關(guān)鍵.5、(1)A、C兩地之間的距離為14.1km;(2)C港在A港北偏東15°的方向上.【解析】【分析】(1)根據(jù)方位角的定義可得出∠ABC=90°,再根據(jù)勾股定理可求得AC的長為14.1.(2)由(1)可知△ABC為等腰直角三角形,從而得出∠BAC=45°,求出∠CAM=15°,所而確定C港在A港的什么方向.【詳解】(1)由題意可得,∠PBC=30°,∠MAB=60°,∴∠CBQ=60°,∠BAN=30°,∴∠ABQ=30°,∴∠ABC=90°.∵AB=BC=10,∴AC==≈14.1.答:
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 創(chuàng)業(yè)培訓(xùn)講師教研制度及流程
- 嚴格培訓(xùn)工作制度規(guī)定
- 小修崗位人員培訓(xùn)制度及流程
- 停車廠人員安全培訓(xùn)制度
- 培訓(xùn)機構(gòu)相關(guān)管理制度
- 公司培訓(xùn)教員管理制度
- 學(xué)校培訓(xùn)日常管理制度
- 理財公司培訓(xùn)管理制度
- 災(zāi)害信息員定期培訓(xùn)制度
- 信息化教師日常培訓(xùn)制度
- QGDW12505-2025電化學(xué)儲能電站安全風(fēng)險評估規(guī)范
- 2025四川眉山市國有資本投資運營集團有限公司招聘50人筆試參考題庫附帶答案詳解
- 2024年山東濟南中考滿分作文《為了這份繁華》
- 2025年鐵嶺衛(wèi)生職業(yè)學(xué)院單招職業(yè)傾向性測試題庫新版
- 《煤礦安全生產(chǎn)責(zé)任制》培訓(xùn)課件2025
- 項目進度跟進及完成情況匯報總結(jié)報告
- 2025年常州機電職業(yè)技術(shù)學(xué)院高職單招語文2018-2024歷年參考題庫頻考點含答案解析
- 民間融資居間合同
- 2024-2025學(xué)年冀教版九年級數(shù)學(xué)上冊期末綜合試卷(含答案)
- 《智能網(wǎng)聯(lián)汽車車控操作系統(tǒng)功能安全技術(shù)要求》
- 公司綠色可持續(xù)發(fā)展規(guī)劃報告
評論
0/150
提交評論