解析卷山西省永濟市中考數(shù)學真題分類(勾股定理)匯編定向練習試卷(附答案詳解)_第1頁
解析卷山西省永濟市中考數(shù)學真題分類(勾股定理)匯編定向練習試卷(附答案詳解)_第2頁
解析卷山西省永濟市中考數(shù)學真題分類(勾股定理)匯編定向練習試卷(附答案詳解)_第3頁
解析卷山西省永濟市中考數(shù)學真題分類(勾股定理)匯編定向練習試卷(附答案詳解)_第4頁
解析卷山西省永濟市中考數(shù)學真題分類(勾股定理)匯編定向練習試卷(附答案詳解)_第5頁
已閱讀5頁,還剩29頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)

文檔簡介

山西省永濟市中考數(shù)學真題分類(勾股定理)匯編定向練習考試時間:90分鐘;命題人:教研組考生注意:1、本卷分第I卷(選擇題)和第Ⅱ卷(非選擇題)兩部分,滿分100分,考試時間90分鐘2、答卷前,考生務(wù)必用0.5毫米黑色簽字筆將自己的姓名、班級填寫在試卷規(guī)定位置上3、答案必須寫在試卷各個題目指定區(qū)域內(nèi)相應(yīng)的位置,如需改動,先劃掉原來的答案,然后再寫上新的答案;不準使用涂改液、膠帶紙、修正帶,不按以上要求作答的答案無效。第I卷(選擇題14分)一、單選題(7小題,每小題2分,共計14分)1、如圖,將直角三角形紙片沿AD折疊,使點B落在AC延長線上的點E處.若AC=3,BC=4,則圖中陰影部分的面積是()A. B. C. D.2、觀察“趙爽弦圖”(如圖),若圖中四個全等的直角三角形的兩直角邊分別為a,b,,根據(jù)圖中圖形面積之間的關(guān)系及勾股定理,可直接得到等式(

)A. B.C. D.3、如圖,在△ABC中,AB=2,∠ABC=60°,∠ACB=45°,D是BC的中點,直線l經(jīng)過點D,AE⊥l,BF⊥l,垂足分別為E,F(xiàn),則AE+BF的最大值為()A. B.2 C.2 D.34、“趙爽弦圖”巧妙地利用面積關(guān)系證明了勾股定理,是我國古代數(shù)學的驕傲.如圖所示的“趙爽弦圖”是由四個全等的直角三角形和一個小正方形拼成的一個大正方形.設(shè)直角三角形較長直角邊長為a,較短直角邊長為b.若ab=8,大正方形的面積為25,則小正方形的邊長為A.9 B.6 C.4 D.35、如圖所示,將一根長為24cm的筷子,置于底面直徑為5cm,高為12cm的圓柱形水杯中,設(shè)筷子露在外面的長為hcm,則h的取值范圍是()A.0<h≤11 B.11≤h≤12 C.h≥12 D.0<h≤126、如圖,在中,,兩直角邊,,現(xiàn)將AC沿AD折疊,使點C落在斜邊AB上的點E處,則CD長為(

)A. B. C. D.7、如圖,中,,一同學利用直尺和圓規(guī)完成如下操作:①以點C為圓心,以CB為半徑畫弧,交AB于點G;分別以點G、B為圓心,以大于的長為半徑畫弧,兩弧交點K,作射線CK;②以點B為圓心,以適當?shù)拈L為半徑畫弧,交BC于點M,交AB的延長線于N,分別以M、N為圓心,以大于的長為半徑畫弧,兩弧交于點P,作直線BP交AC的延長線于點D,交射線CK于點E.請你觀察圖形,根據(jù)操作結(jié)果解答下列問題;過點D作交AB的延長線于點F,若,,則CE的長為(

)A.13 B. C. D.第Ⅱ卷(非選擇題86分)二、填空題(8小題,每小題2分,共計16分)1、如圖,某農(nóng)舍的大門是一個木制的長方形柵欄,它的高為2m,寬為1.5m,現(xiàn)需要在相對的頂點間用一塊木板加固,則木板的長為________.2、如圖,一架長5米的梯子A1B1斜靠在墻A1C上,B1到墻底端C的距離為3米,此時梯子的高度達不到工作要求,因此把梯子的B1端向墻的方向移動了1.6米到B處,此時梯子的高度達到工作要求,那么梯子的A1端向上移動了_____米.3、已知,在中,,,,則的面積為__.4、如圖,在四邊形ABCD中,,,,,,那么四邊形ABCD的面積是___________.5、《九章算術(shù)》是我國古代最重要的數(shù)學著作之一,在勾股章中記載了一道“折竹抵地”問題:“今有竹高一丈,末折抵地,去本三尺,問折著高幾何?”翻譯成數(shù)學問題是:如圖所示,在ΔABC中,∠ACB=90o,AC+AB=10,BC=3,求AC的長,若設(shè)AC=x,則可列方程為________________.6、如圖1,鄰邊長為2和6的矩形分割成①,②,③,④四塊后,拼接成如圖2不重疊、無縫隙的正方形,則圖2中的值為___________,圖1中的長為_______.7、如圖,在中,,于點D.E為線段BD上一點,連結(jié)CE,將邊BC沿CE折疊,使點B的對稱點落在CD的延長線上.若,,則的面積為__________.8、如圖所示,在△ABC中,∠B=90°,AB=3,AC=5,將△ABC折疊,使點C與點A重合,折痕為DE,則△ABE的周長為.三、解答題(7小題,每小題10分,共計70分)1、如圖所示的一塊地,,,,,,求這塊地的面積.2、如圖②,它可以看作是由邊長為a、b、c的兩個直角三角形(如圖①C為斜邊)拼成的,其中A、C、D三點在同一條直線上,(1)請從面積出發(fā)寫出一個表示a、b、c的關(guān)系的等式;(要求寫出過程)(2)如圖③④⑤,以直角三角形的三邊為邊或直徑,分別向外部作正方形、半圓、等邊三角形,這三個圖形中面積關(guān)系滿足的有_______個.(3)如圖⑥,直角三角形的兩直角邊長分別為3,5,分別以直角三角形的三邊為直徑作半圓,則圖中陰影部分的面積為_______.3、如圖,某海岸線MN的方向為北偏東75°,甲,乙兩船分別向海島C運送物資,甲船從港口A處沿北偏東45°方向航行,乙船從港口B處沿北偏東30°方向航行,已知港口B到海島C的距離為30海里,求港口A到海島C的距離.4、下圖是某“飛越叢林”俱樂部新近打造的一款兒童游戲項目,工作人員告訴小敏,該項目AB段和BC段均由不銹鋼管材打造,總長度為26米,長方形CDEF為一木質(zhì)平臺的主視圖.小敏經(jīng)過現(xiàn)場測量得知:CD=1米,AD=15米,于是小敏大膽猜想立柱AB段的長為10米,請判斷小敏的猜想是否正確?如果正確,請寫出理由,如果錯誤,請求出立柱AB段的正確長度.5、(1)圖1是由有20個邊長為1的正方形組成的,把它按圖1的分割方法分割成5部分后可拼接成一個大正方形(內(nèi)部的粗實線表示分割線),請你在圖2的網(wǎng)格中畫出拼接成的大正方形.(2)如果(1)中分割成的直角三角形兩直角邊分別為a,b斜邊為c.請你利用圖2中拼成的大正方形證明勾股定理.(3)應(yīng)用:測量旗桿的高度:校園內(nèi)有一旗桿,小希想知道旗桿的高度,經(jīng)觀察發(fā)現(xiàn)從頂端垂下一根拉繩,于是他測出了下列數(shù)據(jù):①測得拉繩垂到地面后,多出的長度為0.5米;②他在距離旗桿4米的地方拉直繩子,拉繩的下端恰好距離地面0.5米.請你根據(jù)所測得的數(shù)據(jù)設(shè)計可行性方案,解決這一問題.(畫出示意圖并計算出這根旗桿的高度).6、2020年春季“新冠肺炎”在武漢全面爆發(fā),蔓延全國,危及到人民生命安全,為了積極響應(yīng)國家防控政策,雙流區(qū)某鎮(zhèn)政府采用了移動宣講的形式進行宣傳防控措施,如圖,筆直公路的一側(cè)點處有一村莊,村莊到公路的距離為600米,假設(shè)宣講車周圍1000米以內(nèi)能聽到廣播宣傳,宣講車在公路上沿方向行駛時:(1)請問村莊能否聽到宣傳,請說明理由;(2)如果能聽到,已知宣講車的速度是200米/分鐘,那么村莊總共能聽到多長時間的宣傳?7、勾股定理被譽為“幾何明珠”,在數(shù)學的發(fā)展歷程中占有舉足輕重的地位.它是初中數(shù)學中的重要知識點之一,也是初中學生以后解決數(shù)學問題和實際問題中常常運用到的重要知識,因此學好勾股定理非常重要.學習數(shù)學“不僅要知其然,更要知其所以然”,所以,我們要學會勾股定理的各種證明方法.請你利用如圖圖形證明勾股定理:已知:如圖,四邊形ABCD中,BD⊥CD,AE⊥BD于點E,且△ABE≌△BCD.求證:AB2=BE2+AE2.-參考答案-一、單選題1、B【解析】【分析】由勾股定理求出AB,設(shè)CD=x,則BD=4-x,根據(jù)求出x得到CD的長,利用面積求出答案.【詳解】解:∵∠ACB=90°,∴,由折疊得AE=AB=5,DE=BD,設(shè)CD=x,則BD=4-x,在△DCE中,∠DCE=90°,CE=AE-AC=5-3=2,∵,∴,解得x=1.5,∴CD=1.5,∴圖中陰影部分的面積是,故選:B.【考點】此題考查了折疊的性質(zhì),勾股定理,熟記勾股定理的計算公式是解題的關(guān)鍵.2、C【解析】【分析】根據(jù)小正方形的面積等于大正方形的面積減去4個直角三角形的面積可得問題的答案.【詳解】標記如下:∵,∴(a﹣b)2=a2+b2﹣4=a2﹣2ab+b2.故選:C.【考點】此題考查的是利用勾股定理的證明,可以完全平方公式進行證明,掌握面積差得算式是解決此題關(guān)鍵.3、A【解析】【分析】把要求的最大值的兩條線段經(jīng)過平移后形成一條線段,然后再根據(jù)垂線段最短來進行計算即可.【詳解】解:如圖,過點C作CK⊥l于點K,過點A作AH⊥BC于點H,在Rt△AHB中,∵∠ABC=60°,AB=2,∴BH=1,AH=,在Rt△AHC中,∠ACB=45°,∴AC=,∵點D為BC中點,∴BD=CD,在△BFD與△CKD中,,∴△BFD≌△CKD(AAS),∴BF=CK,延長AE,過點C作CN⊥AE于點N,可得AE+BF=AE+CK=AE+EN=AN,在Rt△ACN中,AN<AC,當直線l⊥AC時,最大值為,綜上所述,AE+BF的最大值為.故選:A.【考點】本題主要考查了全等三角形的判定定理和性質(zhì)定理及平移的性質(zhì),構(gòu)建全等三角形是解答此題的關(guān)鍵.4、D【解析】【分析】由題意可知:中間小正方形的邊長為:,根據(jù)勾股定理以及題目給出的已知數(shù)據(jù)即可求出小正方形的邊長.【詳解】解:由題意可知:中間小正方形的邊長為:,每一個直角三角形的面積為:,,,或(舍去),故選:D.【考點】本題考查勾股定理,解題的關(guān)鍵是熟練運用勾股定理以及完全平方公式,本題屬于基礎(chǔ)題型.5、B【解析】【分析】根據(jù)題意畫出圖形,先找出h的值為最大和最小時筷子的位置,再根據(jù)勾股定理解答即可.【詳解】解:當筷子與杯底垂直時h最大,h最大=24﹣12=12cm.當筷子與杯底及杯高構(gòu)成直角三角形時h最小,如圖所示:此時,AB===13cm,∴h=24﹣13=11cm.∴h的取值范圍是11cm≤h≤12cm.故選:B.【考點】本題考查了勾股定理的實際應(yīng)用問題,解答此題的關(guān)鍵是根據(jù)題意畫出圖形找出何時h有最大及最小值,同時注意勾股定理的靈活運用,有一定難度.6、A【解析】【分析】先根據(jù)勾股定理求得AB的長,再根據(jù)折疊的性質(zhì)求得AE,BE的長,從而利用勾股定理可求得CD的長.【詳解】解:∵AC=6cm,BC=8cm,∠C=90°,∴AB=(cm),由折疊的性質(zhì)得:AE=AC=6cm,∠AED=∠C=90°,∴BE=10cm?6cm=4cm,∠BED=90°,設(shè)CD=x,則BD=BC?CD=8?x,在Rt△DEB中,BE2+DE2=BD2,即42+x2=(8?x)2,解得:x=3,∴CD=3cm,故選:A.【考點】本題考查了折疊的性質(zhì),勾股定理等知識;熟記折疊性質(zhì)并表示出Rt△DEB的三邊,然后利用勾股定理列出方程是解題的關(guān)鍵.7、D【解析】【分析】先證明CE=CD=DF,BC=BF=5,利用勾股定理求出AB,設(shè)CE=CD=DF=x,在Rt△ADF中,利用勾股定理構(gòu)建方程求解即可.【詳解】解:由作圖知CE⊥AB,BD平分∠CBF,∴∠1=∠2=∠3,∵∠CEB+∠3=∠2+∠CDE=90°,∴∠CEB=∠CDE,∴CD=CE,在△DBC和△DBF中,,∴△BDC≌△BDF(AAS),∴CD=DF,BC=BF=5,∵∠ACB=90°,AC=12,BC=5,∴AB=,設(shè)EC=CD=DF=x,在Rt△ADF中,則有(12+x)2=x2+182,∴x=,∴CE=,故選D.【考點】本題考查作圖-復(fù)雜作圖,全等三角形的判定和性質(zhì),等腰三角形的判定,以及勾股定理等知識,解題的關(guān)鍵是學會構(gòu)建方程解決問題,屬于中考??碱}型.二、填空題1、2.5m【解析】【詳解】設(shè)木棒的長為xm,根據(jù)勾股定理可得:x2=22+1.52,解得x=2.5.故木棒的長為2.5m.故答案為2.5m.2、0.8【解析】【分析】梯子的長是不變的,只要利用勾股定理解出梯子滑動前和滑動后的所構(gòu)成的兩直角三角形,分別得出AO,A1O的長即可.【詳解】解:在Rt△ABO中,根據(jù)勾股定理知,A1O==4(m),在Rt△ABO中,由題意可得:BO=1.4(m),根據(jù)勾股定理知,AO==4.8(m),所以AA1=AO-A1O=0.8(米).故答案為0.8.【考點】本題考查勾股定理的應(yīng)用,解題關(guān)鍵是從題中抽象出勾股定理這一數(shù)學模型,畫出準確的示意圖.領(lǐng)會數(shù)形結(jié)合的思想的應(yīng)用.3、2或14#14或2【解析】【分析】過點B作AC邊的高BD,Rt△ABD中,∠A=45°,AB=4,得BD=AD=4,在Rt△BDC中,BC=4,得CD==5,①△ABC是鈍角三角形時,②△ABC是銳角三角形時,分別求出AC的長,即可求解.【詳解】解:過點作邊的高,中,,,,在中,,,①是鈍角三角形時,,;②是銳角三角形時,,,故答案為:2或14.【考點】本題考查了勾股定理,三角形面積求法,解題關(guān)鍵是分類討論思想.4、+24【解析】【分析】連結(jié)BD,可求出BD=6,再根據(jù)勾股定理逆定理,得出△BDC是直角三角形,兩個三角形面積相加即可.【詳解】解:連結(jié)BD,∵,∴,∵,,∴BD=6,∵BD2=36,CD2=64,BC2=100,BD2+CD2=BC2,∴∠BDC=90°,S△ABD=,S△BDC=,四邊形ABCD的面積是=S△ABD+S△BDC=+24故答案為:+24.【考點】本題考查勾股定理以及逆定理,三角形的面積等知識,解題的關(guān)鍵是靈活運用所學知識解決問題,屬于中考常考題型.5、【解析】【分析】設(shè)AC=x,則AB=10-x,再由即可列出方程.【詳解】解:∵,且,∴,在Rt△ABC中,由勾股定理有:,即:,故可列出的方程為:,故答案為:.【考點】本題考查了勾股定理的應(yīng)用,熟練掌握勾股定理是解決本題的關(guān)鍵.6、

【解析】【分析】由等積法解得正方形的邊長,再利用勾股定理解得圖④的直角邊FH的長,在圖2中,利用正弦的定義解得,接著利用勾股定理解得,據(jù)此解得的值,最后利用解答即可.【詳解】解:矩形的面積為:2×6=12正方形的邊長如圖1,如圖2,設(shè)或(舍去)故答案為:,.【考點】本題考查正方形與矩形、圖形的拼接,涉及勾股定理、正弦、余弦等知識,是重要考點,掌握相關(guān)知識是解題關(guān)鍵.7、【解析】【分析】在△ABC中由等面積求出,進而得到,設(shè)BE=x,進而DE=DB-BE=,最后在中使用勾股定理求出x即可求解.【詳解】解:在中由勾股定理可知:,∵,∴,∴,在中由勾股定理可知:,∴,設(shè)BE=x,由折疊可知:BE=B’E,且DE=DB-BE=,在中由勾股定理可知:,代入數(shù)據(jù):∴,解得,∴,∴,故答案為:.【考點】本題考查了勾股定理求線段長、折疊的性質(zhì)等,解題的關(guān)鍵是掌握折疊的性質(zhì),熟練使用勾股定理求線段長.8、7【解析】【分析】根據(jù)勾股定理求得BC,再根據(jù)折疊性質(zhì)得到AE=CE,進而由三角形的周長=AB+BC求解即可.【詳解】∵在△ABC中,∠B=90°,AB=3,AC=5,∴BC=.∵△ADE是△CDE翻折而成,∴AE=CE,∴AE+BE=BC=4,∴△ABE的周長=AB+BC=3+4=7.故答案是:7.【考點】本題考查勾股定理、折疊性質(zhì),熟練掌握勾股定理是解答的關(guān)鍵.三、解答題1、384【解析】【分析】連接,勾股定理求得,勾股定理的逆定理證明為直角三角形,進而根據(jù)三角形的面積公式計算和的面積之差即可.【詳解】解:連接,在直角中,,,由,解得,在中,,,,∵,∴,∴為直角三角形,要求這塊地的面積,求和的面積之差即可,,答:這塊地的面積為.【考點】本題考查了勾股定理及其逆定理,掌握勾股定理和勾股定理的逆定理是解題的關(guān)鍵.2、(1)(2)3(3)7.5【解析】【分析】(1)梯形的面積等于三個直角三角形的面積的和.即可得:;(2)根據(jù)勾股定理可得三個圖形中面積關(guān)系滿足的有3個;(3)根據(jù)半圓面積和勾股定理即可得結(jié)論:,進而求解.(1)解:四邊形ABED的面積可以表示為:,也可以表示為,所以,整理得;(2)設(shè)直角三角形的三條邊按照從小到大分別為a,b,c,則,圖③,∵,∴,圖④,∵∴,圖⑤,∵∴,故答案為:3.(3)∵,∴,∵,∴.【考點】本題考查了勾股定理的證明,解決本題的關(guān)鍵是掌握勾股定理.3、【解析】【分析】過點C作CD⊥AM垂足為D,設(shè)CD=x,根據(jù)直角三角形的性質(zhì)求可得AC=2x、BD=BC=x,再利用勾股定理可求得x,進而求得AC的長.【詳解】解:過點C作CD⊥AM垂足為D,∴∠CAD=75°-45°=30°,∠CBD=75°-30°=30°,設(shè)CD=x∵在Rt△ACD中,∠CAD=75°-45°=30°∴AC=2x∵在Rt△BCD中,∠CBD=45°,BC=30∴BD=BC=x∴,解得x=∴AC=2x=.答:港口A到海島C的距離是海里.【考點】本題主要考查了直角三角形的性質(zhì)、勾股定理等知識點,掌握直角三角形的邊角關(guān)系是正確解答的前提,作垂線構(gòu)造直角三角形是解決問題的關(guān)鍵.4、小敏的猜想錯誤,立柱AB段的正確長度長為9米.【解析】【分析】延長FC交AB于點G,設(shè)BG=x米,在Rt△BGC中利用勾股定理可求x,進而可得AB的正確長度【詳解】解:如圖,延長FC交AB于點G則CG⊥AB,AG=CD=1米,GC=AD=15米設(shè)BG=x米,則BC=(26-1-x)米在Rt△BGC中,∵∴解得

∴BA=BG+GA=8+1=9(米)∴小敏的猜想錯誤,立柱AB段的正確長度長為9米.【考點】本題主要考查勾股定理的應(yīng)用,解題的關(guān)鍵是作出輔助線,構(gòu)造直角三角形5、(1)見解析;(2)見解析;(3)在四邊形ABCD中,AB⊥BC,DC⊥BC,AD比AB長0.5米,BC=4米,CD=0.5米,求AB的長;8米【解析】【分析】(1)將圖1分割成五塊:四個直角邊分別為1、2的直角三角形,一個邊長為2的正方形,再在圖2中,拼成邊長為的正方形即可.(2)根據(jù)20個小正方形的面積的和等于拼成的正方形的面積,根據(jù)勾股定理確定截線的長度即可;(3)根據(jù)題意,畫出圖形,可將該問題抽象為解直角三角形問題,該直角三角形的斜邊比其中一條直角邊多1m,而另一條直角邊長為5m,可以根據(jù)勾股定理求出斜邊的長即可.【詳解】解:(1)如圖(2)==∴

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
  • 6. 下載文件中如有侵權(quán)或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論