版權說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權,請進行舉報或認領
文檔簡介
冀教版8年級下冊期末試卷考試時間:90分鐘;命題人:教研組考生注意:1、本卷分第I卷(選擇題)和第Ⅱ卷(非選擇題)兩部分,滿分100分,考試時間90分鐘2、答卷前,考生務必用0.5毫米黑色簽字筆將自己的姓名、班級填寫在試卷規(guī)定位置上3、答案必須寫在試卷各個題目指定區(qū)域內(nèi)相應的位置,如需改動,先劃掉原來的答案,然后再寫上新的答案;不準使用涂改液、膠帶紙、修正帶,不按以上要求作答的答案無效。第I卷(選擇題14分)一、單選題(7小題,每小題2分,共計14分)1、如圖,四邊形ABCD是菱形,對角線AC,BD交于點O,E是邊AD的中點,過點E作EF⊥BD,EG⊥AC,點F,G為垂足,若AC=10,BD=24,則FG的長為()A. B.8 C. D.2、如圖,平行四邊形ABCD的對角線AC,BD相交于點O,下列結(jié)論錯誤的是()A.AO=CO B.AD∥BC C.AD=BC D.∠DAC=∠ACD3、如圖,△ABC的周長為a,以它的各邊的中點為頂點作△A1B1C1,再以△AB1C1各邊的中點為頂點作△A2B2C2,再以△AB2C2各邊的中點為頂點作△A3B3C3,…如此下去,則△AnBnCn的周長為()A.a(chǎn) B.a(chǎn) C.a(chǎn) D.a(chǎn)4、下列說法錯誤的是()A.平行四邊形對邊平行且相等 B.菱形的對角線平分一組對角C.矩形的對角線互相垂直 D.正方形有四條對稱軸5、如圖,在△ABC中,AB=3,AC=4,BC=5,△ABD,△ACE,△BCF都是等邊三角形,下列結(jié)論中:①AB⊥AC;②四邊形AEFD是平行四邊形;③∠DFE=150°;④S四邊形AEFD=8.錯誤的個數(shù)是()A.1個 B.2個 C.3個 D.4個6、在平面直角坐標系中,已知點P(2a﹣4,a+3)在x軸上,則點(﹣a+2,3a﹣1)所在的象限為()A.第一象限 B.第二象限 C.第三象限 D.第四象限7、如圖,將邊長為6個單位的正方形ABCD沿其對角線BD剪開,再把△ABD沿著DC方向平移,得到△A′B′D′,當兩個三角形重疊部分的面積為4個平方單位時,它移動的距離DD′等于()A.2 B. C. D.第Ⅱ卷(非選擇題86分)二、填空題(8小題,每小題2分,共計16分)1、“”是一款數(shù)學應用軟件,用“”繪制的函數(shù)和的圖像如圖所示.若,分別為方程和的一個解,則根據(jù)圖像可知____.(填“”、“”或“”).2、若一個正多邊形的內(nèi)角和與外角和的度數(shù)相等,則此正多邊形對稱軸條數(shù)為______.3、在直角坐標系中,等腰直角三角形、、、、按如圖所示的方式放置,其中點、、、、均在一次函數(shù)的圖象上,點、、、、均在軸上.若點的坐標為,點的坐標為,則點的坐標為___.4、如圖,在△ABC中,D,E分別是邊AB,AC的中點,如果BC=7,那么DE=____.5、函數(shù)和的圖象相交于點,則方程的解為______.6、添加一個條件,使矩形ABCD是正方形,這個條件可能是_____.7、如圖,矩形紙片,,.如果點在邊上,將紙片沿折疊,使點落在點處,如果直線經(jīng)過點,那么線段的長是_______.8、已知點A(a,-3)與點B(3,b)關于y軸對稱,則a+b=_____________________.三、解答題(7小題,每小題10分,共計70分)1、平面直角坐標系內(nèi)有一平行四邊形點,,,,有一次函數(shù)的圖象過點(1)若此一次函數(shù)圖象經(jīng)過平行四邊形邊的中點,求的值(2)若此一次函數(shù)圖象與平行四邊形始終有兩個交點,求出的取值范圍2、如圖,四邊形ABCD為平行四邊形,E,F(xiàn)是直線BD上兩點,且BE=DF,連接AF,CE.求證:∠E=∠F.3、為鞏固拓展脫貧攻堅成果,開啟鄉(xiāng)村振興發(fā)展之門,某村村民組長組織村民加工板栗并進行銷售.根據(jù)現(xiàn)有的原材料,預計加工規(guī)格相同的普通板栗、精品板栗共4000件.某天上午的銷售件數(shù)和所賣金額統(tǒng)計如下表:普通板栗(件)精品板栗(件)總金額(元)甲購買情況23350乙購買情況41300(1)求普通板栗和精品板栗的單價分別是多少元.(2)根據(jù)(1)中求出的單價,若普通板栗和精品板栗每件的成本分別為40元、60元,且加工普通板栗a件(),則4000件板栗的銷售總利潤為w元.問普通板栗和精品板栗各加工多少件,所獲總利潤最多?最多總利潤是多少?4、如圖,在菱形ABCD中,點E、F分別是邊CD、BC的中點(1)求證:四邊形BDEG是平行四邊形;(2)若菱形ABCD的邊長為13,對角線AC=24,求EG的長.5、【問題情境】如圖1,在中,,垂足為D,我們可以得到如下正確結(jié)論:①;②;③,這些結(jié)論是由古希酷著名數(shù)學家歐幾里得在《幾何原本》最先提出的,我們稱之為“射影定理”,又稱“歐幾里德定理”.(1)請證明“射影定理”中的結(jié)論③.(2)【結(jié)論運用】如圖2,正方形的邊長為6,點O是對角線、的交點,點E在上,過點C作,垂足為F,連接.①求證:.②若,求的長.6、如圖,直線,線段分別與直線、交于點、點,滿足.(1)使用尺規(guī)完成基本作圖:作線段的垂直平分線交于點,交于點,交線段于點,連接、、、.(保留作圖痕跡,不寫做法,不下結(jié)論)(2)求證:四邊形為菱形.(請補全下面的證明過程)證明:____①____垂直平分,∴____②________③____∴四邊形是___④_____∴四邊形是菱形(______⑤__________)(填推理的依據(jù)).7、如圖是某種蠟燭在燃燒過程中高度與時間之間關系的圖象,由圖象解答下列問題:(1)求蠟燭在燃燒過程中高度與時間之間的函數(shù)表達式(2)經(jīng)過多少小時蠟燭燃燒完畢?-參考答案-一、單選題1、A【解析】【分析】由菱形的性質(zhì)得出OA=OC=5,OB=OD=12,AC⊥BD,根據(jù)勾股定理求出AD=13,由直角三角形斜邊上的中線等于斜邊的一半求出OE=6.5,證出四邊形EFOG是矩形,得到EO=GF即可得出答案.【詳解】解:連接OE,∵四邊形ABCD是菱形,∴OA=OC=5,OB=OD=12,AC⊥BD,在Rt△AOD中,AD==13,又∵E是邊AD的中點,∴OE=AD=×13=6.5,∵EF⊥BD,EG⊥AC,AC⊥BD,∴∠EFO=90°,∠EGO=90°,∠GOF=90°,∴四邊形EFOG為矩形,∴FG=OE=6.5.故選:A.【點睛】本題考查了菱形的性質(zhì)、矩形的判定與性質(zhì)、直角三角形斜邊上中線定理等知識;熟練掌握菱形的性質(zhì)和矩形的性質(zhì)是解題的關鍵.2、D【解析】【分析】根據(jù)平行四邊形的性質(zhì)解答.【詳解】解:∵四邊形ABCD是平行四邊形,∴AO=OC,故A正確;∴,故B正確;∴AD=BC,故C正確;故選:D.【點睛】此題考查了平行四邊形的性質(zhì),熟記平行四邊形的性質(zhì)是解題的關鍵.3、A【解析】【分析】根據(jù)三角形中位線的性質(zhì)可知的周長的周長,的周長的周長,以此類推找出規(guī)律,寫出代數(shù)式,再整理即可選擇.【詳解】解:∵以△ABC的各邊的中點為頂點作,∴的周長的周長.∵以各邊的中點為頂點作,∴的周長的周長,…,∴的周長故選:A.【點睛】本題主要考查三角形中位線的性質(zhì),根據(jù)三角形中位線的性質(zhì)求出前2個三角形的面積總結(jié)出規(guī)律是解答本題的關鍵.4、C【解析】【分析】根據(jù)矩形的性質(zhì)、平行四邊形的性質(zhì)、菱形的性質(zhì)和正方形的性質(zhì)分別進行判斷即可.【詳解】解:A、平行四邊形對邊平行且相等,正確,不符合題意;B、菱形的對角線平分一組對角,正確,不符合題意;C、矩形的對角線相等,不正確,符合題意;D、正方形有四條對稱軸,正確,不符合題意;故選:C.【點睛】本題考查了矩形的性質(zhì)、平行四邊形的性質(zhì)、菱形的性質(zhì)和正方形的性質(zhì),掌握以上性質(zhì)定理是解題的關鍵.5、A【解析】【分析】利用勾股定理逆定理證得△ABC是直角三角形,由此判斷①;證明△ABC≌△DBF得到DF=AE,同理可證:△ABC≌△EFC,得到EF=AD,由此判斷②;由②可判斷③;過A作AG⊥DF于G,求出AG即可求出S?AEFD,判斷④.【詳解】解:∵AB=3,AC=4,32+42=52,∴AB2+AC2=BC2,∴△ABC是直角三角形,∠BAC=90°,∴AB⊥AC,故①正確;∵△ABD,△ACE都是等邊三角形,∴∠DAB=∠EAC=60°,∴∠DAE=150°,∵△ABD和△FBC都是等邊三角形,∴BD=BA,BF=BC,∴∠DBF=∠ABC,在△ABC與△DBF中,,∴△ABC≌△DBF(SAS),∴AC=DF=AE=4,同理可證:△ABC≌△EFC(SAS),∴AB=EF=AD=3,∴四邊形AEFD是平行四邊形,故②正確;∴∠DFE=∠DAE=150°,故③正確;過A作AG⊥DF于G,如圖所示:則∠AGD=90°,∵四邊形AEFD是平行四邊形,∴∠FDA=180°﹣∠DFE=180°﹣150°=30°,∴AG=AD=,∴S?AEFD=DF?AG=4×=6;故④錯誤;∴錯誤的個數(shù)是1個,故選:A..【點睛】此題考查了等邊三角形的性質(zhì),勾股定理的逆定理,全等三角形的判定及性質(zhì),平行四邊形的判定及性質(zhì),直角三角形的30度角的性質(zhì),熟練掌握各知識點是解題的關鍵.6、D【解析】【分析】由x軸上點的坐標特點求出a值,代入計算出點的橫縱坐標,即可判斷.【詳解】解:∵點P(2a﹣4,a+3)在x軸上,∴a+3=0,解得a=-3,∴﹣a+2=5,3a﹣1=-10,∴點(﹣a+2,3a﹣1)所在的象限為第三象限,故選:D.【點睛】此題考查了直角坐標系中點的坐標特點,根據(jù)點的坐標判斷點所在的象限,由點在x軸上求出a的值是解題的關鍵.7、B【解析】【分析】先判斷重疊部分的形狀,然后設DD'=x,進而表示D'C等相關的線段,最后通過重疊部分的面積列出方程求出x的值即可得到答案.【詳解】解:∵四邊形ABCD是正方形,∴△ABD和△BCD是等腰直角三角形,如圖,記A'D'與BD的交點為點E,B'D'與BC的交點為F,由平移的性質(zhì)得,△DD'E和△D'CF為等腰直角三角形,∴重疊部分的四邊形D'EBF為平行四邊形,設DD'=x,則D'C=6-x,D'E=x,∴S?D'EBF=D'E?D'C=(6-x)x=4,解得:x=3+或x=3-,故選:B.【點睛】本題考查了正方形的性質(zhì)、等腰直角三角形的性質(zhì)、平移的性質(zhì),通過平移的性質(zhì)得到重疊部分四邊形的形狀是解題的關鍵.二、填空題1、<【解析】【分析】根據(jù)方程的解是函數(shù)圖象交點的橫坐標,結(jié)合圖象得出結(jié)論.【詳解】解:∵方程-x2(x-4)=-1的解為函數(shù)圖象與直線y=-1的交點的橫坐標,-x+4=-1的一個解為一次函數(shù)y=-x+4與直線y=-1交點的橫坐標,如圖所示:由圖象可知:a<b.故答案為:<.【點睛】本題考查了函數(shù)圖象與方程的解之間的關系,關鍵是利用數(shù)形結(jié)合,把方程的解轉(zhuǎn)化為函數(shù)圖象之間的關系.2、4【解析】【分析】利用多邊形的內(nèi)角和與外角和公式列出方程,求得多邊形的邊,再利用正多邊形的性質(zhì)可得答案.【詳解】解:設多邊形的邊數(shù)為n,根據(jù)題意(n-2)?180°=360°,解得n=4.所以正多邊形為正方形,所以這個正多邊形有4條對稱軸,故答案為:4.【點睛】本題考查了多邊形的內(nèi)角和公式與多邊形的外角和定理,解一元一次方程,需要注意,多邊形的外角和與邊數(shù)無關,任何多邊形的外角和都是360°,也考查的正多邊形的對稱軸的條數(shù).3、【解析】【分析】首先,根據(jù)等腰直角三角形的性質(zhì)求得點A1、A2的坐標;然后,將點A1、A2的坐標代入一次函數(shù)解析式,利用待定系數(shù)法求得該直線方程是y=x+1;最后,利用等腰直角三角形的性質(zhì)推知點Bn-1的坐標,然后將其橫坐標代入直線方程y=x+1求得相應的y值,從而得到點An的坐標.【詳解】解:如圖,點的坐標為,點的坐標為,,,則.△是等腰直角三角形,,.點的坐標是.同理,在等腰直角△中,,,則.點、均在一次函數(shù)的圖象上,,解得,,該直線方程是.點,的橫坐標相同,都是3,當時,,即,則,.同理,,,,當時,,即點的坐標為,.故答案為,.【點睛】本題考查了一次函數(shù)圖象上點的坐標特點,涉及到的知識點有待定系數(shù)法求一次函數(shù)解析式,一次函數(shù)圖象上點的坐標特征以及等腰直角三角形的性質(zhì).解答該題的難點是找出點Bn的坐標的規(guī)律.4、3.5##72【解析】【分析】根據(jù)DE是△ABC的中位線,計算求解即可.【詳解】解:∵D,E分別是邊AB,AC的中點∴DE是△ABC的中位線∴DEBC3.5故答案為:3.5.【點睛】本題考查了中位線.解題的關鍵在于正確的求值.5、【解析】【分析】由題意知,方程的解為其交點的橫坐標,進而可得結(jié)果.【詳解】解:由題意知的解為兩直線交點的橫坐標故答案為:.【點睛】本題考查了一次函數(shù)圖象的交點與一次方程解的關系.解題的關鍵在于理解一次函數(shù)圖象的交點與一次方程解的關系.6、或或或或【解析】【分析】根據(jù)有一組鄰邊相等的矩形是正方形;對角線互相垂直的矩形是正方形即可得出答案.【詳解】解:根據(jù)有一組鄰邊相等的矩形是正方形得:這個條件可能是或或或,根據(jù)對角線互相垂直的矩形是正方形得:這個條件可能是,故答案為:或或或或.【點睛】本題考查了正方形的判定,熟練掌握正方形與矩形之間的關系是解題關鍵.7、【解析】【分析】根據(jù)題意可知∠AFD=90°,利用勾股定理得DF=,再證明AD=DE,即可得出EF的長,從而解決問題.【詳解】如圖,∵將紙片沿AE折疊,使點B落在點F處,∴AB=AF=3,∠B=∠AFE=90°,∠AEB=∠AED,∵AD∥BC,∴∠DAE=∠AED,∴∠DAE=∠AED,∴AD=DE=4,在Rt△ADF中,由勾股定理得:,∴EF=DE-DF=,∴BE=EF=,故答案為:.【點睛】本題主要考查了翻折變換,勾股定理,等腰三角形的判定,平行線的性質(zhì)等知識,證明AD=DE是解題的關鍵.8、【解析】【分析】由點A(a,-3)與點B(3,b)關于y軸對稱,可得從而可得答案.【詳解】解:點A(a,-3)與點B(3,b)關于y軸對稱,故答案為:【點睛】本題考查的是關于軸對稱的兩個點的坐標特點,掌握“關于軸對稱的兩個點的橫坐標互為相反數(shù),縱坐標不變”是解本題的關鍵.三、解答題1、(1)k=;(2)?1<k<,且k≠0.【解析】【分析】(1)設OA的中點為M,根據(jù)M、P兩點的坐標,運用待定系數(shù)法求得k的值;(2)當一次函數(shù)y=kx+b的圖象過B、P兩點時,求得k的值;當一次函數(shù)y=kx+b的圖象過A、P兩點時,求得k的值,最后判斷k的取值范圍.(1)解:設OA的中點為M,∵O(0,0),A(4,0),∴OA=4,∴OM=2,∴M(2,0),∵一次函數(shù)y=kx+b的圖象過M(2,0),P(6,1)兩點,∴,解得:k=;(2)如圖,由一次函數(shù)y=kx+b的圖象過定點P,作直線BP,AP與平行四邊形只有一個交點,由于直線與平行四邊形有兩個交點,所以直線應在直線BP,AP之間,當一次函數(shù)y=kx+b的圖象過B、P兩點時,代入表達式y(tǒng)=kx+b得到:,解得:k=-1,當一次函數(shù)y=kx+b的圖象過A、P兩點時,代入表達式y(tǒng)=kx+b得到:,解得:k=,所以?1<k<,由于要滿足一次函數(shù)的存在性,所以?1<k<,且k≠0.【點睛】本題考查了運用待定系數(shù)法求一次函數(shù)解析式,解題時注意:求正比例函數(shù)y=kx,只要一對x,y的值;而求一次函數(shù)y=kx+b,則需要兩組x,y的值.2、證明見解析【解析】【分析】證明△ADF≌△CBE(SAS),由全等三角形的性質(zhì)即可解決問題.【詳解】證明:∵四邊形ABCD是平行四邊形,∴AD∥BC,AD=BC,∴∠ADB=∠DBC.∵∠ADF+∠ADB=180°,∠CBE+∠DBC=180°∴∠ADF=∠CBE.在△ADF和△CBE中,,∴△ADF≌△CBE(SAS),∴∠E=∠F.【點睛】本題考查平行四邊形的性質(zhì)、全等三角形的判定和性質(zhì)等知識,解題的關鍵是正確尋找全等三角形解決問題.3、(1)普通板栗的單價為55元,精品板栗的單價為80元;(2)普通板栗加工1000件,精品板栗加工3000件,所獲總利潤最多,最多總利潤是75000元.【解析】【分析】(1)設普通板栗的單價為x元,精品板栗的單價為y元,根據(jù)表格列出二元一次方程組,求解即可得;(2)加工普通板栗a(1000≤a≤3000)件,則加工精品板栗(4000?a)件,根據(jù)題意可得利潤的函數(shù)關系式w=?5a+80000,根據(jù)一次函數(shù)的性質(zhì)及自變量的取值范圍可得當a=1000時,所獲總利潤w最多,代入求解即可得.(1)解:設普通板栗的單價為x元,精品板栗的單價為y元,由題意得:2x+3y=3504x+y=300解得x=55y=80答:普通板栗的單價為55元,精品板栗的單價為80元;(2)解:加工普通板栗a(1000≤a≤3000)件,則加工精品板栗(4000?a)件,由題意得:w=55?40∵?5<0,1000≤a≤3000,∴當a=1000時,所獲總利潤w最多,w=?5×1000+80000=75000,∴4000?a=3000,答:普通板栗加工1000件,精品板栗加工3000件,所獲總利潤最多,最多總利潤是75000元.【點睛】題目主要考查二元一次方程組的應用及一次函數(shù)的最大利潤問題,理解題意,列出方程及函數(shù)解析式是解題關鍵.4、(1)證明見解析(2)10【解析】【分析】(1)利用AC平分∠BAD,AB∥CD,得到∠DAC=∠DCA,即可得到AD=DC,利用一組對邊平行且相等可證明四邊形ABCD是平行四邊形,再結(jié)合AB=AD,即可求證結(jié)論;(2)根據(jù)菱形的性質(zhì),得到CD=13,AO=CO=12,結(jié)合中位線性質(zhì),可得四邊形BDEG是平行四邊形,利用勾股定理即可得到OB、OD的長度,即可求解.(1)證明:∵AC平分∠BAD,AB∥CD,∴∠DAC=∠BAC,∠DCA=∠BAC,∴∠DAC=∠DCA,∴AD=DC,又∵AB∥CD,AB=AD,∴AB∥CD且AB=CD,∴四邊形ABCD是平行四邊形,∵AB=AD,∴四邊形ABCD是菱形.(2)解:連接BD,交AC于點O,如圖:∵菱形ABCD的邊長為13,對角線AC=24,∴CD=13,AO=CO=12,∵點E、F分別是邊CD、BC的中點,∴EF∥BD(中位線),∵AC、BD是菱形的對角線,∴AC⊥BD,OB=OD,又∵AB∥CD,EF∥BD,∴DE∥BG,BD∥EG,∵四邊形BDEG是平行四邊形,∴BD=EG,在△COD中,∵OC⊥OD,CD=13,CO=12,∴,∴EG=BD=10.【點睛】本題考查了平行四邊形性質(zhì)判定方法、菱形的判定和性質(zhì)、等腰三角形性質(zhì)、勾股定理等知識,關鍵在于熟悉四邊形的判定方法和在題目中找到合適的判定條件.5、(1)見解析;(2)①見解析;②.【解析】【分析】(1)由AA證明,再由相似三角形對應邊稱比例得到,繼而解題;(2)①由“射影定理”分別解得,,整理出,再結(jié)合即可證明;②由勾股定理解得,再根據(jù)得到,代入數(shù)值解題即可.(1)證明:(2)①四邊形ABCD
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經(jīng)權益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
- 6. 下載文件中如有侵權或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 養(yǎng)老護理中級老年康復護理
- 機器學習在護理決策支持中的應用
- 2025年便攜式超聲系統(tǒng)租賃合同
- 2025年白酒區(qū)域獨家合作協(xié)議
- 基因水平轉(zhuǎn)移的系統(tǒng)發(fā)育分析
- 婦科常用中成藥的合理使用
- 地球在宇宙中的位置2課件
- DB36∕T 1485-2025“贛出精 品”品牌建設通 用要求
- 在線教育的可擴展性和資源共享性研究
- 歷屆4級考試真題及答案
- 2025年大學康復治療學(運動療法學)試題及答案
- 胎膜早破的診斷與處理指南
- 進出口貨物報關單的填制教案
- 被壓迫者的教育學
- 2025年科研倫理與學術規(guī)范期末考試試題及參考答案
- 上市公司財務舞弊問題研究-以國美通訊為例
- 2025年國家開放電大行管本科《公共政策概論》期末考試試題及答案
- 2025年紀檢監(jiān)察知識試題庫(含答案)
- CJT 288-2017 預制雙層不銹鋼煙道及煙囪
- 2024年西安市政道橋建設集團有限公司招聘筆試參考題庫含答案解析
- 《彈性波動力學》課程教學大綱
評論
0/150
提交評論