解析卷重慶市九龍坡區(qū)7年級數(shù)學下冊第四章三角形同步練習試卷(詳解版)_第1頁
解析卷重慶市九龍坡區(qū)7年級數(shù)學下冊第四章三角形同步練習試卷(詳解版)_第2頁
解析卷重慶市九龍坡區(qū)7年級數(shù)學下冊第四章三角形同步練習試卷(詳解版)_第3頁
解析卷重慶市九龍坡區(qū)7年級數(shù)學下冊第四章三角形同步練習試卷(詳解版)_第4頁
解析卷重慶市九龍坡區(qū)7年級數(shù)學下冊第四章三角形同步練習試卷(詳解版)_第5頁
已閱讀5頁,還剩26頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領

文檔簡介

重慶市九龍坡區(qū)7年級數(shù)學下冊第四章三角形同步練習考試時間:90分鐘;命題人:教研組考生注意:1、本卷分第I卷(選擇題)和第Ⅱ卷(非選擇題)兩部分,滿分100分,考試時間90分鐘2、答卷前,考生務必用0.5毫米黑色簽字筆將自己的姓名、班級填寫在試卷規(guī)定位置上3、答案必須寫在試卷各個題目指定區(qū)域內相應的位置,如需改動,先劃掉原來的答案,然后再寫上新的答案;不準使用涂改液、膠帶紙、修正帶,不按以上要求作答的答案無效。第I卷(選擇題20分)一、單選題(10小題,每小題2分,共計20分)1、如圖,在△ABC和△DEF中,∠A=∠D,AF=DC,添加下列條件中的一個仍無法證明△ABC≌△DEF的是()A.BC=EF B.AB=DE C.∠B=∠E D.∠ACB=∠DFE2、以下列各組長度的線段為邊,能構成三角形的是()A.1cm,1cm,8cm B.3cm,3cm,6cmC.3cm,4cm,5cm D.3cm,2cm,1cm3、如圖,BD是△ABC的中線,AB=6,BC=4,△ABD和△BCD的周長差為()A.2 B.4 C.6 D.104、如圖,在正方形ABCD中,E、F分別為BC、CD的中點,連接AE,BF交于點G,將△BCF沿BF對折,得到△BPF,延長FP交BA延長線于點Q,下列結論:①AE=BF;②AE⊥BF;③QF=QB;④S四邊形ECFG=S△ABG.正確的個數(shù)是()A.1 B.2 C.3 D.45、已知三角形的兩邊長分別是3cm和7cm,則下列長度的線段中能作為第三邊的是()A.3cm B.4cm C.7cm D.10cm6、如圖,點F,C在BE上,AC=DF,BF=EC,AB=DE,AC與DF相交于點G,則與2∠DFE相等的是()A.∠A+∠D B.3∠B C.180°﹣∠FGC D.∠ACE+∠B7、已知線段AB=9cm,AC=5cm,下面有四個說法:①線段BC長可能為4cm;②線段BC長可能為14cm;③線段BC長不可能為3cm;④線段BC長可能為9cm.所有正確說法的序號是()A.①② B.③④ C.①②④ D.①②③④8、如圖,亮亮書上的三角形被墨跡污染了一部分,很快他就根據(jù)所學知識畫出一個與書上完全一樣的三角形.他的依據(jù)是()A. B. C. D.9、如圖,在和中,已知,在不添加任何輔助線的前提下,要使,只需再添加的一個條件不可以是()A. B. C. D.10、BP是∠ABC的平分線,CP是∠ACB的鄰補角的平分線,∠ABP=20°,∠ACP=50°,則∠P=()A.30° B.40° C.50° D.60°第Ⅱ卷(非選擇題80分)二、填空題(10小題,每小題2分,共計20分)1、如圖,已知∠A=60°,∠B=20°,∠C=30°,則∠BDC的度數(shù)為_____.2、如圖,已知,請?zhí)砑右粋€條件,使得,則添加的條件可以為___(只填寫一個即可).3、如圖,在△AOB和△COD中,OA=OB,OC=OD,OA<OC,∠AOB=∠COD=50°,連接AC、BD交于點M,連接OM.下列結論:①AC=BD,②∠AMB=50°;③OM平分∠AOD;④MO平分∠AMD.其中正確的結論是_____.(填序號)4、如圖,中,,,是的中點,的取值范圍為________.5、如圖,方格紙中是9個完全相同的正方形,則∠1+∠2的值為_____.6、如圖,在△ABC中,點D,E,F(xiàn)分別為BC,AD,CE的中點,且S△BEF=2cm2,則S△ABC=__________.7、如圖,直線ED把分成一個和四邊形BDEC,的周長一定大于四邊形BDEC的周長,依據(jù)的原理是____________________________________.8、如圖,點C是線段AB的中點,.請你只添加一個條件,使得≌.(1)你添加的條件是______;(要求:不再添加輔助線,只需填一個答案即可)(2)依據(jù)所添條件,判定與全等的理由是______.9、如圖,在中,已知點,,分別為,,的中點,且,則陰影部分的面積______.10、如圖,AD是BC邊上的中線,AB=5cm,AD=4cm,△ABD的周長是12cm,則BC的長是____cm.三、解答題(6小題,每小題10分,共計60分)1、如圖,在△ABC中,D為BC的中點,過D點的直線GF交AC于點F,交AC的平行線BG于點G,DE⊥GF,并交AB于點E,連接EG,EF.(1)求證:BG=CF.(2)請你猜想BE+CF與EF的大小關系,并說明理由.2、如圖,點B,F(xiàn),C,E在一條直線上,AB=DE,∠B=∠E,BF=CE.求證:AC=DF.3、如圖,已知AB=AD,AC=AE,BC=DE,延長BC分別交邊AD、DE于點F、G.(1)∠B與∠D相等嗎?為什么?(2)若∠CAE=49°,求∠BGD的度數(shù).4、探究與發(fā)現(xiàn):如圖①,在△ABC中,∠B=∠C=45°,點D在BC邊上,點E在AC邊上,且∠ADE=∠AED,連接DE.(1)當∠BAD=60°時,求∠CDE的度數(shù);(2)當點D在BC(點B、C除外)邊上運動時,試猜想∠BAD與∠CDE的數(shù)量關系,并說明理由.(3)深入探究:如圖②,若∠B=∠C,但∠C≠45°,其他條件不變,試探究∠BAD與∠CDE的數(shù)量關系.5、如圖,在同一平面內有四個點A、B、C、D,請按要求完成下列問題.(注:此題作圖不要求寫出畫法和結論)(1)分別連接AB、AD,作射線AC,作直線BD與射線AC相交于點O;(2)我們容易判斷出線段AB+AD與BD的數(shù)量關系是,理由是.6、在中,,,點D是直線AC上一動點,連接BD并延長至點E,使.過點E作于點F.(1)如圖1,當點D在線段AC上(點D不與點A和點C重合)時,此時DF與DC的數(shù)量關系是______.(2)如圖2,當點D在線段AC的延長線上時,依題意補全圖形,并證明:.(3)當點D在線段CA的延長線上時,直接用等式表示線段AD,AF,EF之間的數(shù)量關系是______.-參考答案-一、單選題1、A【分析】根據(jù)AF=DC求出AC=DF,再根據(jù)全等三角形的判定定理逐個判斷即可.【詳解】解:∵AF=DC,∴AF+FC=DC+FC,即AC=DF,A、BC=EF,AC=DF,∠A=∠D,不符合全等三角形的判定定理,不能推出△ABC≌△DEF,故本選項符合題意;B、AB=DE,∠A=∠D,AC=DF,符合全等三角形的判定定理SAS,能推出△ABC≌△DEF,故本選項不符合題意;C.∠B=∠E,∠A=∠D,AC=DF,符合全等三角形的判定定理AAS,能推出△ABC≌△DEF,故本選項不符合題意;D.∠ACB=∠DFE,AC=DF,∠A=∠D,符合全等三角形的判定定理ASA,能推出△ABC≌△DEF,故本選項不符合題意;故選:A.【點睛】本題考查了全等三角形的判定定理,能熟記全等三角形的判定定理是解此題的關鍵,注意:全等三角形的判定定理有SAS,ASA,AAS,SSS,兩直角三角形全等還有HL.2、C【分析】根據(jù)三角形的三邊關系“任意兩邊之和大于第三邊,任意兩邊之差小于第三邊”,進行分析.【詳解】解:A、1+1=2<8,不能組成三角形,故此選項不合題意;B、3+3=6,不能組成三角形,故此選項不符合題意;C、3+4=7>5,能組成三角形,故此選項符合題意;D、1+2=3,不能組成三角形,故此選項不合題意;故選:C.【點睛】本題考查了構成三角形的條件,掌握“任意兩邊之和大于第三邊,任意兩邊之差小于第三邊”是解題的關鍵.3、A【分析】根據(jù)題意可得,,△ABD和△BCD的周長差為線段的差,即可求解.【詳解】解:根據(jù)題意可得,△ABD的周長為,△BCD的周長為△ABD和△BCD的周長差為故選:A【點睛】本題考查了三角形中線的性質及三角形周長的計算,熟練掌握三角形中線的性質是解答本題的關鍵.4、D【分析】首先證明△ABE≌△BCF,再利用角的關系求得∠BGE=90°,即可得到①AE=BF;②AE⊥BF;△BCF沿BF對折,得到△BPF,利用角的關系求出QF=QB;由Rt△ABE≌Rt△BCF得S△ABE=S△BCF即可判定④正確.【詳解】解:∵E,F(xiàn)分別是正方形ABCD邊BC,CD的中點,∴CF=BE,在△ABE和△BCF中,,∴Rt△ABE≌Rt△BCF(SAS),∴∠BAE=∠CBF,AE=BF,故①正確;又∵∠BAE+∠BEA=90°,∴∠CBF+∠BEA=90°,∴∠BGE=90°,∴AE⊥BF,故②正確;根據(jù)題意得,F(xiàn)P=FC,∠PFB=∠BFC,∠FPB=90°,∵CD∥AB,∴∠CFB=∠ABF,∴∠ABF=∠PFB,∴QF=QB,故③正確;∵Rt△ABE≌Rt△BCF,∴S△ABE=S△BCF,∴S△ABE﹣S△BEG=S△BCF﹣S△BEG,即S四邊形ECFG=S△ABG,故④正確.故選:D.【點睛】本題主要是考查了三角形全等、正方形的性質,熟練地綜合應用全等三角形以及正方形的性質,證明邊相等和角相等,是解決本題的關鍵.5、C【分析】設三角形第三邊的長為xcm,再根據(jù)三角形的三邊關系求出x的取值范圍,找出符合條件的x的值即可.【詳解】解:設三角形的第三邊是xcm.則7-3<x<7+3.即4<x<10,四個選項中,只有選項C符合題意,故選:C.【點睛】本題主要考查了三角形三邊關系的應用.此類求三角形第三邊的范圍的題,實際上就是根據(jù)三角形三邊關系定理列出不等式,然后解不等式即可.6、C【詳解】由題意根據(jù)等式的性質得出BC=EF,進而利用SSS證明△ABC與△DEF全等,利用全等三角形的性質得出∠ACB=∠DFE,最后利用三角形內角和進行分析解答.【分析】解:∵BF=EC,∴BF+FC=EC+FC,∴BC=EF,在△ABC與△DEF中,,∴△ABC≌△DEF(SSS),∴∠ACB=∠DFE,∴2∠DFE=180°﹣∠FGC,故選:C.【點睛】本題考查全等三角形的判定與性質,其中全等三角形的判定方法有:SSS;SAS;ASA;AAS;以及HL(直角三角形的判定方法).7、D【分析】分三種情況:C在線段AB上,C在線段BA的延長線上以及C不在直線AB上結合線段的和差以及三角形三邊的關系分別求解即可.【詳解】解:∵線段AB=9cm,AC=5cm,∴如圖1,A,B,C在一條直線上,∴BC=AB?AC=9?5=4(cm),故①正確;如圖2,當A,B,C在一條直線上,∴BC=AB+AC=9+5=14(cm),故②正確;如圖3,當A,B,C不在一條直線上,9?5=4cm<BC<9+5=14cm,故線段BC可能為9cm,不可能為3cm,故③,④正確.故選D.【點睛】此題主要考查了三角形三邊關系,線段之間的關系,正確分類討論是解題關鍵.8、C【分析】根據(jù)題意,可知仍可辨認的有1條邊和2個角,且邊為兩角的夾邊,即可根據(jù)來畫一個完全一樣的三角形【詳解】根據(jù)題意可得,已知一邊和兩個角仍保留,且邊為兩角的夾邊,根據(jù)兩個三角形對應的兩角及其夾邊相等,兩個三角形全等,即故選C【點睛】本題考查了三角形全等的性質與判定,掌握三角形的判定方法是解題的關鍵.9、B【分析】添加AC=AD,利用SAS即可得到兩三角形全等;添加∠D=∠C,利用AAS即可得到兩三角形全等,添加∠CBE=∠DBE,利用ASA即可得到兩三角形全等.【詳解】解:A、添加AC=AD,利用SAS即可得到兩三角形全等,故此選項不符合題意;B、添加BC=BD,不能判定兩三角形全等,故此選項符合題意;C、添加∠D=∠C,利用AAS即可得到兩三角形全等,故此選項不符合題意;D、添加∠CBE=∠DBE,利用ASA即可得到兩三角形全等,故此選項不符合題意;故選:B.【點睛】此題考查了全等三角形的判定,熟練掌握全等三角形的判定方法是解本題的關鍵.10、A【分析】根據(jù)角平分線的定義以及一個三角形的外角等于與它不相鄰的兩個內角和,可求出∠P的度數(shù).【詳解】∵BP是△ABC中∠ABC的平分線,CP是∠ACB的外角的平分線,∴∠ABP=∠CBP=20°,∠ACP=∠MCP=50°,∵∠PCM是△BCP的外角,∴∠P=∠PCM?∠CBP=50°?20°=30°,故選:A.【點睛】本題考查三角形外角性質以及角平分線的定義,解題時注意:一個三角形的外角等于與它不相鄰的兩個內角的和.二、填空題1、110°【分析】延長BD交AC于點E,根據(jù)三角形的外角性質計算,得到答案.【詳解】延長BD交AC于點E,∵∠DEC是△ABE的外角,∠A=60°,∠B=20°,∴∠DEC=∠A+∠B=80°,則∠BDC=∠DEC+∠C=110°,故答案為:110°.【點睛】本題考查了三角形外角的性質,三角形的一個外角等于與它不相鄰的兩個內角的和,作輔助線DE是解題的關鍵.2、或【分析】根據(jù)全等三角形的判定方法即可解決問題.【詳解】解:由題意,,根據(jù),可以添加,使得,根據(jù),可以添加,使得.故答案為:或【點睛】本題主要考查了全等三角形的判定,熟練掌握全等三角形的判定方法——邊角邊、角邊角、角角邊、邊邊邊是解題的關鍵.3、①②④【分析】由證明得出,,①正確;由全等三角形的性質得出,由三角形的外角性質得:,得出,②正確;作于,于,如圖所示:則,利用全等三角形對應邊上的高相等,得出,由角平分線的判定方法得出平分,④正確;假設平分,則,由全等三角形的判定定理可得,得,而,所以,而,故③錯誤;即可得出結論.【詳解】解:,,即,在和中,,,,,故①正確;,由三角形的外角性質得:,,故②正確;作于,于,如圖所示,則,,,平分,故④正確;假設平分,則,在與中,,,,,,而,故③錯誤;所以其中正確的結論是①②④.故答案為:①②④.【點睛】本題考查了全等三角形的判定與性質、三角形的外角性質、角平分線的判定等知識;證明三角形全等是解題的關鍵.4、【分析】延長AD到E,使,連接,證,得到,在中,根據(jù)三角形三邊關系定理得出,代入求出即可.【詳解】解:延長AD到E,使,連接,如圖所示:∵AD是BC邊上的中線,∴,在和中,,∴,∴,在中,,∴,∴,故答案為:.【點睛】本題考查了全等三角形的性質和判定,三角形的三邊關系定理的應用,熟練掌握相關基本性質是解題的關鍵.5、【分析】如圖(見解析),先根據(jù)三角形全等的判定定理證出,再根據(jù)全等三角形的性質可得,由此即可得出答案.【詳解】解:如圖,在和中,,,,,故答案為:.【點睛】本題考查了三角形全等的判定定理與性質等知識點,正確找出兩個全等三角形是解題關鍵.6、8cm2【分析】由于三角形的中線將三角形分成面積相等的兩部分,則S△CFB=S△EFB=2cm2,于是得到S△CEB=4cm2,再求出S△BDE=2cm2,利用E點為AD的中點得到S△ABD=2S△BDE=4cm2,然后利用S△ABC=2S△ABD求解.【詳解】解:∵F點為CE的中點,∴S△CFB=S△EFB=2cm2,∴S△CEB=4cm2,∵D點為BC的中點,∴S△BDE=S△BCE=2cm2,∵E點為AD的中點,∴S△ABD=2S△BDE=4cm2,∴S△ABC=2S△ABD=8cm2.故答案為:8cm2.【點睛】本題考查了三角形的中線,根據(jù)三角形的中線等分三角形的面積是解本題的關鍵.7、三角形兩邊之和大于第三邊【分析】表示出和四邊形BDEC的周長,再結合中的三邊關系比較即可.【詳解】解:的周長=四邊形BDEC的周長=∵在中∴即的周長一定大于四邊形BDEC的周長,∴依據(jù)是:三角形兩邊之和大于第三邊;故答案為三角形兩邊之和大于第三邊【點睛】本題考查了三角形三邊關系定理,關鍵是熟悉三角形兩邊之和大于第三邊的知識點.8、AD=CE(或∠D=∠E或∠ACD=∠B)(答案不唯一)SAS【分析】(1)由已知條件可得兩個三角形有一組對應邊相等,一組對應角相等,根據(jù)三角形全等的判定方法添加條件即可;(2)根據(jù)添加的條件,寫出判斷的理由即可.【詳解】解:(1)添加的條件是:AD=CE(或∠D=∠E或∠ACD=∠B)故答案為:AD=CE(或∠D=∠E或∠ACD=∠B)(2)若添加:AD=CE∵點C是線段AB的中點,∴AC=BC∵∴∴≌(SAS)故答案為:SAS【點睛】本題主要考查了添加條件判斷三角形全等,熟練掌握全等三角形的判斷方法是解答本題的關鍵.9、【分析】根據(jù)三角形中線性質,平分三角形面積,先利用AD為△ABC中線可得S△ABD=S△ACD,根據(jù)E為AD中點,,根據(jù)BF為△BEC中線,即可.【詳解】解:∵AD為△ABC中線∴S△ABD=S△ACD,又∵E為AD中點,故,∴,∵BF為△BEC中線,∴cm2.故答案為:1cm2.【點撥】本題考查了三角形中線的性質,牢固掌握并會運用是解題關鍵.10、6【分析】根據(jù)AD是BC邊上的中線,得出為的中點,可得,根據(jù)條件可求出.【詳解】解:AD是BC邊上的中線,為的中點,,,△ABD的周長是12cm,,,故答案是:6.【點睛】本題考查了三角形的中線,解題的關鍵利用中線的性質得出為的中點.三、解答題1、(1)見解析;(2)BE+CF>EF.見解析【分析】(1)利用平行關系以及BC的中點,求證△CFD≌△BGD,進而證明BG=CF.(2)在△BGE中,利用三邊關系得到BG+BE>EG,利用△CFD≌△BGD,將不等式中的、用、替換,即可證明.【詳解】(1)證明:∵BGAC,∴∠C=∠GBD,∵D是BC的中點,∴BD=DC,在△CFD和△BGD中,∴△CFD≌△BGD,∴BG=CF.(2)解:BE+CF>EF,理由如下:∵△CFD≌△BGD,∴CF=BG,在△BGE中,BG+BE>EG,∵△CFD≌△BGD,∴GD=DF,ED⊥GF,∴EF=EG,∴BE+CF>EF.【點睛】本題主要是考查了全等三角形的判定和性質以及三角形的三邊關系,通過題目所給條件,正確找到證明三角形全等的條件,進而應用全等三角形性質以及三邊關系解題,是解決本題的關鍵.2、見解析【分析】先由BF=CE說明BC=EF.然后運用SAS證明△ABC≌△DEF,最后運用全等三角形的性質即可證明.【詳解】證明:∵BF=CE,∴BC=EF.在△ABC和△DEF中,∴△ABC≌△DEF(SAS).∴AC=DF.【點睛】本題主要考查了全等三角形的判定與性質,正確證明△ABC≌△DEF是解答本題的關鍵.3、(1)相等,理由見解析;(2).【分析】(1)根據(jù)SSS證明,然后由全等三角形對應邊相等即可證明;(2)由可得,進而可求出,然后根據(jù)三角形外角的性質即可求出∠BGD的度數(shù).【詳解】解:(1)相等,理由如下:在和中,∴,∴;(2)∵,∴,∴,∵,,∴.【點睛】此題考查了全等三角形的性質和判定,三角形外角的性質,解題的關鍵是熟練掌握根據(jù)題意證明.4、(1)30°;(2)∠BAD=2∠CDE,理由見解析;(3)∠BAD=2∠CDE.【分析】(1)根據(jù)三角形的外角的性質求出∠ADC,結合圖形計算即可;(2)設∠BAD=x,根據(jù)三角形的外角的性質求出∠ADC,結合圖形計算即可;(3)設∠BAD=x,仿照(2)的解法計算.【詳解】解:(1)∵∠ADC是△ABD的外

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經權益所有人同意不得將文件中的內容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
  • 6. 下載文件中如有侵權或不適當內容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

最新文檔

評論

0/150

提交評論