版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)
文檔簡介
江蘇省無錫江陰市2025年數(shù)學(xué)高三上期末綜合測試試題注意事項1.考生要認真填寫考場號和座位序號。2.試題所有答案必須填涂或書寫在答題卡上,在試卷上作答無效。第一部分必須用2B鉛筆作答;第二部分必須用黑色字跡的簽字筆作答。3.考試結(jié)束后,考生須將試卷和答題卡放在桌面上,待監(jiān)考員收回。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.空間點到平面的距離定義如下:過空間一點作平面的垂線,這個點和垂足之間的距離叫做這個點到這個平面的距離.已知平面,,兩兩互相垂直,點,點到,的距離都是3,點是上的動點,滿足到的距離與到點的距離相等,則點的軌跡上的點到的距離的最小值是()A. B.3 C. D.2.已知函數(shù),,若對任意,總存在,使得成立,則實數(shù)的取值范圍為()A. B.C. D.3.明代數(shù)學(xué)家程大位(1533~1606年),有感于當時籌算方法的不便,用其畢生心血寫出《算法統(tǒng)宗》,可謂集成計算的鼻祖.如圖所示的程序框圖的算法思路源于其著作中的“李白沽酒”問題.執(zhí)行該程序框圖,若輸出的的值為,則輸入的的值為()A. B. C. D.4.已知函數(shù)在上都存在導(dǎo)函數(shù),對于任意的實數(shù)都有,當時,,若,則實數(shù)的取值范圍是()A. B. C. D.5.如圖,網(wǎng)格紙是由邊長為1的小正方形構(gòu)成,若粗實線畫出的是某幾何體的三視圖,則該幾何體的表面積為()A. B. C. D.6.復(fù)數(shù)為純虛數(shù),則()A.i B.﹣2i C.2i D.﹣i7.已知為銳角,且,則等于()A. B. C. D.8.已知(),i為虛數(shù)單位,則()A. B.3 C.1 D.59.已知點,是函數(shù)的函數(shù)圖像上的任意兩點,且在點處的切線與直線AB平行,則()A.,b為任意非零實數(shù) B.,a為任意非零實數(shù)C.a(chǎn)、b均為任意實數(shù) D.不存在滿足條件的實數(shù)a,b10.若,則下列關(guān)系式正確的個數(shù)是()①②③④A.1 B.2 C.3 D.411.已知i是虛數(shù)單位,則1+iiA.-12+32i12.已知三棱錐的體積為2,是邊長為2的等邊三角形,且三棱錐的外接球的球心恰好是中點,則球的表面積為()A. B. C. D.二、填空題:本題共4小題,每小題5分,共20分。13.已知集合,,則________.14.已知向量,,若,則______.15.有2名老師和3名同學(xué),將他們隨機地排成一行,用表示兩名老師之間的學(xué)生人數(shù),則對應(yīng)的排法有______種;______;16.設(shè)等比數(shù)列的前項和為,若,則數(shù)列的公比是.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17.(12分)已知a>0,證明:1.18.(12分)如圖,在直三棱柱ABC﹣A1B1C1中,∠ABC=90°,AB=AA1,M,N分別是AC,B1C1的中點.求證:(1)MN∥平面ABB1A1;(2)AN⊥A1B.19.(12分)已知函數(shù)(1)若函數(shù)有且只有一個零點,求實數(shù)的取值范圍;(2)若函數(shù)對恒成立,求實數(shù)的取值范圍.20.(12分)在直角坐標系中,直線的參數(shù)方程為,(為參數(shù)).以坐標原點為極點,軸的正半軸為極軸建立極坐標系,曲線的極坐標方程為.(1)求直線的普通方程和曲線的直角坐標方程;(2)若點是直線的一點,過點作曲線的切線,切點為,求的最小值.21.(12分)己知,,.(1)求證:;(2)若,求證:.22.(10分)(選修4-4:坐標系與參數(shù)方程)在平面直角坐標系,已知曲線(為參數(shù)),在以原點為極點,軸的非負半軸為極軸建立的極坐標系中,直線的極坐標方程為.(1)求曲線的普通方程和直線的直角坐標方程;(2)過點且與直線平行的直線交于,兩點,求點到,的距離之積.
參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.D【解析】
建立平面直角坐標系,將問題轉(zhuǎn)化為點的軌跡上的點到軸的距離的最小值,利用到軸的距離等于到點的距離得到點軌跡方程,得到,進而得到所求最小值.【詳解】如圖,原題等價于在直角坐標系中,點,是第一象限內(nèi)的動點,滿足到軸的距離等于點到點的距離,求點的軌跡上的點到軸的距離的最小值.設(shè),則,化簡得:,則,解得:,即點的軌跡上的點到的距離的最小值是.故選:.本題考查立體幾何中點面距離最值的求解,關(guān)鍵是能夠準確求得動點軌跡方程,進而根據(jù)軌跡方程構(gòu)造不等關(guān)系求得最值.2.C【解析】
將函數(shù)解析式化簡,并求得,根據(jù)當時可得的值域;由函數(shù)在上單調(diào)遞減可得的值域,結(jié)合存在性成立問題滿足的集合關(guān)系,即可求得的取值范圍.【詳解】依題意,則,當時,,故函數(shù)在上單調(diào)遞增,當時,;而函數(shù)在上單調(diào)遞減,故,則只需,故,解得,故實數(shù)的取值范圍為.故選:C.本題考查了導(dǎo)數(shù)在判斷函數(shù)單調(diào)性中的應(yīng)用,恒成立與存在性成立問題的綜合應(yīng)用,屬于中檔題.3.C【解析】
根據(jù)程序框圖依次計算得到答案.【詳解】,;,;,;,;,此時不滿足,跳出循環(huán),輸出結(jié)果為,由題意,得.故選:本題考查了程序框圖的計算,意在考查學(xué)生的理解能力和計算能力.4.B【解析】
先構(gòu)造函數(shù),再利用函數(shù)奇偶性與單調(diào)性化簡不等式,解得結(jié)果.【詳解】令,則當時,,又,所以為偶函數(shù),從而等價于,因此選B.本題考查利用函數(shù)奇偶性與單調(diào)性求解不等式,考查綜合分析求解能力,屬中檔題.5.C【解析】
根據(jù)三視圖還原為幾何體,結(jié)合組合體的結(jié)構(gòu)特征求解表面積.【詳解】由三視圖可知,該幾何體可看作是半個圓柱和一個長方體的組合體,其中半圓柱的底面半圓半徑為1,高為4,長方體的底面四邊形相鄰邊長分別為1,2,高為4,所以該幾何體的表面積,故選C.本題主要考查三視圖的識別,利用三視圖還原成幾何體是求解關(guān)鍵,側(cè)重考查直觀想象和數(shù)學(xué)運算的核心素養(yǎng).6.B【解析】
復(fù)數(shù)為純虛數(shù),則實部為0,虛部不為0,求出,即得.【詳解】∵為純虛數(shù),∴,解得..故選:.本題考查復(fù)數(shù)的分類,屬于基礎(chǔ)題.7.C【解析】
由可得,再利用計算即可.【詳解】因為,,所以,所以.故選:C.本題考查二倍角公式的應(yīng)用,考查學(xué)生對三角函數(shù)式化簡求值公式的靈活運用的能力,屬于基礎(chǔ)題.8.C【解析】
利用復(fù)數(shù)代數(shù)形式的乘法運算化簡得答案.【詳解】由,得,解得.故選:C.本題考查復(fù)數(shù)代數(shù)形式的乘法運算,是基礎(chǔ)題.9.A【解析】
求得的導(dǎo)函數(shù),結(jié)合兩點斜率公式和兩直線平行的條件:斜率相等,化簡可得,為任意非零實數(shù).【詳解】依題意,在點處的切線與直線AB平行,即有,所以,由于對任意上式都成立,可得,為非零實數(shù).故選:A本題考查導(dǎo)數(shù)的運用,求切線的斜率,考查兩點的斜率公式,以及化簡運算能力,屬于中檔題.10.D【解析】
a,b可看成是與和交點的橫坐標,畫出圖象,數(shù)形結(jié)合處理.【詳解】令,,作出圖象如圖,由,的圖象可知,,,②正確;,,有,①正確;,,有,③正確;,,有,④正確.故選:D.本題考查利用函數(shù)圖象比較大小,考查學(xué)生數(shù)形結(jié)合的思想,是一道中檔題.11.D【解析】
利用復(fù)數(shù)的運算法則即可化簡得出結(jié)果【詳解】1+i故選D本題考查了復(fù)數(shù)代數(shù)形式的乘除運算,屬于基礎(chǔ)題。12.A【解析】
根據(jù)是中點這一條件,將棱錐的高轉(zhuǎn)化為球心到平面的距離,即可用勾股定理求解.【詳解】解:設(shè)點到平面的距離為,因為是中點,所以到平面的距離為,三棱錐的體積,解得,作平面,垂足為的外心,所以,且,所以在中,,此為球的半徑,.故選:A.本題考查球的表面積,考查點到平面的距離,屬于中檔題.二、填空題:本題共4小題,每小題5分,共20分。13.【解析】
利用交集定義直接求解.【詳解】解:集合奇數(shù),偶數(shù),.故答案為:.本題考查交集的求法,考查交集定義等基礎(chǔ)知識,考查運算求解能力,屬于基礎(chǔ)題.14.1【解析】
根據(jù)向量加法和減法的坐標運算,先分別求得與,再結(jié)合向量的模長公式即可求得的值.【詳解】向量,則,則因為即,化簡可得解得故答案為:本題考查了向量坐標加法和減法的運算,向量模長的求法,屬于基礎(chǔ)題.15.36;1.【解析】
的可能取值為0,1,2,3,對應(yīng)的排法有:.分別求出,,,,由此能求出.【詳解】解:有2名老師和3名同學(xué),將他們隨機地排成一行,用表示兩名老師之間的學(xué)生人數(shù),則的可能取值為0,1,2,3,對應(yīng)的排法有:.∴對應(yīng)的排法有36種;,,,,∴故答案為:36;1.本題考查了排列、組合的應(yīng)用,離散型隨機變量的分布列以及數(shù)學(xué)期望,屬于中檔題.16..【解析】
當q=1時,.當時,,所以.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17.證明見解析【解析】
利用分析法,證明a即可.【詳解】證明:∵a>0,∴a1,∴a1≥0,∴要證明1,只要證明a1(a)1﹣4(a)+4,只要證明:a,∵a1,∴原不等式成立.本題考查不等式的證明,著重考查分析法的運用,考查推理論證能力,屬于中檔題.18.(1)詳見解析;(2)詳見解析.【解析】
(1)利用平行四邊形的方法,證明平面.(2)通過證明平面,由此證得.【詳解】(1)設(shè)是中點,連接,由于是中點,所以且,而且,所以與平行且相等,所以四邊形是平行四邊形,所以,由于平面,平面,所以平面.(2)連接,由于直三棱柱中,而,,所以平面,所以,由于,所以.由于四邊形是矩形且,所以四邊形是正方形,所以,由于,所以平面,所以.本小題主要考查線面平行的證明,考查線面垂直的證明,考查空間想象能力和邏輯推理能力,屬于中檔題.19.(1);(2).【解析】
(1)求導(dǎo)得到,討論和兩種情況,計算函數(shù)的單調(diào)性,得到,再討論,,三種情況,計算得到答案.(2)計算得到,討論,兩種情況,分別計算單調(diào)性得到函數(shù)最值,得到答案.【詳解】(1),①當時恒成立,所以單調(diào)遞增,因為,所以有唯一零點,即符合題意;②當時,令,函數(shù)在上單調(diào)遞減,在上單調(diào)遞增,函數(shù)。(i)當即,所以符合題意,(ii)當即時,因為,故存在,所以不符題意(iii)當時,因為,設(shè),所以,單調(diào)遞增,即,故存在,使得,不符題意;綜上,的取值范圍為。(2)。①當時,恒成立,所以單調(diào)遞增,所以,即符合題意;②當時,恒成立,所以單調(diào)遞增,又因為,所以存在,使得,且當時,。即在上單調(diào)遞減,所以,不符題意。綜上,的取值范圍為.本題考查了函數(shù)的零點問題,恒成立問題,意在考查學(xué)生的分類討論能力和綜合應(yīng)用能力.20.(1),;(2)見解析【解析】
(1)消去t,得直線的普通方程,利用極坐標與普通方程互化公式得曲線的直角坐標方程;(2)判斷與圓相離,連接,在中,,即可求解【詳解】(1)將的參數(shù)方程(為參數(shù))消去參數(shù),得.因為,,所以曲線的直角坐標方程為.(2)由(1)知曲線是以為圓心,3為半徑的圓,設(shè)圓心為,則圓心到直線的距離,所以與圓相離,且.連接,在中,,所以,,即的最小值為.本題考查參數(shù)方程化普通方程,極坐標與普通方程互化,直線與圓的位置關(guān)系,是中檔題21.(1)證明見解析(2)證明見解析【解析】
(1)采用分析法論證,要證,分式化整式為,再利用立方和公式轉(zhuǎn)化為,再作差提取公因式論證.(2)由基本不等式得,再用不等式的基本性質(zhì)論證.【詳解】(1)要證,即證,即證,即證,即證,即證,該式顯然成立,當且僅當時等號成立,故.(2)由基本不等式得,,當且僅當時等號成立.將上面四式相加,可得,即.
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 淄博市2024山東淄博市淄川區(qū)事業(yè)單位招聘綜合類崗位人員筆試歷年參考題庫典型考點附帶答案詳解(3卷合一)
- 杭州市2024浙江科技大學(xué)招聘19人-統(tǒng)考筆試歷年參考題庫典型考點附帶答案詳解(3卷合一)
- 違反采購法合同范本
- 煤礦煤泥訂購合同范本
- 赤峰造價咨詢合同范本
- 留學(xué)項目合同范本
- 供油協(xié)議合同范本
- 個人合作辦校合同范本
- 機房承包合同范本
- 機械勞務(wù)合同范本
- 2026年環(huán)境影響評價工程師之環(huán)評技術(shù)導(dǎo)則與標準考試題庫500道【含答案】
- kvb827四旋翼無人機課件
- 2025年甘肅省武威市涼州區(qū)和平鎮(zhèn)選聘專職大學(xué)生村文書參考模擬試題及答案解析
- 醫(yī)院培訓(xùn)課件:《中國新生兒營養(yǎng)支持臨床應(yīng)用指南解讀》
- (一診)達州市2026屆高三第一次診斷性測試語文試題(含答案)
- 從臨床指南更新看IBD生物劑治療策略
- (2026年)如何做好科室護理質(zhì)量管理課件
- 2025年湖南省長沙市政府采購評審專家考試真題(附含答案)
- 2025年嘉魚縣輔警招聘考試真題及答案1套
- 《阿拉善右旗阿拉騰敖包鐵礦、螢石礦開采方案》評審意見書
- 國際胰腺病學(xué)會急性胰腺炎修訂指南(2025年)解讀課件
評論
0/150
提交評論