云南省會澤縣第一中學(xué)2025-2026學(xué)年高三數(shù)學(xué)第一學(xué)期期末統(tǒng)考模擬試題_第1頁
云南省會澤縣第一中學(xué)2025-2026學(xué)年高三數(shù)學(xué)第一學(xué)期期末統(tǒng)考模擬試題_第2頁
云南省會澤縣第一中學(xué)2025-2026學(xué)年高三數(shù)學(xué)第一學(xué)期期末統(tǒng)考模擬試題_第3頁
云南省會澤縣第一中學(xué)2025-2026學(xué)年高三數(shù)學(xué)第一學(xué)期期末統(tǒng)考模擬試題_第4頁
云南省會澤縣第一中學(xué)2025-2026學(xué)年高三數(shù)學(xué)第一學(xué)期期末統(tǒng)考模擬試題_第5頁
已閱讀5頁,還剩12頁未讀 繼續(xù)免費(fèi)閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報或認(rèn)領(lǐng)

文檔簡介

云南省會澤縣第一中學(xué)2025-2026學(xué)年高三數(shù)學(xué)第一學(xué)期期末統(tǒng)考模擬試題考生請注意:1.答題前請將考場、試室號、座位號、考生號、姓名寫在試卷密封線內(nèi),不得在試卷上作任何標(biāo)記。2.第一部分選擇題每小題選出答案后,需將答案寫在試卷指定的括號內(nèi),第二部分非選擇題答案寫在試卷題目指定的位置上。3.考生必須保證答題卡的整潔??荚嚱Y(jié)束后,請將本試卷和答題卡一并交回。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.已知,,若,則向量在向量方向的投影為()A. B. C. D.2.已知命題,那么為()A. B.C. D.3.已知直線與直線則“”是“”的()A.充分不必要條件 B.必要不充分條件C.充分必要條件 D.既不充分也不必要條件4.的展開式中的項的系數(shù)為()A.120 B.80 C.60 D.405.如圖所示,在平面直角坐標(biāo)系中,是橢圓的右焦點(diǎn),直線與橢圓交于,兩點(diǎn),且,則該橢圓的離心率是()A. B. C. D.6.已知雙曲線,過原點(diǎn)作一條傾斜角為直線分別交雙曲線左、右兩支P,Q兩點(diǎn),以線段PQ為直徑的圓過右焦點(diǎn)F,則雙曲線離心率為A. B. C.2 D.7.設(shè)i是虛數(shù)單位,若復(fù)數(shù)()是純虛數(shù),則m的值為()A. B. C.1 D.38.等比數(shù)列的前項和為,若,,,,則()A. B. C. D.9.已知集合M={x|﹣1<x<2},N={x|x(x+3)≤0},則M∩N=()A.[﹣3,2) B.(﹣3,2) C.(﹣1,0] D.(﹣1,0)10.如圖,正方體中,,,,分別為棱、、、的中點(diǎn),則下列各直線中,不與平面平行的是()A.直線 B.直線 C.直線 D.直線11.已知是等差數(shù)列的前項和,若,設(shè),則數(shù)列的前項和取最大值時的值為()A.2020 B.20l9 C.2018 D.201712.設(shè)雙曲線(a>0,b>0)的一個焦點(diǎn)為F(c,0)(c>0),且離心率等于,若該雙曲線的一條漸近線被圓x2+y2﹣2cx=0截得的弦長為2,則該雙曲線的標(biāo)準(zhǔn)方程為()A. B.C. D.二、填空題:本題共4小題,每小題5分,共20分。13.曲線y=e-5x+2在點(diǎn)(0,3)處的切線方程為________.14.的三個內(nèi)角A,B,C所對應(yīng)的邊分別為a,b,c,已知,則________.15.設(shè)函數(shù),若存在實數(shù)m,使得關(guān)于x的方程有4個不相等的實根,且這4個根的平方和存在最小值,則實數(shù)a的取值范圍是______.16.假設(shè)10公里長跑,甲跑出優(yōu)秀的概率為,乙跑出優(yōu)秀的概率為,丙跑出優(yōu)秀的概率為,則甲、乙、丙三人同時參加10公里長跑,剛好有2人跑出優(yōu)秀的概率為________.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17.(12分)已知非零實數(shù)滿足.(1)求證:;(2)是否存在實數(shù),使得恒成立?若存在,求出實數(shù)的取值范圍;若不存在,請說明理由18.(12分)在平面直角坐標(biāo)系中,曲線的參數(shù)方程為(是參數(shù)),以原點(diǎn)為極點(diǎn),軸的正半軸為極軸建立極坐標(biāo)系,直線的極坐標(biāo)方程為.(1)求直線與曲線的普通方程,并求出直線的傾斜角;(2)記直線與軸的交點(diǎn)為是曲線上的動點(diǎn),求點(diǎn)的最大距離.19.(12分)已知函數(shù).(Ⅰ)求在點(diǎn)處的切線方程;(Ⅱ)求證:在上存在唯一的極大值;(Ⅲ)直接寫出函數(shù)在上的零點(diǎn)個數(shù).20.(12分)已知函數(shù)f(x)=|x-1|+|x-2|.若不等式|a+b|+|a-b|≥|a|f(x)(a≠0,a、b∈R)恒成立,求實數(shù)x的取值范圍.21.(12分)已知在等比數(shù)列中,.(1)求數(shù)列的通項公式;(2)若,求數(shù)列前項的和.22.(10分)已知函數(shù),.(1)證明:函數(shù)的極小值點(diǎn)為1;(2)若函數(shù)在有兩個零點(diǎn),證明:.

參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.B【解析】

由,,,再由向量在向量方向的投影為化簡運(yùn)算即可【詳解】∵∴,∴,∴向量在向量方向的投影為.故選:B.本題考查向量投影的幾何意義,屬于基礎(chǔ)題2.B【解析】

利用特稱命題的否定分析解答得解.【詳解】已知命題,,那么是.故選:.本題主要考查特稱命題的否定,意在考查學(xué)生對該知識的理解掌握水平,屬于基礎(chǔ)題.3.B【解析】

利用充分必要條件的定義可判斷兩個條件之間的關(guān)系.【詳解】若,則,故或,當(dāng)時,直線,直線,此時兩條直線平行;當(dāng)時,直線,直線,此時兩條直線平行.所以當(dāng)時,推不出,故“”是“”的不充分條件,當(dāng)時,可以推出,故“”是“”的必要條件,故選:B.本題考查兩條直線的位置關(guān)系以及必要不充分條件的判斷,前者應(yīng)根據(jù)系數(shù)關(guān)系來考慮,后者依據(jù)兩個條件之間的推出關(guān)系,本題屬于中檔題.4.A【解析】

化簡得到,再利用二項式定理展開得到答案.【詳解】展開式中的項為.故選:本題考查了二項式定理,意在考查學(xué)生的計算能力.5.A【解析】

聯(lián)立直線方程與橢圓方程,解得和的坐標(biāo),然后利用向量垂直的坐標(biāo)表示可得,由離心率定義可得結(jié)果.【詳解】由,得,所以,.由題意知,所以,.因為,所以,所以.所以,所以,故選:A.本題考查了直線與橢圓的交點(diǎn),考查了向量垂直的坐標(biāo)表示,考查了橢圓的離心率公式,屬于基礎(chǔ)題.6.B【解析】

求得直線的方程,聯(lián)立直線的方程和雙曲線的方程,求得兩點(diǎn)坐標(biāo)的關(guān)系,根據(jù)列方程,化簡后求得離心率.【詳解】設(shè),依題意直線的方程為,代入雙曲線方程并化簡得,故,設(shè)焦點(diǎn)坐標(biāo)為,由于以為直徑的圓經(jīng)過點(diǎn),故,即,即,即,兩邊除以得,解得.故,故選B.本小題主要考查直線和雙曲線的交點(diǎn),考查圓的直徑有關(guān)的幾何性質(zhì),考查運(yùn)算求解能力,屬于中檔題.7.A【解析】

根據(jù)復(fù)數(shù)除法運(yùn)算化簡,結(jié)合純虛數(shù)定義即可求得m的值.【詳解】由復(fù)數(shù)的除法運(yùn)算化簡可得,因為是純虛數(shù),所以,∴,故選:A.本題考查了復(fù)數(shù)的概念和除法運(yùn)算,屬于基礎(chǔ)題.8.D【解析】試題分析:由于在等比數(shù)列中,由可得:,又因為,所以有:是方程的二實根,又,,所以,故解得:,從而公比;那么,故選D.考點(diǎn):等比數(shù)列.9.C【解析】

先化簡N={x|x(x+3)≤0}={x|-3≤x≤0},再根據(jù)M={x|﹣1<x<2},求兩集合的交集.【詳解】因為N={x|x(x+3)≤0}={x|-3≤x≤0},又因為M={x|﹣1<x<2},所以M∩N={x|﹣1<x≤0}.故選:C本題主要考查集合的基本運(yùn)算,還考查了運(yùn)算求解的能力,屬于基礎(chǔ)題.10.C【解析】

充分利用正方體的幾何特征,利用線面平行的判定定理,根據(jù)判斷A的正誤.根據(jù),判斷B的正誤.根據(jù)與相交,判斷C的正誤.根據(jù),判斷D的正誤.【詳解】在正方體中,因為,所以平面,故A正確.因為,所以,所以平面故B正確.因為,所以平面,故D正確.因為與相交,所以與平面相交,故C錯誤.故選:C本題主要考查正方體的幾何特征,線面平行的判定定理,還考查了推理論證的能力,屬中檔題.11.B【解析】

根據(jù)題意計算,,,計算,,,得到答案.【詳解】是等差數(shù)列的前項和,若,故,,,,故,當(dāng)時,,,,,當(dāng)時,,故前項和最大.故選:.本題考查了數(shù)列和的最值問題,意在考查學(xué)生對于數(shù)列公式方法的綜合應(yīng)用.12.C【解析】

由題得,,又,聯(lián)立解方程組即可得,,進(jìn)而得出雙曲線方程.【詳解】由題得①又該雙曲線的一條漸近線方程為,且被圓x2+y2﹣2cx=0截得的弦長為2,所以②又③由①②③可得:,,所以雙曲線的標(biāo)準(zhǔn)方程為.故選:C本題主要考查了雙曲線的簡單幾何性質(zhì),圓的方程的有關(guān)計算,考查了學(xué)生的計算能力.二、填空題:本題共4小題,每小題5分,共20分。13..【解析】

先利用導(dǎo)數(shù)求切線的斜率,再寫出切線方程.【詳解】因為y′=-5e-5x,所以切線的斜率k=-5e0=-5,所以切線方程是:y-3=-5(x-0),即y=-5x+3.故答案為y=-5x+3.(1)本題主要考查導(dǎo)數(shù)的幾何意義和函數(shù)的求導(dǎo),意在考查學(xué)生對這些知識的掌握水平和分析推理能力.(2)函數(shù)在點(diǎn)處的導(dǎo)數(shù)是曲線在處的切線的斜率,相應(yīng)的切線方程是14.【解析】

利用正弦定理邊化角可得,從而可得,進(jìn)而求解.【詳解】由,由正弦定理可得,即,整理可得,又因為,所以,因為,所以,故答案為:本題主要考查了正弦定理解三角形、兩角和的正弦公式,屬于基礎(chǔ)題.15.【解析】

先確定關(guān)于x的方程當(dāng)a為何值時有4個不相等的實根,再將這四個根的平方和表示出來,利用函數(shù)思想來判斷當(dāng)a為何值時這4個根的平方和存在最小值即可.【詳解】由題意,當(dāng)時,,此時,此時函數(shù)在單調(diào)遞減,在單調(diào)遞增,方程最多2個不相等的實根,舍;當(dāng)時,函數(shù)圖象如下所示:從左到右方程,有4個不相等的實根,依次為,,,,即,由圖可知,故,且,,從而,令,顯然,,要使該式在時有最小值,則對稱軸,解得.綜上所述,實數(shù)a的取值范圍是.本題考查了函數(shù)和方程的知識,但需要一定的邏輯思維能力,屬于較難題.16.【解析】

分跑出優(yōu)秀的人為:甲、乙和甲、丙和乙、丙三種情況分別計算再求和即可.【詳解】剛好有2人跑出優(yōu)秀有三種情況:其一是只有甲、乙兩人跑出優(yōu)秀的概率為;其二是只有甲、丙兩人跑出優(yōu)秀的概率為;其三是只有乙、丙兩人跑出優(yōu)秀的概率為,三種情況相加得.即剛好有2人跑出優(yōu)秀的概率為.故答案為:本題主要考查了分類方法求解事件概率的問題,屬于基礎(chǔ)題.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17.(1)見解析(2)存在,【解析】

(1)利用作差法即可證出.(2)將不等式通分化簡可得,討論或,分離參數(shù),利用基本不等式即可求解.【詳解】又即即①當(dāng)時,即恒成立(當(dāng)且僅當(dāng)時取等號),故②當(dāng)時恒成立(當(dāng)且僅當(dāng)時取等號),故綜上,本題考查了作差法證明不等式、基本不等式求最值、考查了分類討論的思想,屬于基礎(chǔ)題.18.(1),,直線的傾斜角為(2)【解析】

(1)由公式消去參數(shù)得普通方程,由公式可得直角坐標(biāo)方程后可得傾斜角;(2)求出直線與軸交點(diǎn),用參數(shù)表示點(diǎn)坐標(biāo),求出,利用三角函數(shù)的性質(zhì)可得最大值.【詳解】(1)由,消去得的普通方程是:由,得,將代入上式,化簡得直線的傾斜角為(2)在曲線上任取一點(diǎn),直線與軸的交點(diǎn)的坐標(biāo)為則當(dāng)且僅當(dāng)時,取最大值.本題考查參數(shù)方程與普通方程的互化,考查極坐標(biāo)方程與直角坐標(biāo)方程的互化,屬于基礎(chǔ)題.求兩點(diǎn)間距離的最值時,用參數(shù)方程設(shè)點(diǎn)的坐標(biāo)可把問題轉(zhuǎn)化為三角函數(shù)問題.19.(Ⅰ);(Ⅱ)證明見解析;(Ⅲ)函數(shù)在有3個零點(diǎn).【解析】

(Ⅰ)求出導(dǎo)數(shù),寫出切線方程;(Ⅱ)二次求導(dǎo),判斷單調(diào)遞減,結(jié)合零點(diǎn)存在性定理,判斷即可;(Ⅲ),數(shù)形結(jié)合得出結(jié)論.【詳解】解:(Ⅰ),,,故在點(diǎn),處的切線方程為,即;(Ⅱ)證明:,,,故在遞減,又,,由零點(diǎn)存在性定理,存在唯一一個零點(diǎn),,當(dāng)時,遞增;當(dāng)時,遞減,故在只有唯一的一個極大值;(Ⅲ)函數(shù)在有3個零點(diǎn).本題主要考查利用導(dǎo)數(shù)求切線方程,考查零點(diǎn)存在性定理的應(yīng)用,關(guān)鍵是能夠通過導(dǎo)函數(shù)的單調(diào)性和零點(diǎn)存在定理確定導(dǎo)函數(shù)的零點(diǎn)個數(shù),進(jìn)而確定函數(shù)的單調(diào)性,屬于難題.20.≤x≤【解析】由題知,|x-1|+|x-2|≤恒成立,故|x-1|+|x-2|不大于的最小值.∵|a+b|+|a-b|≥|a+b+a-b|=2|a|,當(dāng)且僅當(dāng)(a+b)·(a-b)≥0時取等號,∴的最小值等于2.∴x的范圍即為不等式|x-1|+|x-2|≤2的解,解不等式得≤x≤.21.(1)(2)【解析】

(1)由基本量法,求出公比后可得通項公式;(2)求出,用裂項相消法求和.【詳解】解:(1)設(shè)等比數(shù)列的公比為又因為,所以解得(舍)或所以,即(2)據(jù)(1)求解知,,所以所以本題考查求等比數(shù)列的通項公式,考查裂項相消法求和.解題方法是基本量法.基本量法是解決等差數(shù)列和等比數(shù)列的基本方法,務(wù)必掌握.22.(1)見解析(2)見解析【解析】

(1)利用導(dǎo)函數(shù)的正負(fù)確定函數(shù)的增

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論