版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報或認(rèn)領(lǐng)
文檔簡介
人教版8年級數(shù)學(xué)上冊《全等三角形》單元測評考試時間:90分鐘;命題人:教研組考生注意:1、本卷分第I卷(選擇題)和第Ⅱ卷(非選擇題)兩部分,滿分100分,考試時間90分鐘2、答卷前,考生務(wù)必用0.5毫米黑色簽字筆將自己的姓名、班級填寫在試卷規(guī)定位置上3、答案必須寫在試卷各個題目指定區(qū)域內(nèi)相應(yīng)的位置,如需改動,先劃掉原來的答案,然后再寫上新的答案;不準(zhǔn)使用涂改液、膠帶紙、修正帶,不按以上要求作答的答案無效。第I卷(選擇題20分)一、單選題(5小題,每小題4分,共計20分)1、如圖,C為線段AE上一動點(不與點,重合),在AE同側(cè)分別作等邊三角形ABC和等邊三角形CDE,AD與BE交于點O,AD與BC交于點P,BE與CD交于點Q,連結(jié)PQ.以下結(jié)論錯誤的是(
)A.∠AOB=60° B.AP=BQC.PQ∥AE D.DE=DP2、如圖,已知,,,則的長為(
)A.7 B.3.5 C.3 D.23、如圖,在和中,,,,則(
)A.30° B.40° C.50° D.60°4、如圖,在中,,,垂足分別為D,E,,交于點H,已知,,則的長是(
)A.1 B. C.2 D.5、如圖,已知∠ABC=∠DCB.添加一個條件后,可得△ABC≌△DCB,則在下列條件中,不能添加的是()A.AC=DB B.AB=DC C.∠A=∠D D.∠ABD=∠DCA第Ⅱ卷(非選擇題80分)二、填空題(5小題,每小題6分,共計30分)1、如圖,在△ABC中,已知AD是△ABC的角平分線,作DE⊥AB,已知AB=4,AC=2,△ABD的面積是2,則△ADC的面積為___.2、如圖是由九個邊長為1的小正方形拼成的大正方形,圖中∠1+∠2+∠3+∠4+∠5的度數(shù)為______.3、如圖,△ABC中,∠ACB=90°,AC=12,BC=16.點P從A點出發(fā)沿A—C—B路徑向終點運動,終點為B點;點Q從B點出發(fā)沿B—C—A路徑向終點運動,終點為A點.點P和Q分別以2和6的運動速度同時開始運動,兩點都要到相應(yīng)的終點時才能停止運動,在某時刻,分別過P和Q作PE⊥l于E,QF⊥l于F.若要△PEC與△QFC全等,則點P的運動時間為_______.4、如圖,在中,,以點為圓心,任意長為半徑作弧,分別交于和,再分別以點為圓心,大于二分之一為半徑作弧,兩弧交于點,連接并延長交于點,過點作于.若,則的面積為________.5、如圖,兩根旗桿間相距20米,某人從點B沿BA走向點A,一段時間后他到達(dá)點M,此時他分別仰望旗桿的頂點C和D,兩次視線的夾角為90°,且CM=DM.已知旗桿BD的高為12米,該人的運動速度為2米/秒,則這個人運動到點M所用時間是__________秒.三、解答題(5小題,每小題10分,共計50分)1、【閱讀理解】課外興趣小組活動時,老師提出了如下問題:如圖,△ABC中,若AB=8,AC=6,求BC邊上的中線AD的取值范圍.小明在組內(nèi)經(jīng)過合作交流,得到了如下的解決方法:如圖,延長AD到點E,使DE=AD,連結(jié)BE.請根據(jù)小明的方法思考:(1)由已知和作圖能得到的理由是(
).A.SSS
B.SAS
C.AAS
D.ASA(2)AD的取值范圍是(
).A.
B.
C.
D.(3)【感悟】解題時,條件中若出現(xiàn)“中點”、“中線”字樣,可以考慮延長中線構(gòu)造全等三角形,把分散的已知條件和所求證的結(jié)論轉(zhuǎn)化到同一個三角形中.【問題解決】如圖,AD是△ABC的中線,BE交AC于點E,交AD于F,且AE=EF.求證:AC=BF.2、如圖,AC是∠BAE的平分線,點D是線段AC上的一點,∠C=∠E,AB=AD.求證:BC=DE.3、如圖,在中,,點D在線段BC上運動(D不與B、C重合),連接AD,作,DE交線段AC于E.(1)點D從B向C運動時,逐漸變__________(填“大”或“小”),但與的度數(shù)和始終是__________度.(2)當(dāng)DC的長度是多少時,,并說明理由.4、如圖,和都是等邊三角形,連接與,延長交于點H.(1)證明:;(2)求的度數(shù);(3)連接,求證:平分.5、如圖,點E在邊AC上,已知AB=DC,∠A=∠D,BC∥DE,求證:DE=AE+BC.-參考答案-一、單選題1、D【解析】【分析】利用等邊三角形的性質(zhì),BC∥DE,再根據(jù)平行線的性質(zhì)得到∠CBE=∠DEO,于是∠AOB=∠DAC+∠BEC=∠BEC+∠DEO=∠DEC=60°,得出A正確;根據(jù)△CQB≌△CPA(ASA),得出B正確;由△ACD≌△BCE得∠CBE=∠DAC,加之∠ACB=∠DCE=60°,AC=BC,得到△CQB≌△CPA(ASA),再根據(jù)∠PCQ=60°推出△PCQ為等邊三角形,又由∠PQC=∠DCE,根據(jù)內(nèi)錯角相等,兩直線平行,得出C正確;根據(jù)∠CDE=60°,∠DQE=∠ECQ+∠CEQ=60°+∠CEQ,可知∠DQE≠∠CDE,得出D錯誤.【詳解】解:∵等邊△ABC和等邊△CDE,∴AC=BC,CD=CE,∠ACB=∠DCE=60°,∴∠ACB+∠BCD=∠DCE+∠BCD,即∠ACD=∠BCE,在△ACD與△BCE中,,∴△ACD≌△BCE(SAS),∴∠CBE=∠DAC,又∵∠ACB=∠DCE=60°,∴∠BCD=60°,即∠ACP=∠BCQ,又∵AC=BC,在△CQB與△CPA中,,∴△CQB≌△CPA(ASA),∴CP=CQ,又∵∠PCQ=60°可知△PCQ為等邊三角形,∴∠PQC=∠DCE=60°,∴PQ∥AE,故C正確,∵△CQB≌△CPA,∴AP=BQ,故B正確,∵AD=BE,AP=BQ,∴AD-AP=BE-BQ,即DP=QE,∵∠DQE=∠ECQ+∠CEQ=60°+∠CEQ,∠CDE=60°,∴∠DQE≠∠CDE,故D錯誤;∵∠ACB=∠DCE=60°,∴∠BCD=60°,∵等邊△DCE,∠EDC=60°=∠BCD,∴BC∥DE,∴∠CBE=∠DEO,∴∠AOB=∠DAC+∠BEC=∠BEC+∠DEO=∠DEC=60°,故A正確.故選:D.【考點】本題考查了等邊三角形的性質(zhì)、全等三角形的判定與性質(zhì),利用旋轉(zhuǎn)不變性,解題的關(guān)鍵是找到不變量.2、C【解析】【分析】利用全等三角形的性質(zhì)求解即可.【詳解】解:∵△ABC≌△DAE,∴AC=DE=5,AE=BC=2,∴CE=AC-AE=3,故選C.【考點】本題主要考查了全等三角形的性質(zhì),熟知全等三角形對應(yīng)邊相等是解題的關(guān)鍵.3、D【解析】【分析】由題意可證,有,由三角形內(nèi)角和定理得,計算求解即可.【詳解】解:∵∴△ABC和△ADC均為直角三角形在和中∵∴∴∵∴故選D.【考點】本題考查了三角形全等,三角形的內(nèi)角和定理.解題的關(guān)鍵在于找出角度的數(shù)量關(guān)系.4、A【解析】【分析】利用“八字形”圖形推出∠EAH=∠ECB,根據(jù),EH=3,求出AE=4,證明△AEH≌△CEB,得到AE=CE=4,即可求出CH.【詳解】解:∵,,∴∠CEB=,∵∠AHE=∠CHD,∴∠EAH=∠ECB∵,EH=3,∴AE=4,∵∠AEH=∠CEB,∠EAH=∠ECB,EH=BE,∴△AEH≌△CEB,∴AE=CE=4,∴CH=CE-EH=4-3=1,故選A.【考點】此題考查了全等三角形的判定及性質(zhì),“八字形”圖形的應(yīng)用,熟記全等三角形的判定定理是解題的關(guān)鍵.5、A【解析】【分析】先要確定現(xiàn)有已知在圖形上的位置,結(jié)合全等三角形的判定方法對選項逐一驗證,排除錯誤的選項.【詳解】解:∵∠ABC=∠DCB,∵BC=BC,A、添加AC=DB,不能得△ABC≌△DCB,符合題意;B、添加AB=DC,利用SAS可得△ABC≌△DCB,不符合題意;C、添加∠A=∠D,利用AAS可得△ABC≌△DCB,不符合題意;D、添加∠ABD=∠DCA,∴∠ACB=∠DBC,利用ASA可得△ABC≌△DCB,不符合題意;故選:A.【考點】本題主要考查三角形全等的判定,熟練掌握判定方法是解題的關(guān)鍵.二、填空題1、1【解析】【分析】先根據(jù)三角形面積公式計算出DE=
1,再根據(jù)角平分線的性質(zhì)得到點D到AB和AC的距離相等,然后利用三角形的面積公式計算△ADC的面積.【詳解】DE⊥AB,S△ABD
=×
DE
×
AB
=
2,
DE==1,AD是△ABC的角平分線,點D到AB和AC的距離相等,點D到AC的距離為1,S△ADC
=×2×1=
1.故答案為:1.【考點】本題考查了角平分線的性質(zhì):角的平分線上的點到角的兩邊的距離相等,屬于基礎(chǔ)題,熟練掌握角平分線的性質(zhì)是解題的關(guān)鍵.2、225°【解析】【分析】首先判定△ABC≌△AEF,△ABD≌△AEH,可得∠5=∠BCA,∠4=∠BDA,然后可得∠1+∠5=∠1+∠BCA=90°,∠2+∠4=∠2+∠BDA=90°,即可求得∠1+∠2+∠3+∠4+∠5的值.【詳解】解:如圖所示:在△ABC和△AEF中,∴△ABC≌△AEF(SAS),∴∠5=∠BCA,∴∠1+∠5=∠1+∠BCA=90°,在Rt△ABD和Rt△AEH中,∴Rt△ABD≌Rt△AEH(HL),∴∠4=∠BDA,∴∠2+∠4=∠2+∠BDA=90°,∵∠3=45°,∴∠1+∠2+∠3+∠4+∠5=90°+90°+45°=225°.故答案為:225°.【考點】此題主要考查了全等三角形的判定和性質(zhì),關(guān)鍵是掌握全等三角形的性質(zhì):全等三角形對應(yīng)角相等即可求解.3、1或3.5或12【解析】【分析】分4種情況求解:①P在AC上,Q在BC上,推出方程6-t=8-3t,②P、Q都在AC上,此時P、Q重合,得到方程6-t=3t-8,Q在AC上,③P在BC上,Q在AC時,此時不存在,④當(dāng)Q到A點,與A重合,P在BC上時.【詳解】解:∵△PEC與△QFC全等,∴斜邊CP=CQ,有四種情況:①P在AC上,Q在BC上,,CP=12-2t,CQ=16-6t,∴12-2t=16-6t,∴t=1;②P、Q都在AC上,此時P、Q重合,∴CP=12-2t=6t-16,∴t=3.5;③P到BC上,Q在AC時,此時不存在;理由是:28÷6=,12÷2=6,即Q在AC上運動時,P點也在AC上運動;④當(dāng)Q到A點(和A重合),P在BC上時,∵CP=CQ=AC=12.CP=12-2t,∴2t-12=12,∴t=12符合題意;答:點P運動1或3.5或12時,△PEC與△QFC全等.【考點】本題主要考查對全等三角形的性質(zhì),解一元一次方程等知識點的理解和掌握,能根據(jù)題意得出方程是解此題的關(guān)鍵.4、5【解析】【分析】作GM⊥AB于M,先利用基本作圖得到AG平分∠BAC,再根據(jù)角平分線的性質(zhì)得到GM=GH=2,然后根據(jù)三角形面積公式計算.【詳解】解:作GM⊥AB于M,由作法得AG平分∠BAC,而GH⊥AC,GM⊥AB,∴GM=GH=2,∴,故答案為:5.【考點】此題考查了角平分線的性質(zhì)定理:角平分線上的點到這個角的兩邊的距離相等,還考查了角平分線的作圖方法,正確理解題意得到AG平分∠BAC是解題的關(guān)鍵.5、4【解析】【分析】根據(jù)角的等量代換求出,便可證出,利用全等的性質(zhì)得到,從而求出的長,再通過時間=路程÷速度列式計算即可.【詳解】解:根據(jù)題意可得:,,,∵∴又∵∴∴在和中∴∴∴∴時間=故答案為4【考點】本題主要考查了全等三角形的判定與性質(zhì),利用角的等量代換找出三角形全等的條件是解題的關(guān)鍵.三、解答題1、(1)B(2)C(3)見解析【解析】【分析】(1)根據(jù)AD=DE,∠ADC=∠BDE,BD=DC推出△ADC和△EDB全等即可;(2)根據(jù)全等得出BE=AC=6,AE=2AD,由三角形三邊關(guān)系定理得出8-6<2AD<8+6,求出即可;(3)延長AD到M,使AD=DM,連接BM,根據(jù)SAS證△ADC≌△MDB,推出BM=AC,∠CAD=∠M,根據(jù)AE=EF,推出∠CAD=∠AFE=∠BFD,求出∠BFD=∠M,根據(jù)等腰三角形的性質(zhì)求出即可.(1)∵在△ADC和△EDB中,∴△ADC≌△EDB(SAS),故選B;(2)∵由(1)知:△ADC≌△EDB,∴BE=AC=6,AE=2AD,∵在△ABE中,AB=8,由三角形三邊關(guān)系定理得:8-6<2AD<8+6,∴1<AD<7,故選:C.(3)延長AD到點M,使AD=DM,連接BM.∵AD是△ABC中線∴CD=BD∵在△ADC和△MDB中∴∴BM=AC(全等三角形的對應(yīng)邊相等)∠CAD=∠M(全等三角形的對應(yīng)角相等)∵AE=EF,∴∠CAD=∠AFE(等邊對等角)∵∠AFE=∠BFD,∴∠BFD=∠M,∴BF=BM(等角對等邊)又∵BM=AC,∴AC=BF.【考點】本題考查了三角形的中線,三角形的三邊關(guān)系定理,等腰三角形性質(zhì)和判定,全等三角形的性質(zhì)和判定等知識點,主要考查學(xué)生運用定理進(jìn)行推理的能力.2、見解析【解析】【分析】根據(jù)角平分線的性質(zhì)證明△BAC≌△DAE,即可得到結(jié)果;【詳解】證明:∵AC是∠BAE的平分線,∴∠BAC=∠DAE,∵∠C=∠E,AB=AD.∴△BAC≌△DAE(AAS),∴BC=DE.【考點】本題主要考查了三角形的全等判定及性質(zhì),準(zhǔn)確利用角平分線的進(jìn)行計算是解題的關(guān)鍵.3、(1)小;140(2)當(dāng)DC=2時,△ABD≌△DCE,理由見解析【解析】【分析】(1)利用三角形的內(nèi)角和即可得出結(jié)論;(2)當(dāng)DC=2時,利用∠DEC+∠EDC=140°,∠ADB+∠EDC=140°,求出∠ADB=∠DEC,再利用AB=DC=2,即可得出△ABD≌△DCE.(1)在△ABD中,∠B+∠BAD+∠ADB=180°,設(shè)∠BAD=x°,∠BDA=y°,∴40°+x+y=180°,∴y=140-x(0<x<100),當(dāng)點D從點B向C運動時,x增大,∴y減小,+=180°-故答案為:小,140;(2)當(dāng)DC=2時,△ABD≌△DCE,理由:∵∠C=40°,∴∠DEC+∠EDC=140°,又∵∠ADE=40°,∴∠ADB+∠EDC=140°,∴∠ADB=∠DEC,又∵AB=DC=2,在△ABD和△DCE中,∴△ABD≌△DCE(AAS);【考點】此題主要考查學(xué)生對等腰三角形的判定與性質(zhì),全等三角形的判定與性質(zhì),三角形外角的性質(zhì)等知識點的理解和掌握,三角形的內(nèi)角和公式,解本題的關(guān)鍵是分類討論.4、(1)見解析(2)60°(3)見解析【解析】【分析】(1)由△ABD和△BCE都是等邊三角形得BA=BD,BE=BC,∠ABD=∠EBC=60°,所以∠ABE=∠DBC=60°?∠DBE,即可根據(jù)全等三角形的判定定理“SAS”證明△ABE≌△DBC,得AE=DC;(2)由△ABE≌△DBC得∠BAE=∠BDC,因為∠BAD=∠BDA=60°,所以∠HAD+∠HDA==120°,所以∠AHD=60°;(3)作BF⊥HA于點F,BG⊥HC交HC的延長線于點G,則∠AFB=∠BFH=∠G=90°,即可證明△BAF
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 智能控制 課件 -第四章-專家控制系統(tǒng)
- 2025中學(xué)教師招聘考試題
- 內(nèi)分泌科病區(qū)安全防護
- 內(nèi)分泌甲狀腺科普
- 新年心愿活動策劃方案(3篇)
- 綜合體項目管理制度(3篇)
- 獸藥管理培訓(xùn)
- 銷售合同管理制度流程模板(3篇)
- 《GAT 760.2-2008公安信息化標(biāo)準(zhǔn)管理分類與代碼 第2部分:標(biāo)準(zhǔn)級別代碼》專題研究報告深度
- 人力資源招聘與培訓(xùn)制度
- 數(shù)字孿生方案
- 金融領(lǐng)域人工智能算法應(yīng)用倫理與安全評規(guī)范
- 2026長治日報社工作人員招聘勞務(wù)派遣人員5人備考題庫及答案1套
- 機動車駕校安全培訓(xùn)課件
- 河道清淤作業(yè)安全組織施工方案
- 2025年役前訓(xùn)練考試題庫及答案
- 2024VADOD臨床實踐指南:耳鳴的管理課件
- 2026年七臺河職業(yè)學(xué)院單招職業(yè)技能測試題庫附答案
- 2021海灣消防 GST-LD-8318 緊急啟停按鈕使用說明書
- 煙花爆竹零售經(jīng)營安全責(zé)任制度
- 方小丹建筑地基基礎(chǔ)設(shè)計的若干問題課件
評論
0/150
提交評論