考點解析湖北省安陸市中考數(shù)學(xué)真題分類(勾股定理)匯編專項練習(xí)試卷(解析版含答案)_第1頁
考點解析湖北省安陸市中考數(shù)學(xué)真題分類(勾股定理)匯編專項練習(xí)試卷(解析版含答案)_第2頁
考點解析湖北省安陸市中考數(shù)學(xué)真題分類(勾股定理)匯編專項練習(xí)試卷(解析版含答案)_第3頁
考點解析湖北省安陸市中考數(shù)學(xué)真題分類(勾股定理)匯編專項練習(xí)試卷(解析版含答案)_第4頁
考點解析湖北省安陸市中考數(shù)學(xué)真題分類(勾股定理)匯編專項練習(xí)試卷(解析版含答案)_第5頁
已閱讀5頁,還剩23頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報或認(rèn)領(lǐng)

文檔簡介

湖北省安陸市中考數(shù)學(xué)真題分類(勾股定理)匯編專項練習(xí)考試時間:90分鐘;命題人:教研組考生注意:1、本卷分第I卷(選擇題)和第Ⅱ卷(非選擇題)兩部分,滿分100分,考試時間90分鐘2、答卷前,考生務(wù)必用0.5毫米黑色簽字筆將自己的姓名、班級填寫在試卷規(guī)定位置上3、答案必須寫在試卷各個題目指定區(qū)域內(nèi)相應(yīng)的位置,如需改動,先劃掉原來的答案,然后再寫上新的答案;不準(zhǔn)使用涂改液、膠帶紙、修正帶,不按以上要求作答的答案無效。第I卷(選擇題14分)一、單選題(7小題,每小題2分,共計14分)1、在△ABC中,∠A,∠B,∠C的對邊分別記為a,b,c,下列結(jié)論中不正確的是(

)A.如果∠A-∠B=∠C,那么△ABC是直角三角形B.如果a2=b2-c2,那么△ABC是直角三角形,且∠C=90°C.如果∠A︰∠B︰∠C=1︰3︰2,那么△ABC是直角三角形D.如果a2︰b2︰c2=9︰16︰25,那么△ABC是直角三角形2、如圖,在△ABC中,AD,BE分別是BC,AC邊上的中線,且AD⊥BE,垂足為點F,設(shè)BC=a,AC=b,AB=c,則下列關(guān)系式中成立的是(

)A.a(chǎn)2+b2=5c2 B.a(chǎn)2+b2=4c2 C.a(chǎn)2+b2=3c2 D.a(chǎn)2+b2=2c23、下列各組數(shù)據(jù)為三角形的三邊,能構(gòu)成直角三角形的是(

)A.4,8,7 B.2,2,2 C.2,2,4 D.13,12,54、如圖,在由邊長為1的7個正六邊形組成的網(wǎng)格中,點A,B在格點上.若再選擇一個格點C,使△ABC是直角三角形,且每個直角三角形邊長均大于1,則符合條件的格點C的個數(shù)是(

)A.2 B.4 C.5 D.65、“趙爽弦圖”巧妙地利用面積關(guān)系證明了勾股定理,是我國古代數(shù)學(xué)的驕傲,如圖所示的“趙爽弦圖”是由四個全等的直角三角形和一個小正方形拼成的一個大正方形,設(shè)直角三角形較長直角邊長為a,較短直角邊長為b,若,大正方形的面積為13,則小正方形的面積為()A.3 B.4 C.5 D.66、在直線l上依次擺放著七個正方形,已知斜放置的三個正方形的面積分別是1,2,3,正放置的四個正方形的面積依次是S1,S2,S3,S4,則S1+S2+S3+S4=()A.4 B.5 C.6 D.77、如圖,中,,一同學(xué)利用直尺和圓規(guī)完成如下操作:①以點C為圓心,以CB為半徑畫弧,交AB于點G;分別以點G、B為圓心,以大于的長為半徑畫弧,兩弧交點K,作射線CK;②以點B為圓心,以適當(dāng)?shù)拈L為半徑畫弧,交BC于點M,交AB的延長線于N,分別以M、N為圓心,以大于的長為半徑畫弧,兩弧交于點P,作直線BP交AC的延長線于點D,交射線CK于點E.請你觀察圖形,根據(jù)操作結(jié)果解答下列問題;過點D作交AB的延長線于點F,若,,則CE的長為(

)A.13 B. C. D.第Ⅱ卷(非選擇題86分)二、填空題(8小題,每小題2分,共計16分)1、在△ABC中,AD是BC邊上的中線,AD⊥AB,如果AC=5,AD=2,那么AB的長是________.2、如圖,矩形ABCD中,AD=6,AB=8.點E為邊DC上的一個動點,△AD'E與△ADE關(guān)于直線AE對稱,當(dāng)△CD'E為直角三角形時,DE的長為__.3、如圖,折疊直角三角形紙片ABC,使得兩個銳角頂點A、C重合,設(shè)折痕為DE,若AB=4,BC=3,則△ADC的周長是__________

4、《九章算術(shù)》中有“折竹抵地”問題:“今有竹高一丈,末折抵地,去根三尺,問折者高幾何?”題意是:有一根竹子原來高1丈(1丈=10尺),中部有一處折斷,竹梢觸地面處離竹根3尺,試問折斷處離地面多高?如圖,設(shè)折斷處距離地面x尺,根據(jù)題意,可列方程為______.5、如圖,一架長5米的梯子A1B1斜靠在墻A1C上,B1到墻底端C的距離為3米,此時梯子的高度達(dá)不到工作要求,因此把梯子的B1端向墻的方向移動了1.6米到B處,此時梯子的高度達(dá)到工作要求,那么梯子的A1端向上移動了_____米.6、如圖所示,所有的四邊形都是正方形,所有的三角形都是直角三角形,其中最大的正方形的邊長為7cm,正方形A、B、C的面積分別是,,,則正方形D的面積是______.7、如圖,在高2米,坡角為30°的樓梯表面鋪地毯,地毯的長至少需______米.8、如圖,臺階A處的螞蟻要爬到B處搬運食物,它爬的最短距離是_____.三、解答題(7小題,每小題10分,共計70分)1、湖的兩岸有A,B兩棵景觀樹,數(shù)學(xué)興趣小組設(shè)計實驗測量兩棵景觀樹之間的距離,他們在與AB垂直的BC方向上取點C,測得米,米.求:(1)兩棵景觀樹之間的距離;(2)點B到直線AC的距離.2、閱讀與思考:請閱讀下列材料,并完成相應(yīng)的任務(wù).若直角三角形的三邊的長都是正整數(shù),則三邊的長為“勾股數(shù)”.構(gòu)造勾股數(shù),就是要尋找3個正整數(shù),使它們滿足“其中兩個數(shù)的平方和(或平方差)等于第三個數(shù)的平方”.通過觀察常見勾股數(shù)“3,4,5”;“5,12,13”;“7,24,25”……猜想當(dāng)一組勾股數(shù)中(),最小數(shù)為奇數(shù)時,另兩個正整數(shù)和滿足比且,解得,.任務(wù):(1)請證明猜想成立,即證明,,構(gòu)成勾股數(shù).(2)若一組勾股數(shù)中,最小數(shù)為9,則另兩個數(shù)分別是________和________.3、下圖是某“飛越叢林”俱樂部新近打造的一款兒童游戲項目,工作人員告訴小敏,該項目AB段和BC段均由不銹鋼管材打造,總長度為26米,長方形CDEF為一木質(zhì)平臺的主視圖.小敏經(jīng)過現(xiàn)場測量得知:CD=1米,AD=15米,于是小敏大膽猜想立柱AB段的長為10米,請判斷小敏的猜想是否正確?如果正確,請寫出理由,如果錯誤,請求出立柱AB段的正確長度.4、如圖是一個長方形的大門,小強(qiáng)拿著一根竹竿要通過大門.他把竹竿豎放,發(fā)現(xiàn)竹竿比大門高1尺;然后他把竹竿斜放,竹竿恰好等于大門的對角線的長.已知大門寬4尺,請求出竹竿的長.5、一架云梯長25m,如圖所示斜靠在一而墻上,梯子底端C離墻7m.(1)這個梯子的頂端A距地面有多高?(2)如果梯子的頂端下滑了4m,那么梯子的底部在水平方向滑動了多少米?6、設(shè)直角三角形的兩條直角邊長及斜邊上的高分別為a,b及h,求證:.7、勾股定理是人類最偉大的十個科學(xué)發(fā)現(xiàn)之一,在《周髀算經(jīng)》中就有“若勾三,股四,則弦五”的記載,漢代數(shù)學(xué)家趙爽為證明勾股定理創(chuàng)制的“趙爽弦圖”也流傳至今.迄今為止已有多種證明勾股定理的方法.下面是數(shù)學(xué)課上創(chuàng)新小組驗證過程的一部分.請認(rèn)真閱讀并根據(jù)他們的思路將后續(xù)的過程補(bǔ)充完整:將兩張全等的直角三角形紙片按圖所示擺放,其中,點在線段上,點在邊兩側(cè),試證明:.-參考答案-一、單選題1、B【解析】【分析】根據(jù)勾股定理的逆定理、三角形內(nèi)角和定理、直角三角形定義即可.【詳解】解:A、∵∠A-∠B=∠C,∴∠A=∠B+∠C,∵∠A+∠B+∠C=180°,∴∠A=90°,∴△ABC是直角三角形,此選項正確;B、如果a2=b2-c2,∴a2+c2=b2,∴△ABC是直角三角形且∠B=90°,此選項不正確;C、如果∠A:∠B:∠C=1:3:2,設(shè)∠A=x,則∠B=3x,∠C=2x,則x+3x+2x=180°,解得:x=30°,則3x=90°,∴△ABC是直角三角形,此選項正確;D、如果a2:b2:c2=9:16:25,則a2+b2=c2,∴△ABC是直角三角形,此選項正確;故選:B.【考點】本題考查了三角形內(nèi)角和,勾股定理的逆定理,如果三角形的三邊長a,b,c滿足a2+b2=c2,那么這個三角形就是直角三角形.2、A【解析】【詳解】設(shè)EF=x,DF=y(tǒng),根據(jù)三角形重心的性質(zhì)得AF=2y,BF=2EF=2x,利用勾股定理得到4x2+4y2=c2,4x2+y2=b2,x2+4y2=a2,然后利用加減消元法消去x、y得到a、b、c的關(guān)系.【解答】解:設(shè)EF=x,DF=y(tǒng),∵AD,BE分別是BC,AC邊上的中線,∴點F為△ABC的重心,AF=AC=b,BD=a,∴AF=2DF=2y,BF=2EF=2x,∵AD⊥BE,∴∠AFB=∠AFE=∠BFD=90°,在Rt△AFB中,4x2+4y2=c2,①在Rt△AEF中,4x2+y2=b2,②在Rt△BFD中,x2+4y2=a2,③②+③得5x2+5y2=(a2+b2),∴4x2+4y2=(a2+b2),④①﹣④得c2﹣(a2+b2)=0,即a2+b2=5c2.故選:A.【點評】本題考查了三角形的重心:重心到頂點的距離與重心到對邊中點的距離之比為2:1.也考查了勾股定理.3、D【解析】【分析】根據(jù)勾股定理的逆定理,看較小的兩邊的平方和是否等于最大的邊的平方即可進(jìn)行判斷.【詳解】A、42+72≠82,故不能構(gòu)成直角三角形;B、22+22≠22,故不能構(gòu)成直角三角形;C、2+2=4,故不能構(gòu)成三角形,不能構(gòu)成直角三角形;D、52+122=132,故能構(gòu)成直角三角形,故選D.【考點】本題考查的是用勾股定理的逆定理判斷三角形的形狀,即若三角形的三邊符合a2+b2=c2,則此三角形是直角三角形.4、D【解析】【分析】分三種情況討論,當(dāng)∠A=90°,或∠B=90°,或∠C=90°時,分別畫出符合條件的圖形,即可解答.【詳解】解:分三種情況討論,當(dāng)∠A=90°,或∠B=90°,或∠C=90°如圖符合條件的格點C的個數(shù)是6個故選:D.【考點】本題考查正多邊形和圓的性質(zhì)、直角三角形的判定與性質(zhì)、直徑所對的圓周角是90°等知識,是基礎(chǔ)考點,掌握相關(guān)知識是解題關(guān)鍵.5、C【解析】【詳解】解:如圖所示,∵(a+b)2=21∴a2+2ab+b2=21,∵大正方形的面積為13,即:a2+b2=13,∴2ab=21﹣13=8,∴小正方形的面積為13﹣8=5.故選C.6、A【解析】【詳解】解:由勾股定理的幾何意義可知:S1+S2=1,S2+S3=2,S3+S4=3,S1+S2+S3+S4=4,故選A.【考點】勾股定理包含幾何與數(shù)論兩個方面,幾何方面,一個直角三角形的斜邊的平方等于另外兩邊的平方和.這里,邊的平方的幾何意義就是以該邊為邊的正方形的面積.7、D【解析】【分析】先證明CE=CD=DF,BC=BF=5,利用勾股定理求出AB,設(shè)CE=CD=DF=x,在Rt△ADF中,利用勾股定理構(gòu)建方程求解即可.【詳解】解:由作圖知CE⊥AB,BD平分∠CBF,∴∠1=∠2=∠3,∵∠CEB+∠3=∠2+∠CDE=90°,∴∠CEB=∠CDE,∴CD=CE,在△DBC和△DBF中,,∴△BDC≌△BDF(AAS),∴CD=DF,BC=BF=5,∵∠ACB=90°,AC=12,BC=5,∴AB=,設(shè)EC=CD=DF=x,在Rt△ADF中,則有(12+x)2=x2+182,∴x=,∴CE=,故選D.【考點】本題考查作圖-復(fù)雜作圖,全等三角形的判定和性質(zhì),等腰三角形的判定,以及勾股定理等知識,解題的關(guān)鍵是學(xué)會構(gòu)建方程解決問題,屬于中考??碱}型.二、填空題1、3【解析】【分析】過點C作CE∥AB交AD延長線于E,先證△ABD≌△ECD(AAS),求出AE=2AD=4,在Rt△AEC中,即可.【詳解】解:過點C作CE∥AB交AD延長線于E,∵AD是BC邊上的中線,∴BD=CD,∵AD⊥AB,CE∥AB,∴AD⊥CE,∠ABD=∠ECD,∴∠E=90°,在△ABD和△ECD中,∴△ABD≌△ECD(AAS),∴AB=EC,AD=ED=2,∴AE=2AD=4,在Rt△AEC中,,∴AB=CE=3.故答案為:3.【考點】本題考查中線性質(zhì),平行線性質(zhì),三角形全等判定與性質(zhì),勾股定理,掌握中線性質(zhì),平行線性質(zhì),三角形全等判定與性質(zhì),勾股定理,關(guān)鍵是利用輔助線構(gòu)造三角形全等.2、3或6【解析】【分析】分兩種情況分別求解,(1)當(dāng)∠CED′=90°時,如圖(1),根據(jù)軸對稱的性質(zhì)得∠AED=∠AED′=45′,得DE=AD=6;(2)當(dāng)∠ED′A=90°時,如圖(2),根據(jù)軸對稱的性質(zhì)得∠AD′E=∠D,AD′=AD,DE=D′E,得A、D′、C在同一直線上,根據(jù)勾股定理得AC=10,設(shè)DE=D′E=x,則EC=CD?DE=8?x,根據(jù)勾股定理得,D′E2+D′C2=EC2,代入相關(guān)的值,計算即可.【詳解】解:當(dāng)∠CED′=90°時,如圖(1),∵∠CED′=90°,根據(jù)軸對稱的性質(zhì)得∠AED=∠AED′=×90°=45°,∵∠D=90°,∴△ADE是等腰直角三角形,∴DE=AD=6;(2)當(dāng)∠ED′A=90°時,如圖(2),根據(jù)軸對稱的性質(zhì)得∠AD′E=∠D=90°,AD′=AD,DE=D′E,△CD′E為直角三角形,即∠CD′E=90°,∴∠AD′E+∠CD′E=180°,∴A、D′、C在同一直線上,根據(jù)勾股定理得,∴CD′=10?6=4,設(shè)DE=D′E=x,則EC=CD?DE=8?x,在Rt△D′EC中,D′E2+D′C2=EC2,即x2+16=(8?x)2,解得x=3,即DE=3;綜上所述:DE的長為3或6;故答案為:3或6.【考點】本題考查了矩形的性質(zhì)、勾股定理、軸對稱的性質(zhì),熟練掌握矩形的性質(zhì)、勾股定理、軸對稱的性質(zhì)的綜合應(yīng)用,分情況討論,作出圖形是解題關(guān)鍵.3、【解析】【分析】首先根據(jù)勾股定理設(shè),求出AD、CD,再求出AB,相加即可.【詳解】解:∵折疊直角三角形紙片,使兩個銳角頂點、重合,∴,設(shè),則,故,∵,∴,即,解得,∴.則在中,由勾股定理得∴AC=5∴周長為AD+CD+AB=.故答案為:.【考點】本題考查了勾股定理的應(yīng)用以及折疊的性質(zhì),掌握勾股定理和折疊的性質(zhì)是解題的關(guān)鍵.4、【解析】【分析】根據(jù)勾股定理即可得出結(jié)論.【詳解】解:設(shè)未折斷的竹干長為尺,根據(jù)題意可列方程為:.故答案為:.【考點】本題考查的是勾股定理的應(yīng)用,在應(yīng)用勾股定理解決實際問題時勾股定理與方程的結(jié)合是解決實際問題常用的方法,關(guān)鍵是從題中抽象出勾股定理這一數(shù)學(xué)模型,畫出準(zhǔn)確的示意圖.領(lǐng)會數(shù)形結(jié)合的思想的應(yīng)用.5、0.8【解析】【分析】梯子的長是不變的,只要利用勾股定理解出梯子滑動前和滑動后的所構(gòu)成的兩直角三角形,分別得出AO,A1O的長即可.【詳解】解:在Rt△ABO中,根據(jù)勾股定理知,A1O==4(m),在Rt△ABO中,由題意可得:BO=1.4(m),根據(jù)勾股定理知,AO==4.8(m),所以AA1=AO-A1O=0.8(米).故答案為0.8.【考點】本題考查勾股定理的應(yīng)用,解題關(guān)鍵是從題中抽象出勾股定理這一數(shù)學(xué)模型,畫出準(zhǔn)確的示意圖.領(lǐng)會數(shù)形結(jié)合的思想的應(yīng)用.6、15【解析】【分析】根據(jù)勾股定理有S正方形1+S正方形2=S大正方形=49,S正方形C+S正方形D=S正方形2,S正方形A+S正方形B=S正方形1,等量代換即可求正方形D的面積.【詳解】解:如圖,根據(jù)勾股定理可知,∵S正方形1+S正方形2=S大正方形=49,S正方形C+S正方形D=S正方形2,S正方形A+S正方形B=S正方形1,∴S大正方形=S正方形C+S正方形D+S正方形A+S正方形B=49.∴正方形D的面積=49-8-12-14=15(cm2);故答案為:15.【考點】此題主要考查了勾股定理,注意根據(jù)正方形的面積公式以及勾股定理得到圖中正方形的面積之間的關(guān)系:以直角三角形的兩條直角邊為邊長的兩個正方形的面積和等于以斜邊為邊長的面積.7、2+2【解析】【分析】地毯的豎直的線段加起來等于BC,水平的線段相加正好等于AC,即地毯的總長度至少為(AC+BC).【詳解】在Rt△ABC中,∠A=30°,BC=2m,∠C=90°,∴AB=2BC=4m,∴AC=m,∴AC+BC=2+2(m).故答案為2+2.【考點】本題主要考查勾股定理的應(yīng)用,解此題的關(guān)鍵在于準(zhǔn)確理解題中地毯的長度為水平與豎直的線段的和.8、25【解析】【分析】先將圖形平面展開,再用勾股定理根據(jù)兩點之間線段最短進(jìn)行解答.【詳解】解:如圖所示:臺階平面展開圖為長方形,根據(jù)題意得:,,則螞蟻沿臺階面爬行到B點最短路程是此長方形的對角線長.由勾股定理得:,即,∴,故答案為:25.【考點】本題主要考查了平面展開圖—最短路徑問題,用到臺階的平面展開圖,只要根據(jù)題意判斷出長方形的長和寬即可解答.三、解答題1、(1)A,B兩點間的距離是40米;(2)點B到直線AC的距離是24米.【解析】【分析】(1)根據(jù)勾股定理解答即可;(2)根據(jù)三角形面積公式解答即可.【詳解】(1)因為是直角三角形,所以由勾股定理,得.因為米,,所以.因為,所以米.即A,B兩點間的距離是40米.(2)過點B作于點D.因為,所以.所以(米),即點B到直線AC的距離是24米.【考點】本題考查了勾股定理的應(yīng)用,屬于基礎(chǔ)題,關(guān)鍵是掌握勾股定理在直角三角形中的表達(dá)式.2、(1)見解析(2)40;41【解析】【分析】(1)利用勾股定理的逆定理證明即可.(2)利用勾股數(shù)的公式代入求值即可.(1)證明:,∴,,構(gòu)成勾股數(shù).(2)根據(jù)最小數(shù)為奇數(shù)時,另兩個正整數(shù)為,,當(dāng)a=9時,,,故答案為:40,41.【考點】本題考查了勾股定理逆定理,勾股數(shù)的探索,代入求值,熟練掌握勾股數(shù)是解題的關(guān)鍵.3、小敏的猜想錯誤,立柱AB段的正確長度長為9米.【解析】【分析】延長FC交AB于點G,設(shè)BG=x米,在Rt△BGC中利用勾股定理可求x,進(jìn)而可得AB的正確長度【詳解】解:如圖,延長FC交AB于點G則CG⊥AB,AG=CD=1米,GC=AD=15米設(shè)BG=x米,則BC=(26-1-x)米在Rt△BGC中,∵∴解得

∴B

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論